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The relation between irreducibility and the structure of the commutant is studied for a set oflinear 
bounded operators on a real Hilbert space of arbitrary dimension. The results are applied to the 
investigation of irreducible sets of semilinear operators on a complex or quaternionic Hilbert 
space. 

I. INTRODUCTION 

For an irreducible set d of linear mappings from a 
linear space V over a field K into itself the commutant d' 
(i.e., the set of all linear mappings commuting with all map
pings of d) is a division algebra over K (see, e.g., Ref. 1, Sec. 
II, p. 118). Here, irreducibility means the nonexistence of a 
nontrivial d -invariant linear subset. In the more general 
situation, where K is a skew field and where d consists of 
semilinear mappings, d' is still a division algebra, but over a 
smaller field K .... consisting of all central elements of K being 
invariant under all automorphisms of K generated by the 
semilinear mappings in d (Ref. 2, Proposition 3). Further
more, if XEd' has an eigenvalue AE K .... , then X = AI, 
where 1 is the identity mapping of V (Ref. 2, Proposition 2). 
These results are based on Schur's lemma. A more detailed 
description of d' can be achieved restricting the dimension 
of V and specifying the nature of K. So, for instance, if 
dim V < 00 and if K is an algebraically closed field, one gets 
in the linear case d' = K 1, i.e., Burside's theorem. Particu
larly interesting for applications is the special case that K is 
the field R of real numbers, or the field C of complex 
numbers, or the skew field H of quaternionic numbers. As
suming dim V < 00, in each of these three cases it turns out 
that d' is isomorphic either to R or to C or to H [Ref. 2, 
Theorem 1; cf. (3)-(5) for examples]. The crucial inputs for 
this result are Frobenius' theorem telling us that the only 
finite-dimensional division algebras over Rare R, C, and H 
(Ref. 1, Sec. I, p. 430), and the fact that every finite-dimen
sional division algebra over an algebraically closed field is 
isomorphic to the field itself (Ref. 1, Sec. I, p. 429) (actually, 
this is applied in the case of the complex field only). For 
K = R the above statement d' =R, C, or H is proven in Ref. 
3 (p. 119, Theorem 2) even in the case where dim Vis count
able. The main step of the proof consists in showing that any 
finite subset of d' generates a finite-dimensional division 
subalgebra of d'. Then Frobenius' theorem is applied. 

The aim of the present paper is to free these results from 
any dimensional restrictions in the case that V is a Hilbert 
space and that the notions used so far are adapted to this case 
in a natural way. The most commonly used Hilbert spaces 
are the real and the complex ones. Their importance for anal
ysis and physics need not be stressed. We will deal with the 
less popular quaternionic Hilbert spaces, too, for two rea
sons. First, considering an irreducible set of linear operators 

in a real Hilbert space, we may find the commutant being 
isomorphic to H. This is most naturally interpreted in terms 
of a quaternionic Hilbert space. Second, Hilbert spaces over 
R, C, and H arise as possibilities of equal weight from the 
lattice theoretical foundation of quantum theory, see, e.g., 
Ref. 4. In this framework symmetry transformations of a 
physical system are represented by semilinear unitary opera
tors and an irreducible set of symmetries characterizes an 
elementary system. This is the physical reason for being in
terested in irreducibility as studied in this paper. For an 
elaborat.ion of quantum theory in quaternionic Hilbert space 
see, e.g., Refs. 5 and 6. 

Modifying the purely algebraic situation reported at the 
beginning let now d consist of bounded semilinear opera
tors on a Hilbert space Hover K = R, C, or JIll. Correspond
ingly, the commutant d' consists of bounded linear opera
tors and irreducibility refers to closed linear subsets. In the 
present paper we shall concern ourselves with the structure 
of d' for an irreducible d. 

Our considerations center on the case K = R since the 
other cases are reduced to the real one by realification (Sec. 
III). Here semilinearity and linearity coincide. Obviously 
d' = [d]' and d is irreducible iff [d] is, where [d] de
notes the strongly closed algebra generated by du{ I}. [d] 
is even weakly closed (Ref. 7, p. 64, Theorem 3.12). The anal
ysis of d' in Sec. II is decisively based on the * condition that 
[d] is a * algebra, i.e., that A E [d]~A *E [d]. In other 
words, du{ I} is supposed to generate a real von Neumann 
algebra S. As in the complex case the latter is equivalently 
characterized by S = S* and S = S". [The proof (Ref. 
8, p. 5, Theorem 1.2.1) of the double commutant theorem 
applies literally to the real case.] The * condition on d may 
be sharpened to the more practicable condition that d gen
erates a * algebra (without topological closure) or that even 

for any A E d there are b E Rand BEd such that 
A * = bB. (1) 
Important examples of ( 1) are, first, that d consists of 

self-adjoint or skew-adjoint operators and, second, that d is 
the range of a unitary (projective) representation of a group. 

The main result of Sec. II is that a real von Neumann 
algebra is irreducible if and only if its commutant is isomor
phic to R, C, or H (Theorem 2). We think that the given proof 
may be of some interest. It does not recur to complexification 
(cf. Remark 3) but consists mainly in an analysis of what we 
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call a real skew-adjoint algebra. [See (2) following.] This no
tion takes account of the characteristic properties of the 
commutant algebras under consideration. Skew-adjoint al
gebras are, in particular, normed division algebras. So one 
could base the proof on the real version of the Gelfand
Mazur theorem (Ref. 9, p. 73, Theorem 7) and care separate
ly for the * compatibility of the isomorphism (Remark 1). 

Pleasurably, a short elementary analysis of skew-ad
joint algebras is possible, and we take this direct way 
(Theorem 1). Let us emphasize that, anyway, the * condition 
cannot be dropped. It ensures that the commutant is self
adjoint and that reducibility and decomposability are equi
valent for .J;/. So, for instance, the algebra of all real triangu
lar matrices of dimension ;;;.2 is ruled out, which is reducible 
although its commutant is isomorphic to lit Moreover, in 
general, a nontrivial commutant .J;/' does not imply the de
composability of .J;/. As an example in complex Hilbert 
space take for .J;/ the set of all multiplication operators on 
Hardy space H 2 by functions in Hoo , which is its own com
mutant and which is not decomposable. Of course, answer
ing the question of whether any irreducible set of bounded 
linear operators in a complex Hilbert space has a trivial com
mutant would decide either the invariant subspace problem 
or the transitive operator algebra problem (see, e.g., Ref. 10). 

An interesting variation of our analysis follows replac
ing the * condition by the weaker normality condition, i.e., 
that [.J;/] is generated by normal operators. (If dim H < 00, 

actually it is not weaker; this follows from Ref. 10 (p. 175, 
Corollary 9.12) since a normal matrix is completely normal 
and, hence, [.J;/] is reductive. The proofs are easily trans
ferred to the real case.) By the Theorem of Fuglede-Put
man-Rosenblum (its proof, in Ref. 7, p. 300, Theorem 12.16, 
applies literally to the real case) it then follows that 
.J;/' = (.J;/u.J;/*)' such that .J;/' is a real skew-adjoint algebra if 
.J;/ is irreducible. The analysis then proceeds to Theorem 1. 
However, the normality condition, unlike the * condition, 
does not ensure the irreducibility of.J;/ in the case of a trivial 
commutant .J;/'. As an example, in complex Hilbert space let 
.J;/ = I U,Q }, where U is the bilateral shift and Q is the or-

2 Th H 2 " thogonal projection onto Hardy space H. en 1S lDvar-
iant under.J;/. Because of Ref. 7, p. 300, Theorem 12.16, .J;/' 
is a von Neumann algebra and, hence, would contain a non
trivial orthogonal projection if .J;/' ¥= C 1 were assumed. This, 
however, would contradict Ref. 10, p. 39, Theorem 3.6 and 
p. 41, Corollary 3.10. 

II. THE COMMUTANT OF AN IRREDUCIBLE SET OF 
REAL OPERATORS 

Throughout this section let .J;/ denote a set of bounded 
linear operators on a real Hilbert space H such that .J;/ull} 
generates a real von Neumann algebra. The latter is the case 
if ( 1) is valid. 

Lemma 1: .J;/ is irreducible if and only if .J;/' contains no 
self-adjoint elements except the real multiples of the identity 
operator. 

Proof: Without loss of generality .J;/ is a * algebra. Let 
M be a subspace of H and let P be the self-adjoint projection 
operator with range M. Then M is invariant under A E .J;/ iff 
PAP = AP. Therefore M is invariant under A and A * iff P 
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commutes with A. Now the assertion follows from the fact 
that a self-adjoint operator belongs to .J;/' iff all its spectral 
~ec~m~~ • 

Therefore, if .J;/ is irreducible, the real * algebra .J;/' 
enjoys the further property: 

For any self-adjoint element A of the algebra there is a 
real number tp(A ) such that A = tp (A )E, E =unit ele
ment. For every nonzero element A of the algebra it is 
tp(A *A »0. (2) 

Any element of a * algebra can be written as A = As 
+ Aa, where As: = ~(A + A *) is self-adjoint and 
Aa : = ~(A - A *) is skew-adjoint. Therefore, the content of 
(2) is essentially that only the skew-adjoint part of any ele
ment is nontrivial. Let us call a real * algebra with unit satis
fying (2) a real skew-adjoint algebra. [The positivity condi
tion in (2) is independent as simple examples show.] There 
are three well-known examples of such algebras: R, C, and H 
with h *: = hand tp(h *h ) = Ih 12. We are going to show that 
actually they are the only ones. 

Theorem 1: Let Y be a real skew-adjoint algebra. Then 
Y is isomorphic (as a real * algebra) to R or C or H. 

Proof; If all elements of Yare self-adjoint, then Y -R, 
A-lP(A ) is an isomorphism. Otherwise choose X E Y with 
X¥=X*. Then I:=tp(X:Xa)-1/2Xa satisfies I*= -I, 
12 = - E. If Y is commutative, IAa is always self-adjoint 
and hence A =As + I( - IAa) = tp (AslE + tp ( - IAa)! so 
that Y -C, aE + bI-a + ib, is a * isomorphism. If Y is 
not commutative, choose Y E Y not commuting with I. 
Then Ya is skew-adjoint and linearly independent of E and I. 
Indeed, Ya = aE + bI implies Y = Ys + Ya = [tp (Ys) 
+ alE + bI and hence YI = IY. Now, Z: = Ya 
+ !(IYa + YaI)! satisfies ZI = - IZ, Z * = - Z, Z ¥= O. 
PuttingJ: = tp (Z *Z )-1/2Z we get JI = - IJ,J* = - J, 
J2 = - E. HereJis linearly independent ofE and I, since Ya 

is. Trivial algebra shows that K: = IJ satisfies K * = - K, 
K2= -E, JK=I= -KJ, KI=J= -IK. Further
more, (aE + bI + cJ + d )(aE - bI - cJ - dK) = (a2 + b 2 
+ c2 + c2)E proves the linear independence of E, I, J, and K . 
Therefore, lEI_Y, a + ib + jc + kd-aE + bI + cJ + dK 
is an injective * homomorphism. Now, the following identity 
holds: 

A = As - !(AaI + IAa)! - !(AJ + JAa - KAa I + IAaK)J 

-l(AaK + KAa - IAaJ + JAaI)K 

=:Ho +HII +H~ +H3K, 

where the Hn are self-adjoint. Hence A = tp (HolE 
+ tp (HI)! + tp (H2)J + tp (H3)K, implying the surjectivity of 
the above homomorphism. • 

Remark 1: Obviously (A IB): = tp (UA *B + B *A ])isa 
scalar product on the real skew-adjoint algebra Y. There
fore, in particular, Y is a normed algebra with IIA II 
: = [tp (A * A Jr /2. Moreover, because of A * A = tp (A * A )E, 
each nonzero element A E Y has the unique inverse A-I 
= IIA 11- 2A *. ThusYisarealnormeddivisionalgebra.Ac

cording to the real version of the Gelfand-Mazur theorem 
(Ref. 9, p. 73, Theorem 7) there is a real normed algebra 
isomorphism from .Y. onto K. = R, C, or H. Let us see that it 
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is even a • isomorphism. Denote by A the involution on K 
being the image of the. operation on Y. Since Y is s~ew 
adjoint it follows that the only self-adjoint elements h = h of 
K are the reals. However, this property is characteristic of 
the lordinary) complex conjugation on K. Indeed, this is ob
vious in the case K = R or C. In the quaternionic case there is 
a nonzero q E H with q2 E R such that h = qhq-I. This is 
because any two involutions are connected by an automor
phism, which is inner since all automorphisms of H are in
ner, and because the center of H consists of the reals only. 
Here, i E R implies the alternative q = q or q = - q, i.e., q 
real or q a linear combination of i,j, and k. In the case of the 
latter there is an h E H with ii = - h anticommuting with q. 
For example, take for h the image ofj under

A 
an inner auto

morphism mapping Iqli on q. Then, indeed, h = h although 
h is not real, contradicting IB, A) being skew adjoint. There
fore q is real, and A coincides with complex conjugation. 
Thus we have an alternative proof of Theorem 1. • 

We remember that d' is a skew-adjoint algebra if dis 
irreducible and that the only self-adjoint elements ofR, C, or 
II are the real multiples of the unit. So we infer from 
Theorem 1 and Lemma 1 the following theorem. 

Theorem 2: d is irreducible if and only if d' is • iso
morphic to R, C, or B. 

In particular, this means that d' is the range of a • 
representation in H of one of these fields. From this the ex
plicit structure of d' follows. 

Lemma 2: Up to a real Hilbert space isomorphism there 
is only one irreducible real • representation of R, C, or B, 
namely, 

L(H) 

{~ -:)IA.BELIH)} 

{(=~ 
B C 

_~ A.B.C,D. EL!HI} A -D 
D A 

-c B 

where H in (3) is a real Hilbert space. 
Proof: Taking into account the relation between real, 

complex, and quaternionic Hilbert space discussed at the 
beginning of Sec. III, the proof follows combining Theorem 
2, the double commutant theorem, and Lemma 2. • 

Remark 2: If d' is isomorphic to C or n, any skew
adjoint element lEd', I 2 = - I, endows H with a complex 
linear structure la + ib )x: = ax + blx and a complex valued 
scalar product (xly) I: = (xlY) - i(xlly), which tum H 
into a complex Hilbert space HI Idifferent from the com
plexification of H). Any A e d is also a linear operator on 
HI' and we use the notation AI to stress this. Note that 
(A·h = (AI)·' Now, in these terms the alternative for d' 
may be described as follows: the complex case occurs iff 
(d I)' = C1 I , the quaternionic case occurs iff there is a Hil
bert space isomorphism t:Hr-H -I such that tAlt- 1 

= A _ I for all A E d (t gives rise to the quaternionic ele
mentJ). 

Remark 3: d' may be analyzed alternatively by means 
ofthecomplexificationHe ofH. Let de = [A filA IA eA } 
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a---+a for the real numbers, e -b) fi h I b 
a + ih b a

ia 

or t_ebcom~:x nu:vers, 

a + ib + jc + kd : ~ - ~ _ ~ 
d -c b a 

for the quaternionic numbers. 
Every real • representation of R, C, or lEI is an orthogonal 
sum oflpossibly noncountably many) copies of the irreduci
ble one. 

Proof We give the proof for the quaternionic case. Let 17' 
be any real. representation of H. For any unit vector x con
sider . the 17'-invariant four-dimensional subspace Vx: 
= [17'Iq)xlq E H}. With respect to its orthonormal basis 
[x,17'1i)x,17'(j)x,1Tjk)x J the restriction of 17' to Vx is the repre
sentation indicated above. It is irreducible since Vy = Vx for 
any unit vector y E Vx ' But if yl Vx then Vy 1 Vx ,easily fol
lows. So a simple application of Zorn's lemma completes the 
proof. • 

It is now easy to get a survey of the irreducible real von 
Neumann algebras. 

Theorem 3: Any irreducible real von Neuman algebra is 
isomorphic (as a real. algebra) to L (H), the set of all bounded 
linear operators on a real, complex, or quaternionic Hilbert 
space H, taken as a real • algebra. The isomorphism is im
plied by a Hilbert space isomorphism. Explicitly, we get the 
following representation of the real, complex, and quater
nionic type (left side) with its respective commutant lright 
side): 

RI, 

{(:~ - :~)Ia,b E R}~C, (3) 

{Gl 
-b 1 -cl -d) 

a.b.c.d. E R }"'H' al -d1 cl 
dl a1 -b 1 

-cl b1 al 

I 
refer to the identification He = H fIl H, and let !£' be the 
antilinear canonical conjugation satisfying !£,2 = 1, 
!£'. = !£'. Then d is irreducible iff d eU {!£' J is irreduci
ble. In these terms the three possibilities in Theorem 2 mani
fest themselves as follows: in the real case de is irreducible, 
in the complex case de is the orthogonal sum of two inequi
valent irreducible operator systems, and in the quaternionic 
case de is the orthogonal sum of two equivalent irreducible 
operator systems. A nonstraightforward point in this analy
sis is to see that de consists of irreducible components and 
the number of them cannot exceed 2. This may be proved as 
Theorem 1 in Ref. 11 with the operator 
(l/p)~f= I U(r;)AU(r;)-1 replaced by !(A + !£' A!£'). 

III. THE COMMUTANT OF AN IRREDUCIBLE SET OF 
SEMI LINEAR OPERATORS 

In quaternionic Hilbert space (see Ref. 5, Secs. 1A and 
1B for a brief exposition) left-multiplication Lq by a quater
nion q acts as seinilinear operator on H:Lq(hx) = hq Lqlx), 
where hq :qhq-I for all h E H. In particular let I: = L;, 
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J: = L j , and K: = L k , where i,j, k are the imaginary units. 
The real Hilbert space H R underlying H is the same set as H 
with the same real-linear structure, equipped with the real 
scalar product ( I )R: = Re( I ) being the real part of the 
original one. Moreover, it is endowed with the (real- ) linear 
operators Lq constituting a real * representation of III (cf. 
Lemma 2). With its aid the quaternionic structure can be 
regained. In particular, it is (xIY) = (XIY)R 
- i(xIIY)R - j(xIJy) - k (xIKY)R. Conversely, given a 

real Hilbert space carrying a real * representation 1T of the 
quaternions the analogous formula endows it with a quater
nionic linear structure such that 1T(q) = L q • Then the lHI-lin
ear operators are just the R-linear ones commuting with Lq 
or 1T(q), respectively. 

In particular, the commutant of a set .sf of bounded 
semilinear operators on a quaternionic Hilbert space does 
not change if .sf is enlarged by the operators L q • Therefore 
without loss of generality let them already be in .sf. Then .sf 
is irreducible if and only if .sf R' the set of the operators in .sf 
acting on H R' is irreducible. Thus, imposing the * condition 
on .sf R' which is ensured if, for instance, .sf satisfies (I) with 
b E 1HI, the reduction to the real case succeeds. (See Ref. 4, p. 
160, Theorem II for a partial result.) The complex case 
yields the same result by the same method. So we have the 
following. 

Corollary: Let .sf be a set of bounded semilinear opera
I 

tors on a Hilbert space over K. with {Lh Ih E K.} C A and 
.sf R satisfying the * condition. Then .sf is irreducible if and 
only if .sf' is isomorphic to JR, C, or 1HI in the sense of real * 
algebras. 

Let us now account for the realization of the predicted 
cases. We observe that .sf' is the range of a * representation 
ofK. by linear operators. So the following lemma (continuing 
Lemma 2) determines its possible structure. For the sake of 
brevity we omit the proof though it is not completely 
straightforward. 

Lemma 3: Up to a Hilbert space isomorphism the irre
ducible * representations of K. (as a real * algebra) by linear 
bounded operators on complex or quaternionic Hilbert 
space are 

a--+a for the real numbers, 

z_z andZ_Z} 

z-Rz 
for the complex numbers, 

(
a -ib 

a + ib + jc + kd- .d 
-C-l 

q_Rq 
for the quaternionic numbers, 

C - id\} 
a +ib) 

where, for any qED, Rqh: = hq is a linear operator on the 
left Hilbert space D. Every * representation of K. is an or
thogonal sum of (possibly noncountably many) irreducible 
ones. 

It remains to complete the list initiated in Theorem 3. The right side of the list is the commutant of the left side, while the 
left side consists of all semilinear bounded operators which commute with all operators of the right side. In (5) each side is the 
commutant of the other side if on the left side the sets are replaced by their subsets of linear operators: 

{ all semilinear bounded operators on H} JR 1, 

L(H) Cl, 

{(~ ~)IA EL(H),BEL(H')} U {e~ z~')IZE C}~C, 
{(C~ B:")IBEL(H',H),CEL(H,H')} 

{(~ ~)IA EL(H)} u{~~ -~1)IBEL(H)} {(-:~ ;~) I W;Z E C }~n, (4) 

where 1 is a conjugation on the complex Hilbert space H; 

{ all semilinear bounded operators on H J R 1 

{(LqRwJuc Iq E n, wuc E C defining a bounded operator J {(Rz 8'K)'K Iz E C}~C, 

{(Lqa'K )'K Iq E 1HI, a'KE R defining a bounded operator J 

(5) 

where the matrix elements refer to an orthonormal basis (e,) of the quaternionic Hilbert space Hand Rqhe, = hqe, for all 
q,hEH. 
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We investigate the equations PrP = k", + h with the range of", contained in an appropriate 
Clifford algebra. Next we define, on the bundle tJtM ofthe minimal left ideals ofthe Clifford 
algebra, the unique connection V which produces the Christoffel connection V on M. To unify the 
whole picture we have to introduce an additional degree offreedom a which numerates the set of 
global fields of mutually annihilating primitive idempotents onM. Now the geometrical "duality" 
of the spinor fields given by the primary as well as by the composed character of the sections of 
tJtM implies the existence of some internal gauge interaction B,. which changes a. The generators 
of the holonomy group of V that do not belong to the Crumeyrolle algebra are responsible for this 
internal interaction. 

I. INTRODUCTION 

Let V be a (n = s + t )-dimensional real vector space 
and Q a nonsingular quadratic form on V of signature (s,t ). 
The universal Clifford algebra CC (Q ) of the quadratic form Q 
is an R-algebra with the following properties. 

(a) 3 a linear function 

O:V-.CC(Q), 

such that 

O(v)2=Q(v)·I, VVEV. (Ll) 

(b) For all linear function 4J: V-.A, where A is an R 
algebra with a unity such that 4J (V)2 = Q(v).I, 3 a unique 
morphism 4>: CC (Q )-.A such that the diagram 

() 

(1.2) 

commutes. The property (b) tells us that CC (Q ) is generated 
by the image 0 (V)orwhenweidentifyO (V) with V that CC(Q) 
is generated by V. 

Let {V,. J be an orthonormal base of V and B be the 
bilinear form associated with the quadratic form Q. We can 
see that CC (Q ) is spanned by elements 

{ l,v,. ,v,. ,V""'VI V V2 V V3 V ... V Vs +, J (1.3) 

and equipped with the associative and distributive product 
V , which we shall call the Clifford product. It is induced by 

v,.Vv,,=v,.Av,,+B(v,.,v,,).1. (1.4) 

Thus the underlying vector space of the Clifford algebra 
CC (Q ) can be seen as the direct sum of p-vectQr spaces CC P, i.e., 

n 

CC(Q) = EB CC p
• (1.5) 

plO 

The canonical basis for CC p consists of the products 

Vs = v· Vv· ",v· = v· Av ... ·Av. 
'I '2 Ip 'I '2 Ip' 

l<;i l <i2 < .. ·<ip <;n. (1.6) 

Thus the dimension of CC (Q) is equal to 2n. There exists also 

another decomposition ofCC (Q). Namely, it can be written as 

CC(Q) = CC+(Q)EBC-(Q), (1.7) 

where C + (Q ) = EB p even CC p is the so-called even subalgebra 
of CC (Q) and CC - (Q) = EB p odd CC p is only the subspace of 
CC(Q). 

Let Q- be a general element of CC (Q). From (1.4) we see 
that the Clifford multiplication v,. V Q- contains two parts. 
We shall write then in the form 

v,. V Q- = v,. A Q- + v,. 'Q-. (1.8) 

In this approach the Clifford algebra CC(Q) is given quite 
abstractly. 

Now let V = R s". In this realization CC (Q ) will be de
noted by R S,' and will be spanned by 

{ l,e,. ,e,. A e", ... ,el A e2 A e3 A .. · A en J, (1.9) 

where {e,. J is an orthogonal basis of R S,' and 

e,. Ve" = e,. A e" + g,.,,'1. (LlO) 

Hereg,." = diag( U ~ )isthemetrictensorassociat-
S , 

ed with Q. The general element of the considered realization 
of the Clifford algebra has the form 

'" = ",0 + "'''e,. + "'''''e,. A e" + ... + ",IZ ... nel A· .. A en' 
(Lll) 

However, we can also realize (V,Q) as the dual vector space, 
i.e., (R S") •• in other words, we can consider the differential 
forms dx" of the vector space R s". In this realization the 
universal Clifford algebra CC (Q ) is spanned by 

{1,dx",dx" Adx", ... ,dx l Adxz A .. · AdxnJ, (Ll2) 

and similarly as above the distributive and associative Clif
ford product is induced by that of the generating elements 
dx", i.e., 

1 V 1 = 1, 1 V dx" = dx" VI = dx", 
(Ll3) 

dx"V dx" = dx" Adx" + gI'''.1. 

Now the general element of the considered realization of 
CC(Q) can be written as 
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1/1 = 1/10 + 1/1", dx'" + I/I",v dx'" /\ dxv + · .. I/I12 ... n dx l /\ ••. /\ dxn 
(1.14) 

and (1.13) gives us2 

dx'" V 1/1 = dx'" /\ 1/1 + dx'" J 1/1. (1.15) 

II. OPERATOR P 

Let us consider a vector space (V,Q) and its Clifford 
algebra CIJ(Q). It is known3 that we can define an inner pro
duct (.)Q on the underlying vector space of CIJ(Q). This pro
duct is induced by a quadratic form Q over Vas follows. 

(i) If t/J e ClJP and t/J' e ClJP' withp#p' then (t/J,t/J ')Q: = O. 

(ii)Ift/J=v; Vv; V···Vv;, t/J'=v.,Vv., V··· v." 
I 2 P 'I '2 Ip 

where {v; } is an orthonormal basis of (V,Q ), then 

(t/J,t/J ')Q: = det(B (vjJv1 ))· 

(iii) The general case t/J,t/J ' e CIJ (Q) can be reduced by lin
earity to (i) and (ii). Thus we can treat (V,Q ) and CIJ (Q ) as two 
Banach spaces and introduce differentiable mappings 

I/I:V-+CIJ(Q). (2.1) 

Definition 1: Let 1/1 be a differentiable function from the 
orthogonal vector space (V,Q ) to the Clifford algebra CIJ (Q ) 
or to some of its subspace W. The P operator will be given as4 

a a a 
P=VI -+iJ2-+"'+Vn --, 

aXI aX2 aXn 
i.e., 

(2.2) 

Of course, we can use the relation (1.8) and write (2.2) as 

Pr/J = v", /\ a"'1/1 + v", .al'I/I. (2.3) 

So we obtain easily the following properties of P: 

(i) p:~p-+ClJP-1 ~ ClJP+ I, 

(ii) P(I/II + 1/12) = Pr/JI + PI/I2' 

(iii) P (Pr/J) = P 21/1, 

(iv) p 2 = 0, VI/II,I/I2,I/I:V-+CIJ(Q). 

(2.4) 

From now we shall focus our attention on the respective 
differential maps 1/1: V -+ CIJ (Q ) satisfying the equation 

Pr/J = kl/l + h, with k,h e CIJ(Q). (2.5) 

We shall see that depending on the value of k and h, as well as 
depending on the range of 1/1, we obtain different equations 
which are very important in physics. 

Let us consider the realization of V and ~ (Q) by the 
space R '.1 and algebra R •. t' respectively. Then 

I/I:R '·'-+R,., 

and Eq. (2.5) will have the form 

al/l e", V --=kl/l+h, k,heR •. , . 
ax", 

(2.6) 

Let us consider the following examples. 
I. k = h = 0, i.e., Eq. (2.5) or equivalently (2.6) has the 

form 

PI/I = o. (2.7) 

A. The signature of Q is equal to (s,t) = (2,0). (See Ref. 
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5.) In Clifford algebraR2•0 is the direct sum ofp vectors, i.e., 

R2.0 = R ~.o ~R to ~R to (2.8) 

and 

R 2;0 = R ~.O ~R to. (2.9) 

(a) The range of 1/1 is contained in R to, i.e., 

or 

t,b(X I,x2) = uel + ve2· 

Equation (2.7) 

(el ~ + e2~) (ue l + ve2) = 0 
aXI aX2 

gives us 

(2.10) 

(2.11) 

au av av au 
-= --, -=- (2.12) 
aXI aX2 aXI aX2 

However, we know that for a complex-valued function 
u + iv = I(x i + ix2) of the complex variable XI + ix2 the 
Cauchy-Riemann equations have the form 

au av au au 
-=-, -= --. (2.13) 
aXI aX2 aX2 aXI 

Thus we see that Eq. (2.7) gives us in this case (indirectly) the 
Cauchy-Riemann equations (it will be a matter of orienta
tion of R 2.0 to obtain the Cauchy-Riemann equations direct
ly). 

(b) The range of 1/1 is contained in the even subalgebra 
R 2;0' In other words, we examine now the even fields 

I/I:xlel + x2e2-u + ve le2· 

Now Eq. (2.7) has the form6 

(el ~ + e2 ~) (u + ved = 0 
aXI aX2 

and gives us also the Cauchy-Riemann equations. 

(2.14) 

(2.15) 

(c) Let S (2,0) to the space of algebraic spinors for the just 
considered quadratic form. Then S (2,0) can be obtained as a 
minimal left ideal of R 2•0 determined by the primitive idem
potent lof the form 

I=! (1 + ed, (2.16) 

i.e., 

S (2,0) = R 2•0 f (2.17) 

If can be seen that this spinor space is a two-dimensional real 
linear. subspace of R 2•0 spanned by the elements 

s I = I = ! (1 + ed, 
(2.18) 

S2 = e21 = !(e2 - ed· 

Let us consider ~he map 1/1 whose range is contained inS (2,0): 

I/I:R 2.0 -+S (2,0), x Ie I + X2e2 -us I + vs2. (2.19) 

In this case Eq. (2.7) has the form 

(el ~ + e2 ~)(USI + vsd = 0 (2.20) 
aXI aX2 

and also yields the Cauchy-Riemann (CR) equations (2.13). 
It means that (u, - v) is the gradient of some harmonic func
tion K, i.e., 
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U = aK, _ v = aK, iPK + iPK = O. (2.21) 
ax I aX2 ax~ ax~ 

Again, when K is a harmonic function, then U,v given by 
(2.21) satisfy the CR equations. 

B. The signature of Q is equal to (s,t) = (3,0). Let us 
consider maps t/J:R 3,o---+R3,o whose ranges are contained in 
R to, i.e., t/J are vector fields. We can write 

t/J(X I,x2,x3) = Ylel + Y2e2 + Y3e3' (2.22) 

Equation (2.7) has the form 

( el ~ + e2 ~ + e3~) (Ylel + Y2e2 + Y3e3) = o. 
aXI aX2 aX3 

(2.23) 

It means that 

c1y1 + c1y2 + aY3 = 0 
aXI aX2 aX3 

(2.24) 

and 

e
23 

(au3 _ au2) + e31 (au l _ au3) 
aX2 aX3 aX3 aXI 

(
au2 aUI) +e12 --- =0. 
aXI aX2 

(2.25) 

The last equation implies that the vector field t/J can be writ
ten as the gradient of some function K: R 3,o---+RssR~,o' i.e., 

t/J = PK. 

Now from (1.23) we have 

p 2K=0, 

(2.26) 

(2.27) 

i.e., K is a harmonic function. Conversely, when K is a har
monic function then t/J = PK satisfies (2.23). 

C. The signature of Q is given as (s,t) = (n,O) and the 
map t/J is a vector field 

t/J:R ",o---+R !,o'" R",o' (2.28) 

It can represent, for example, the velocity of the flow of an 
uncompressible fluid in hydrodynamics in n-dimensional 
Euclidean space. Equation (2.7) implies (similarly to case B) 
that the flow is irrotational (i.e., that the velocity t/J is the 
gradient of its scalar potential K: R ",0 ---+R ssR ~,o) as well as 
that there are no sources. Thus we obtain again that the 
scalar potential K is harmonic. 

D. The signature of Q is equal to (s,t ) = (3,1). 
(a) A map t/J is a vector field, i.e., t/J: R 3,1---+R L. When 

we identify t/J with the electromagnetic potential, Eq. (2.7) is 
equivalent to the Lorentz gauge condition plus the differen
tial equations expressing a zero electromagnetic field in 
terms ofthe potential.7 

(b) The map t/J has a range contained in the bivector 
subspace R ~,I of R 3,I : 

t/J(X I,x2,x3,x4) = t/J14e 14 + t/J24e24 + t/J34e34 

+ t/J23e23 + t/J31e31 + t/J12e12' (2.29) 

Now, when we identify t/J with the electromagnetic field, the 
equation Pt/J = 0 is equivalent to the Maxwell equations in 
vacuum.s 

III. k = 0, h ;60, i.e., our general equation (2.6) has the 
form 
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Pt/J = h. (2.30) 

Let us consider the Minkowski space-time R 3,1 again and let 
t/J have its range in the bivector subspace R ~,I of R3,I as 
before. By the property (i) of the P operator we see that h can 
have a range contained only in R tl EB R tl . We shall assume 
that h is some vector field, i.e., 

(2.31) 

Now Eq. (2.30) describes the Maxwell equation with the cur
rent vector h. It expresses the fact that the one-vector part of 
Pt/J is equal to the given electric source h and that the three
vector part of Pt/J vanishes, i.e., there are no magnetic 
sources. In other words it means that' the bivector-valued 
electromagnetic field t/J has a vector potential A. It may be 
required that A is related to t/J by the equation 

PA = t/J (2.32) 

(similarly to in the cases B and C). 
But 

PA = ell AallA + e ll.allA (2.33) 

is contained in R ~,I EB R t I • The vanishing of the scalar part 
of PA described by Eq. (2.32) gives us a supplementary condi
tion on the vector potential A which is called the Lorentz 
condition. From (2.30) we have that 

p 2 t/J = Ph. (2.34) 

Since the operator P 2 does not change the multivector char
acter of any t/J, p 2 t/J is again a bivector. However, 
Ph C R ~,I EB R t I' Hence, we see that the scalar part of Ph 
has to be equal to zero. This is just the continuity equation 
for sources h. 

III. k ;60, h = 0, i.e., our general equation (2.5) [or = 
(2.6)] has the form 

Pt/J = kt/J. (2.35) 

When k is a constant scalar, Le., k E R ~,', we shall call Eq. 
(2.35) the generalized Dirac equation. As we shall see, it will 
be exactly the Dirac equation when t/J: R s"---+IJI(s,t), where 
IJI (x,t ) is the Dirac spinor space determined by some minimal 
left ideal of the corresponding Clifford algebra. 

III. KAHLER-DIRAC OPERATOR K 

Let us consider the space (R s.'). of differential forms on 
space R s". Let ¢I:R s"---+A (R s.'). be a general differential 
form, i.e., 

¢I (x) = ¢I O(x) + ¢l1l(x)dxll + ¢lIlV dxll Adxv 

+ .,. + ¢I 12'''''dx I A···Adx". (3.1) 

Letdbe the exterior derivatived:A P---+A P + I. We can write it 
as 

d¢l = dXIl A i1'¢I. (3.2) 

The Hodge map .:A P---+A ,,-P, given by 

rp A.rp I = (rp,rp ')QllJ, 'rip forms rp,rp', (3.3) 

where llJ is a orienting n form with (llJ,llJ)Q = 1, allows us to 
introduce the operator ~ which is formally Q adjoint to the d 
operator 

~ = - .d.. (3.4) 
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Definition 2: We shall call the first-order operator d - 0 
operating on differential forms the Kahler-Dirac operator 
and we shall denote it by K. 

It is known that d - 0 is a "square root" of the Lapla
cian operator 0 = - (do + od ). Moreover, it can be 
checked9 that 

(3.5) 

i.e., the operator K operating on differential forms can be 
written 

Kl/J = (d - o)l/J 

or 

(3.6) 

Now let us recall that the underlying vector spaces for the 
Grassman algebra of differential forms and the Clifford alge
bra associated with (R s,t)* are exactly the same. Of course on 
1\ (R s,t)* we can introduce the structure of the Clifford alge
bra, i.e., we can introduce the Clifford multiplication on 
1\ (R s,t)*. In this way we obtain the so-called Kahler-Atiyah 
algebra which carries both the exterior algebra and Clifford 
algebra structures. Because (3.1) has exactly the same form 
as (1.14), as well as that (3.6) is equal to the right side of(1.15), 
we obtain that in the realization of the Clifford algebra by 
differential forms operator P is equal to the Kahler-Dirac 
operator K. 

IV. DIRAC OPERATOR 0 

It is known that for any Clifford algebra ~ (V,Q ) we can 
find its faithful matrix representation. For the Clifford alge
bras which are simple (it is always when the dimension of the 
generating veCtor space n is even) the entries of this matrix 
repesentation will belong to one of the R, C, or H division 
algebras. For the rest of the cases the entries belong to one of 
the 2R or 2G double fields. However, in any case the Clifford 
algebra of the complexified vector space VC has its faithful 
matrix representation given by the algebra C(2') of 2'X2' 
complex matrixes. (r is the integral part of n/2, i.e.,r = [nl 
2].) 

In this way we have that any element of 
~ C(Q ) = ~ (Q C) has its matrix realization. Hence the func
tion t/J, introduced by (2.1), i.e., t/J: VC_~C(Q), will be given 
by the matrices depending on v E VC

• Let us take t/J: V _ C(Q), 
i.e., let us restrict ourselves to the functions with the target 
given by VC V C

• Let us denote the matrix representation of 
the elements v I' forming an orthonormal basis of Vby r 1" Of 
course al't/J will be given also by matrices which have the 
form 

(4.1) 

where t/Jab is an appropriate matrix element of the matrix t/J. 
Now we can take the realization of ~C(Q) by the complexifi
cation R ~t of the Clifford algebra of the pseudo-Riemannian 
vector space R s,t or by the complex differential forms on 
R s,t. We have already seen that in the first case the operator 
P can be written as 

P = el' V i1", 

whereas in the second realization of ~C(Q), 
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P = dxl' val', 

and is exactly equal to the Kahler-Dirac operator 
K=d-o. 

Now, when we consider the matrix representation of 
the Clifford algebra, the above two realizations give the 
same. In other words, the operator P as well as K operating 
on the matrix-valued functions t/J have the form rl' al'. This is 
just the famous form of the operator D, 

(4.2) 

introduced by Dirac in 1928. Thus we can say that the Dirac 
operator D is the matrix realization of the operators P and K. 
It follows from the fact that as el' and dxl' are realized by the 
same matrix r 1" then the general elements (1.11) and (1.14) 
with the same coefficients are also given by the same matrix 
t/J. Moreover, it can be checked that the matrix elements of 
the differential form (d - 0 )t/J are equal to the appropriate 
matrix elements of the differential form dxl' val't/J, i.e., 

((d - O)t/Jlab = (dxl')ac(i1"t/J)cb = (rl'al't/J)ab' (4.3) 

Taking the matrix representation of the Clifford algebra 
~C(Q) as well as of a map t/J we can construct all kinds of 
equations introduced in Example I of Sec. III. In this way we 
obtain the matrix realizations of, for example, Cauchy-Rie
mann or Maxwell equations. However we shall be interested 
mainly in the equations (2.35) with t/J having the range in the 
minimal left ideal tJi (s,t) of R ~t. Because we can always fix 
the basic matrixes r I' (generating R ~t) in such a way that the 
spinor space tJi (s,t ) is represented by matrices of the form 

o 0 

~) t/Ja E C} 
! N=2" 
o 

(4.4) 

o 0 
o 0 

Eq. (2.35) (in its matrix realization) is exactly equal to the 
Dirac equation rl'al't/J = mt/J. 

V. MANIFOLDS 

Let M be a pseudo-Riemannian manifold and TM its 
tangent bundle. The matrix tensor gl''' on M allows us to 
construct the Clifford albegra ~(TxM, g(x)) at each point 
x E M. In this way we obtain the so-called Clifford bundle 
~ (TM) = Ux E M ~ (TxM ,g(x)). However, similarly as before, 
we can realize the Clifford algebras of the quadratic forms 
determined by g starting from the cotangent bundle. In other 
words, we can construct a vector bundle 
~(T*M) = uXEM~(T:M,g(x)). This realization is some
times called the cotangential Clifford bundle. 

LetXbe a vector field over M, i.e., X is a cross section of 
the tangent bundle TM. Similarly as for vector spaces we can 
introduce an operator P acting on the sections of a given 
realization of the Clifford bundle. Hence we obtain that for 
the tangentian Clifford bundle ~ (TM), 

P=XVVx , (5.1) 

where V x is the covariant derivative on M. For the cotangen
tial realization of the Clifford bundle ~ (T * M ) 

P=X*VVx , (5.2) 

whereX * is an appropriate section ofT * M determined by X. 
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In any local neighborhood U C M with a coordinate basis 
{;cI'} the local cotangent-space is spanned by the differentials 
d;cl'. Now the P operator can be written as 

(5.3) 

i.e., 

P=d;cl'I\Vp +d;cl'JVp =d-~=K. (5.4) 

The relations (5.4) are a generalization of the formulas (3.6) 
for vector spaces to the case of the manifold and can be easily 
checked. 10 . 

Similarly as before we can consider Eq. (2.5) for ¢ given 
by the sections of the Clifford bundle C(J C( T * M) itself or by 
the sections of some of its vector subbundles. However, if ¢ is 
a section of the even Clifford subbundle or two-forms sub
bundle or one-forms subbundle we have essentially the same 
situation as in the previous subsections. It is caused by the 
fact that the covariant derivative V p is also the covariant 
derivative of the just-mentioned vector bundles. But the situ
ation will change when we consider cross sections of the 
spinor bundle 'PM. The vector bundle 'PM is defined by the 
global field of primitive idempotents fIx) which at each point 
x E M determines a left minimal ideal of C(JC(T~M,g). In a 
general case V p is not a linear endomorphism of the bundle 
of left minimal ideals generated by f 

This situation is caused by the fact that fis not parallel 
translated along any curve on M. Thus in a general case V x 

maps a section of 'PM onto a section of C(J C( T * M). In these 
cases the Kahler-Dirac equation P¢==.K ¢ = K¢ has no solu
tion in 'PM. 

If we want V x to be a linear endomorphism of 'PM we 
have to impose strong restrictions on the metric tensor g (or 
rather on its holonomy group). These restrictions seem to be 
unphysical ones and, for example, for the Schwarzschild 
metric cannot be fulfilled. (Obviously they hold in a pseudo
Riemannian flat space-time V.) For these reasons some phy
sicists reject the realization of the Dirac spinor bundle by the 
minimal left ideals of the complexified (tangential or cotan
gential) Clifford bundle. However, according to us just these 
difficulties could help us to understand more deeply the geo
metrical nature of spinor fields and their internal interac
tions. 

VI. INTERNAL STRUCTURE OF FERMIONS 

Let us assume that we have some fixed global field of 
primitive idempotents f on M. Let 'PM denote the vector 
bundle of minimal left ideals of C(J C( T * M) determined by f 
Using the anti-involutions of C(JC(T*M) induced by the 
identity or reversal transformation of the cotangent bundle 
T * M we can construct I I the bijection 

X6:'PM ® 'PM-+C(JC(T*M), (6.1) 

which satisfies the property 

(6.2) 

for any invertible element S E 'G'C(T~M) and for any cross 
sections tp (x), ¢(x) of the bundle 'PM. 

Let us denote by K6 C 'PM ® 'PM the coimage of 
T*M by the bijection X6' The formula (6.2) tells us that if 
S E Spin + (s,t ) thenX6(K6) = T*M will be transformed by an 
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appropriate proper orthogonal transformation. Any section 
¢ of the bundle 'PM can be treated as a 'P-valued O-form on 
M. However to define the exterior differential of a vector
bundle-valued p form on M we have to use a connection on 
this vector bundle. In case of a general manifold M it cannot 
be the Christoffel connection V generated by the metric ten
sor g. However it has to be a connection which produces V by 
an isomorphism X 6' 

Let us denote by r (.) the spaces of smooth sections of a 
considered vector bundle. The connection V on 'PM is a bi
linear map 

V:F(TM)Xr('PM)-+r('PM) 

written 

(X,¢)~Vx¢, 

and such that 

(i) VtX ¢ = tV x¢, 

(ii) V xt¢ = (X.t )¢ + tV¢, 

(6.3) 

(6.4) 

for any function ton M, for any vector field X E F (TM) and 
for any spinor field ¢' E F ('PM). Here V x¢ is called the co
variant derivative of ¢ in the direction of X. In a local neigh
borhood U C M with a coordinate basis {xP } and spinor 
basis {Pi },i = 1, ... ,N, 

VSi = e{Sj' 

where e = (e{) is a matrix of complex one-forms. 
For ¢ = t/Js; over U we have 

V¢ = dtf/ Si + ¢j VSj = (dt/J + ¢je ;)si' 

Let us introducer~j = e;(a1axf..L), i.e., 

e; =r~j d;cl'. 

Now 

V¢ = (ap t/J + r~j¢j) d;cl' ® So 

or, equivalently, 

Vp ¢ = (ap t/J + r~j¢1s;. 

(6.5) 

(6.6) 

(6.7) 

(6.8) 

(6.8') 

As usual, we can introduce the curvature R of the connec
tion Vby 

R (x,y)¢=VxVy¢- VyVx¢+ V[X,Yl¢' 

'd X,YEF(TM), 'd ¢EF('PM). (6.9) 

Let us denote the 'PM-valued p forms on M by A P( 'PM). 
Now, the exterior differential 

d:A P('PMl-+A P+ I('PM) (6.10) 

is defined in the following way: 

for any £i) EAP('PM) andX1, ... .xp + I Er(TM). 
Thus we can easily see that the square of the exterior 
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differential d of the !{1M valued O-form t/J E r (!{1M) is equal to 

d2t/J(X.Y) = R (X.Y)t/J. (6.12) 

and for the p form Cd E A P(!{IM) we have 

dCd =R A Cd. (6.13) 

Now let us take the tensor product !{1M ® !{1M. The connec
tion V on !{1M defines the connection on this tensor bundle. 
Namely. we have 

V(t/J® tp)=Vt/J ® tp+t/J ® Vtp. vt/J,tpEr(!{IM). (6.14) 

Let the basis one-forms dx" = e'-' be given by 

e'-' = Xc5( L ap;j(x)s; ® Sj). (6.15) 

over UC M. 
Here. the a p;j are some appropriate functions over U 

uniquely determined by X c5' Because 

e'-'eV = e'-' A eV + g"v·l, (6.16) 

the functions apij have to satisfy some additional properties. 
The covariant derivative of eV is given by the Christoffel con
nection V on T*M. i.e .• 

Vpev = r~eP. (6.17) 

However. we want to obtain the same result using the rela
tion (6.15) and the formulas (6.14) and (6.8'). For this the 
coefficients r ~j have to be given by 

(6.18) 

We shall give the concrete form of r ~k for a fixed dimension 
n and signature (s.t) and for a concrete relation (6.15). 

Thus we come to the following picture: the pseudo-Rie
manian structure on M determines the Christoffel connec
tion V which passes to the Clifford bundles ,!:C(TM) or 
,!:C( T * M). respectively. However. in a general case this con
nection cannot pass to the spinor bundle !{1M of the left mini
mal ideals. Nevertheless, owing to the bijection Xc5 we can 
determine the unique connection V on !{1M which produces 
V on M. Let t/J be a spinor field over M. i.e .• t/J E r (!{1M). 
Because !{1M ~ ,!:C(T*M) the field t/J can be treated in two 
different ways: as a !{1M valued O-form on M or as a section of 
,!:C(T*M). In the first case the action of any vector field X 
on t/J will be determined by the connection V and will define 
another spinor field V xt/J E r (!{1M). However, in the second 
case the action of the vector field X will produce a section 
V x t/J of the Clifford bundle which does not belong to r (!{1M). 

Have we any contradictions here? Where is the origin of 
the above situation? 

We see from the above considerations that we can give 
to !{1M the primary nature. Namely. we can start with the 
bundle !{1M over M equipped with the connection V and pro
duce the rest as vector bundles. among others the Clifford 
bundle ,!:C(T*M) as well as the connection V. Thus for any 
element. say s E Spin+(x.t ). we have to do with two kinds of 
transformations 

(6.19) 

and 

s:!{Ix ~ Xc5(!{IX ® !{Ix)_s!{lxs- l
• (6.20) 
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Hence. if we treat t/J as a primary object, i.e .• as a !{1M valued 
O-form then we transform ¢1x) by an element s according to 
(6.19). But if we look on the spinor ¢1x) as on the composed 
object using the bijection X c5. i.e.. !{I x ~ X c5 (!{Ix ® !{Ix) 
= ,!:C(T~M) then the transformation by any elements 

s E Spin+(s.t) is given by (6.20). 
Of course. we have the same situation for the flat space

time V. However. in this case the holonomy group related 
with the metric tensor g contains only the trivial element 
e E SO + (s.t). It implies that then both kinds of transforma
tions (6.19) and (6.20) are equivalent and give the same result. 
We can also express this fact writing 

(6.21) 

for any vector space V. 
The situation will change when we consider the gravita

tion. Then the holonomy group is not trivial and we have to 
do with those two kinds of transformations (6.19) and (6.20) 
which provide different results. This is just the reason of the 
two unequivalent ways of the action of a given vector field X 
on t/J. 

Thus although in the general case of a manifold M the 
operators P and K are equal to each other. they cannot have 
their domain and target contained in the bundle !{1M. In 
another way we can say that the exterior deviation d operat
ing on !{1M valued p forms is not equal to the ordinary exteri
or derivative d. However, we have that 

(6.22) 

and we shall try to give the physical interpretation of the 
additional part B p • 

As we have told the spinor bundle !{1M is determined by 
the global field of primitive idempotents f It is known 12 that 
fcan be written (at least locally over U) as 

f = (112')( 1 + Cds, ) ... ( 1 + Cds,). (6.23) 

where the Cds, are appropriate, square one, mutually com
muting elements of r(,!:C(T*M)). 

Let us denote fby r and !{1M by !{11M, respectively. 
We can define the set {fa). a = 1 .... ,N = 2' of mutually ani
hilating primitive idempotents by 

(6.24) 

with Ef = ± 1. Thus when we fix a global field of primitive 
idempotents f = fl. simultaneously we have fixed all fields 
fa. a = 1 ..... N. But each fa determines the vector bundle 
!{laM = CrffC(T*M)fa. In this manner we have obtained the 
decomposition of the Clifford bundle onto N mutally supple
menting spinor bundles: 

N 

,!:C(T*M) = Ell !{laM. (6.25) 
a=l 

It means that if we treat !{1M = !{11M as a primary given 
object then we have to introduce N internal degrees of free
dom. i.e .• N different kinds of spinor fields ~, a = 1 ..... N. 
We see that an element s E Spin + (s.t ) operating according to 
(6.19) does not change the decomposition (6.25). but the ac
tion given by (6.20) mixes different spinor fields ~ between 
themselves. 

Let us look at this situation when we realize Clifford 
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algebras by the matrix algebras. The decomposition (6.25) is 
equivalent to the decomposition of the matrices onto their 
columns. 

It is obvious that whereas the left multiplication of a 
given matrix, say A, by another matrix, say B, does not trans
form the columns of A between themselves, the right multi
plication of A by B will transform them. 

The Christoffel connection which passes to the Clifford 
bundle determines the transformation of all elements of 
T * M (under parallel translations) by appropriate elements of 
the holonomy group. It corresponds to the transformation 
(6.20) of the Clifford bundle. Thus we see that only in the 
cases of the tIat space-time or when the holonomy group 
preserves f under the (6.20) transformation we will not 
change the internal degree of freedom a of the spinor fields 
t/J e r(1f/ 1M). 

The isotropy groups of funder the action (6.20) were 
investigated and (in many cases) calculated by Crumey
rolle. 13 For this reason we shall call them Crumeyrolle 
groups. 

Thus we have obtained that only those generators of the 
holonomy group which do not belong to the Crumeyrolle 
albegra are responsible for the part B I-' of the connection VI-" 

Let us summarize the above situation. We have seen 
that ifwe want to understand a Dirac spinor field as a section 
of the bundle If/ 1M, then first of all we have to introduce 
internal degrees of freedom a = 1, ... ,N. Moreover, we have 
to agree that the gravitational interaction implies the exis
tence of some internal interaction given by the fields B 1-" This 
interaction changes the just introduced inertial coordinate 
a. Besides, the number of fields B I-' depends on the concrete 
holonomy group of a given gravitational field. 

Thus only in the case of the experimental justification of 
this hypothesis it is reasonable to speak about the realization 
of the Dirac spinor bundle by the bundle of left minimal 
ideals of the Clifford bundle. In the opposite case we have to 
consider the Dirac spinors only as the abstractly given ele
ments of the vector bundle associated to the principal spinor 
bundle. 

VII. DIRAC EQUATION 

It is natural, according to the Dirac intention, to define 
the Dirac operator D as operating on the sections of the If/' M 
bundle. Hence we shall assume that 

D=rl-'VI-" (7.1) 

We can check that for any spinor fields t/J,q; e F(1f/ 1M) we 
have 
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X.5[(Dt/! ® q;)+t/J ® D(q;)] = (d-8)X.5(t/J ® q;). 
(7.2) 

Hence, if t/J and q; are the solutions of the Dirac equation, i.e., 
if they satisfy the relations 

Dt/J = Klt/J, Dq; = K2q;, (7.3) 

then thefieldFe F(1fC(T*M)) equal toF = X.5(t/J ® q;) sat
isfies the equation 

PF=(KI +K2)F. (7.4) 

Let Fbe some spinor field, i.e., F = t/J e r ( If/ 1M). Using the 
bijection X.5 we can treat it as the composed object. Now, Eq. 
(7.2) means that it can be obtained as the image ofthe solu
tions of the Dirac equation only when the Christoffel con
nection is tIat or its holonomy group is equal to the Crumey
rolle group. In other words, only when 

VI-' = VI-' 

can any solutions t/J,q; e F (If/ 1M) of the Dirac equation pro
duce (by X.5 ) a section of a bundle of minimal left ideals over 
M. 
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We consider different possible definitions of unbounded commutants and unbounded 
bicommutants of a set or an algebra of unbounded operators. We investigate their behavior with 
respect to various topologies. In particular we give sufficient conditions in order that 
bicommutants be the closure of the original set of operators with respect to some of those 
topologies. We investigate some special classes of algebras (symmetric, self-adjoint, regular, V* 
algebras) for which several or all of the bicommutants coincide and are the closure of the algebra 
with respect to some or all of the considered topologies. 

I. INTRODUCTION 

In recent years, many authors have been interested in 
the study of unbounded operator algebras from a mathemat
ical point of view and also for their applications to quantum 
field theories. It appeared very quickly that if one tries to 
build a theory analogous to the theory of von Neumann alge
bras, but this time for unbounded operators, many difficul
ties and pathologies occur. That is the reason why several 
authors have considered special classes of algebras like sym
metric, self-adjoint algebras l

-
3 and more recently V* alge

bras.4 In those particular classes, several results of the 
bounded case may be extended. 

One of the important ingredients in the theory of von 
Neumann algebras is the notion of the commutant of a set of 
operators. When we deal with unbounded operators many 
different notions of a commutant may be introduced. The 
commutant may be taken among bounded operators3

•
5 and it 

can be "weak" or "strong." On the other hand, we may allow 
unbounded operators in the commutant so that we shall 
have unbounded (weak or strong) commutants. I

,4.6 

In this paper we consider mainly unbounded commu
tants and unbounded bicommutants of a *-invariant set of 
unbounded operators. We have two different unbounded 
commutants and four different unbounded bicommutants 
and we investigate their topological properties. Indeed we 
can define several topologies on our set of unbounded opera
tors. We consider here three topologies: the weak, the strong, 
and the strong* topology (see Sec. III). This last topology is a 
particular case of quasiuniform topologies introduced in 
Ref. 7 and which have already been useful for problems in
volving unbounded operators.8

,9 The strong* topology ap
pears to playa natural role in the sense that all the commu
tants and the bicommutants we consider are closed in this 
topology, although they are not necessarily strongly or 
weakly closed. Nevertheless, one of them, the strong un
bounded bicommutant, is weakly closed, so that it seems 
that weak commutants behave well in the strong* topology 
and strong commutants behave well in the weak topology. 

In Sec. IV we answer the question: When is the weak 
unbounded bicommutant the closure of the algebra with re
spect to the strong* topology and when is the strong bicom
mutant the weak closure of the algebra? We give several cri
teria in order that those two results hold separately or 
simultaneously. 

In this section we also introduce a fourth topology, the 
so-called commutant topology, which plays a role similar to 
the strong* topology, in the sense that commutants are also 
closed with respect to it. This topology seems thus also natu
ral and it is quite intrinsic because it is defined directly from 
the algebra and its weak commutant rather than from the 
Hilbert space structure. We give some criteria in order that 
the weak unbounded bicommutant be the closure ofthe alge
bra with respect to that topology. 

After a few remarks about strongly*-continuous linear 
functionals we end Sec. IV with the study of self-adjoint alge
bras: those algebras have only two different unbounded bi
commutants, both weakly closed. 

Finally in Sec. V we particularize to regular op* alge
bras, V* algebras, and SV* algebras. Those last have been 
introduced4 in order to extend to unbounded operators 
properties of von Neumann algebras. We show that a V* 
algebra is always closed with respect to the strong* topology 
and to the commutant topology. Moreover, for a self-adjoint 
V* algebra, the four unbounded bicommutants coincide 
with the algebra, which is, in this case, closed with respect to 
the four topologies introduced above. 

II. DEFINITIONS AND ELEMENTARY PROPERTIES 

A. Definitions 

Let JYbe a Hilbert space and I» a dense linear subset of 
it. Following Ref. 4 we denote by C(I» ,JIt"') the set of all 
closable operators A in JY such that I» ~D (A )nD (A *). 

As remarkable subsets of C (I» ,JIt"') we have first B (JIt"'), 
the set of bounded operators in JY, and on the other hand the 
* algebra L + (I») (or C g ) of elements AeC (I» ,JIt"') such that 
AI» ~ I» and A * I» ~ I» (see Ref. 10). These operators are 
continuous with respect to the weak topology u( I» ,I»). 

Let m: be a subset of C(I» ,JIt"'). We denote by m:b its 
bounded part 

m:b = I A emnB (JIt"') J • 

If m: is an in volutive subalgebra of L + (I» ) with identity, 
m: is called an op* algebra. 10 

An op* algebra is called symmetric if for every Aem:, 
(1 + A * A ) - 1 exists and lies in m:b • 

An op* algebra is called self-adjoint if 

I»=I»*-n D(A*). 
Ae21 
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B. Topologies 

Several topologies may be defined on C(f1) ,K). 
(a) The weak topology is defined by the set of semi norms 

AEC(f1) ,~I(Af,g)I, f,gEf1). 

(b) The strong topology is defined by the set of semi
norms 

AEC(f1) ,~IIAfll, fEf1). 

(c) The strong* topology!! is defined by the set of semi
norms 

AEC(f1) ,~max{IIAfll,IIA *fll} 

or 

IIAfll + IIA *fll, fEf1). 

Notice that one advantage ofthis third topology is that 
the involutionA---+A * is continuous with respect to it, as it is 
also for the weak topology but not for the strong. 

A second advantage to consider is that C(f1) ,K) is 
complete with respect to this topology. Indeed if A a is a 
Cauchy net in C(f1) ,K) with respect to the strong* topol
ogy, then for every fEf1), A af and A a·f are Cauchy nets in 
£'. Let g = s-lim A af and g* = s-lim A a.j; then putting 
g = A f we get a well-defined linear operator on f1). For ev
ery f,hEf1) we have 

(Ah,f) = lim(A ah,f) = lim(h, A a·f) = (h,g*) . 
a a 

This shows that JED (A *) and g* = A *f for every fEf1) 
so thatAEC(f1) ,K). 

C. Commutants 

Since we are dealing with unbounded operators, several 
notions of commutants can be considered and we begin by 
recalling them. 

Let & be a *-inv~riant subset of C (f1) ,K). 
The "weak unbounded commutant,,4 

&~ = {XEC(f1) ,K)I(X*f,Ag) = (A *f,xg) , 

Vf,gEf1) , VAE&) 

is a *-invariant linear subset of C (f1) ,K). 
Its bounded part &;" = &~nB (K) is the weak commu

tant which has been considered in Refs. 3 and 5. 
It is a *-invariant linear subset of B (K) and it is closed 

in B (K) for the usual weak topology. Here &;" will be called 
the "weak bounded commutant." 

It is also interesting to consider strong commutants: the 
"strong unbounded commutant" is defined as 

&;==&~nL +(f1)) 

= {XEL +(f1))I(A *X*f,g) = (f,AXg) , 

Vf, gEf1), VAE&}. 

It is easy to see that it is an op* algebra even if & is not one. 
We can reformulate this definition as follows: 

&; = {XEL +(f1))IAXf= (X* ~ 9 )*Af, 

VfEf1), VAE&} . 
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In particular, if & is itself contained in L + (f1)) then we get 
back the definition of Ref. 6 

&~L +(f1))=>&; = {XEL +(f1))IAXf=XAf, 

VfEf1) , VAE&). 

Finally we can also consider the "strong bounded commu
tant", &;=&;nB (K), which is also an op* algebra. We also 
have &; = &;"nL +(f1)). The inclusions between those four 
commutants are thus 

&' C &~ U;-0t 
&; ~ &;. 
In this paper the main role will be played by the un

bounded commutants &~ and &;; the two others appear only 
for technical reasons. So when we say weak or strong com
mutant we always mean the unbounded one unless we state 
"bounded" explicitly. 

Remark: Several authors have introduced commutants 
for unbounded operator algebras. The similarities or the dif
ferences between those commutants and ours are the follow
ing: &~ is the part of n (&)C in Ref. 1 which is stable with 
respect to the operation of taking the adjoint. The same rela
tion exists between &; above and n (&)~ of Ref. 1, and 
between &; above and &; of Ref. 5. 

D. Blcommutants 

We may define four "unbounded bicommutants." 

(a) &~" = {YEC(f1) ,K)I(Y*f,xg) = (X*f,Yg) , 

Vf, gEf1), V YE&~ } 

isa *-invariant subsetofC(f1) ,K) containing &. As a conse
quence of this &~~ = &~ and &~::;" = &~". 

(b) &~ = {YEL +(f1))IYXf=XYf, 

VfEf1) , VXE&;). 

Here &;~ is an op* algebra and is equal to &;:::. If, moreover, 
&~L +(f1)), then &~&~ and &; = &;:c. 

(c) &;" = {YEC(f1) ,K)I(Y*f,xg) = (X*f,Yg), 

Vf, gEf1), VXE&;}. 

It is a *-invariant subset of C(f1) ,K) containing both &~" 
and &~. 

(d) &~c = &~"nL +(f1)) 

is an op* algebra. 
Between those four commutants, we have the following 

inclusions: 

&" C &" CC(f1) 9lP\ c:; - (#" -~ ,crt I 

&;;., ~ &;~ ~L +(f1)) . 

If& ~L + (f1)) then & is contained in the four bicommutants, 
but if&gL +(f1)) then & is only contained in &~" and &;". 

III. TOPOLOGICAL PROPERTIES OF THE 
COMMUTANTS 

For algebras of bounded operators in £' we know that 
the usual commutants are weakly closed and a fortiori 
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strongly closed subalgebras of B (K) (see Ref. 12). For un
bounded operators and unbounded commutants this result 
is no longer true and the question is: Under which topology 
is each commutant closed? 

A. The weak unbounded commutant 

As mentioned in Ref. 4, ~~ is not in general closed for 
the weak or the strong topology. However (Ref. 4, Proposi
tion 4) if ~9" !;;;; 9" then ~~ is a weakly closed subspace of 
C (9" ,K). Similarly, a sufficient condition in order that ~;u 
be weakly closed is that ~~ 9" !;;;; 9". This condition is not 
automatically satisfied so that a priori a weak unbounded 
bicommutant need not be weakly or strongly closed. 

Proposition 1: The ~~ is closed in C (9" ,K) with respect 
to the strong* topology. 

Proof: Let XeC(9" ,K) be the limit of a strong* con
verging net xae~~. That means in particular that for every 
je9", lI(xa_Xlfll and lI(xa* -X*)fll tend to zero and 
thus also the scalar products (k,(xa - X)f) and 
(k,(xa* - X *)f), for every fe9" and for every kedY. So we 
have for every f,ge9" and for every Ae~ 

(X*f,Ag) = lim(Xa*f,Ag) = lim(A *f,xag) 
a a 

=(A *f,xg) , 

i.e.,Xe~~ 0 
Corollary 2: (i) ~~ and ~;:,. are closed in C (9" ,K) for 

the strong* topology; (ii) ~;u is strongly and weakly closed in 
C(9" ,K) (because ~;9" ~9"). 

Remark: In the proof of Proposition 1 we have used the 
fact that xa tends to X in the topology defined by the semi
norms X-(k,xf) and X-(k,x*f) wherefe9" and kedY. 
This topology is weaker than the s* topology and so we 
showed that ~~ is closed with respect to that topology, too. 
This will be useful later in Sec. IV. 

B. The strong unbounded com mutant 

Proposition 3:~; is closed inL +(9") with respect to the 
strong* topology. 

Proof: LetXeL +(9") such that there exists a netX a in 
~; converging in the strong* topology. As in the proof of 
Proposition 1, we show Xe~~. Since we assume that 
XeL +(9") this impliesXe~;. 0 

Remark: This also shows that ~; is not necessarily 
closed in C (9" ,K). 

PropOSition 4: If~9" !;;;;9", then~; is closed in L +(9") 
with respect to the weak topology (and the strong afortionl. 

Proof: In the proof of Proposition 1, Ag and A *f now 
belong to 9" and the limit can be taken in the weak sense. 0 

Remark: For op* algebras this was already proved in 
Ref. 6, and similarly for the next corollary. 

Corollary 5: ~;c is weakly closed in L +(9"). 
Corollary 6: ~;c is closed in L +(9") for the strong* to

pology. 

C. The role of the strong* topology 

As we can see from the last two paragraphs all the un
bounded commutants and bicommutants are closed for the 
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strong* topology, some of them in C (9" ,K) (the weak ones 
~~, ~~, and ~;u) and others inL +(9") (the strong ones ~;, 
~~, and ~~). This topology thus seems to be quite natural 
when we are dealing with unbounded operators and we can 
conjecture that it will play the role of the weak topology for 
bounded operators. 

However, if we consider an op* algebra we may also 
consider the weak topology if we use only strong commu
tantsand bicommutants [thoseareweaklyclosedinL +(9")). 
But if we want to use weak commutants, the strong* topol
ogy occurs immediately. The fact that this topology is natu
ral may also be seen from the next proposition. 

Proposition 7: Let ~~~!;;;;C(9" ,K) and assume that 
~o is a *-invariant set dense in ~ for the strong* topology. 
Then 

(~o)~ = ~~, (~o); = ~;, (~o)~ = ~~, (~o); = ~; . 
Proof: Let Xe(~o)~ and Ae~. By assumption, there ex

ists a net A a in ~o such that A a_A in the strong* topology, 
and in particular (k,(A a - A )/)-+0 and (k,(A a* 

- A *)/)-0 for every le9" and every kedY. Then for every 
l,ge9" , 

(X*I,Ag) = lim(X*I,A ag) = lim(A a*l,xg) = (A *I,xg). 
a a 

Hence Xe~~ and (~o)~ ~~~. The opposite inclusion is ob
vious. 

The equalities for the strong, the weak bounded, and 
the strong bounded commutant follow immediately by their 
definitions as intersections of the weak unbounded commu
tant withL +(9") and/or B(K). 0 

Remarks: For the bounded commutants this fact was 
already noticed in Ref. 9, Lemma 2.2.2. 

If we assume ~o dense in ~ for a weaker topology such 
as the strong or the weak, only a part of those results remains 
true, namely, the statement about strong commutants. 

Proposition 8: Let ~o be a *-invariant subset of 
C (9" ,K), dense in ~ for the weak topology. Then 

(~o); =~; and (~); = ~; . 
Proof: Let A a be a net in ~o converging weakly to Ae~ 

and letXe(~o);' By definition we have 

(A a*X*f,g) = (f,A aXg) , 'tf1,ge9" , 

and since X */e9" and Xge9" we can take the limit of both 
sides of this equality and get X e~; . 0 

Remark: This argument does not work if X is in the 
weak commutant, for in that case X *1 and Xg do not belong 
to 9" and a weak limit cannot be taken. 

IV. BICOMMUTANTS AND THE CLOSURE OF ~ 

Since we have seen in the previous section that the four 
bicommutants are closed in the strong* topology and that 
some of them are also closed in the weak topology, the natu
ral question to ask is: Do they coincide with the closure of ~ 
in one or some of those topologies? 

We give some criteria in order that the weak unbounded 
bicommutant coincide with the closure of ~ in the strong* 
topology and that the strong unbounded bicommutant coin
cide with the closure inL +(9") of~ in any of those topolo-
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gies. The ideas of the proofs are similar to some proofs of Ref. 
4. although we consider here other topologies and some oth
er commutants. 

A. The weak unbounded blcommutant and the strong* 
topology 

Proposition 9: Let ~CC(~.JY') be a * algebra of 
bounded operators. containing 1. Then ~;u is the closure of 
~ in C(~.JY') with respect to the strong* topology (nota

tion: ~;u = ~). 
Proof: Since by Corollary 2 we know that ~~u is closed 

in the strong* topology we have~· ~ ~~u and it remains to 
show the opposite inclusion. 

(a) LetfE~ and consider the closed subspace of K gen

erated by ~ f Let P be the projection on this subspace ~f. 
Since every M~ is bounded. M leaves this subspace invar
iant and thus PM = MP. This implies that Pe.9.R~ ~~~. 

Now take YE~;u and any gE~. Then 

((1 - P)Yf,g) = (Yf,(l - P)g) = ((1 - P}f,Y*g) = O .. 

Hence Yf = PYf, i.e .• YfE~ f 
We then conclude that given YE~;u. for every E>O. 

fE~ there existsME~ such that II(Y -M)fll <E. 
(b) As the second step of the proof we show that ~;u 

~ 9ns
• Recalling that the zero neighborhoods in the strong 

topology are of the form 

Yfl'/2 .... '/n.e(0) = {AEC(~ .JY')IIIAfdl <E. 

IIAIzIl <E ..... IIAfnll <E} • 

for any finite sequencef1.1z .... ./n of elements of ~ and any 
E> O. it suffices to prove that given YE~;u. f1.f2E~. and 
E> O. there exists ME~ such that Y - M belongs to 
Y f1 ./2

•E (0). 
For this. consider the Hilbert space K el K and the set 

of unbounded operators C (~ el ~.K el JY'). Every ME~ 
defines a bounded operator 

M=(~ ;) 

in K el K and let us denote by m the !!et of such operators. 
Then m is an op* algebra on ~ el ~ consisting of bounded 
operators only. We can compute explicitly the unbounded 
commutant and bicommutant ofm and we get. respectively. 

onl {Gll X12) I V" onl fi .. 1 2} :IJ~u = AljE:IJ~q • or l.J = . 
21 X22 

and 

m;u = {Y = (~ ~)I Y~;u} = fu7;u. 

Now. applying the result of part (a) of this proof to m;u. we 
getthat Vyem;u' ViE~ el~. and VE>O there existsMem 
such that II(Y-M)ill<E. That is. if 
i= (fl>f2):II(Y -M)fdl <El2 and II(Y -M)f211 <EI2; 
hence. Y - MEYfl.f2.E/2 (0). Since that is true for any neigh
borhood. we have that Y&. 

(c) The last thing we need to show in order to have ~;u 
~ 9ns* is that if Y - Mbelongs to some neighborhood of zero 
of the form above. then Y * - M * belongs to this neighbor-
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hood as well. The proof is similar to (b) except for two differ
ences: First we consider the direct sum K el Yi'. where Yi' 
denotes the Hilbert space conjugate to K (i.e .• the same set 
considered with the conjugate scalar multiplication A Of ==Xf 
and endowed with the complex conjugate scalar product). 
(Remark: the norms in K el K and K el Yi' are identical.) 

Second. we shall consider the set 

Endowed with the (mixed) product 

(~ :*) 0 (: ~*) = (~N N*~*) 
and with the conjugate scalar multiplication 

(M 0 ) (AM 0) 
A 0 0 M* = 0 XM*' 

A _ 

~ becomes an op* algebra on ~ el ~ of bounded operators 
in KelYi'. 

Ifwe compute the commutant and bicommutant of this 
algebra we get 

and 

m;u = {(~1 ~J I Y1'Y2E~;u} . 
In particular, for every YE~;u the element 

y= (Y 0) 
o y* 

belongs to m;u. Applying point (a) of the proofto this parti
cular element we have that for every fE~ el P), V E > 0 there 

""'" A A A A 

existsME~ such that II(Y -M)fll <E. 
If we take f = (f,f) for any fE~, this implies 

II(Y -M)fll <EI2andll(Y* -M*)fll <EI2.HenceYE~. 
o 

Corollary 10: If~~L +(~),~;;., is the closure of~ in 

L +(~) with respect to the strong* topology ~;c = 9ns* 
nL+(~). 

Proposition 11: Let ~ be a *-invariant subset of 
C (~ ,JY'). Assume that there exists a * algebra ~ with iden
tity, in the bounded part ~b of~ such that ~~ = ~~. Then 
~::u = is*. 

Proof: That ~~ = ~~. implies ~;u = ~;u = 9ns* by 
Proposition 9 and 9ns* ~ is*. On the other hand, ~;u is 

strongly* closed so that is* ~ ~;u' 0 
Corollary 12: Ifthere exists a * algebra ~ ~ ~b' contain

ing 1 and dense in ~ for the strong* topology, then ~;u 
-s* 

=~. 

Proof: By Proposition 7 we have ~~ = ~~. 0 
Corollary 13: If~~L +(~) is such that there exists a * 

algebra ~~~b' with identity, which is dense in ~ for the 
strong* topology, then~;;" = is*nL +(~). 0 

Let us consider in particular the case of symmetric op* 
algebras. They indeed fit in the situation of Proposition 11 
with~ = ~b' 

Proposition 14: Let ~ be a symmetric op* algebra. Then 

Franc;:oise Mathot 1121 



                                                                                                                                    

W;;" = i" and W;;e = i"nL +(!i1). 
Proof· We show that (Wb)~ = W~. Let A = A *eW; we 

knowthat(1 +A 2)-l andA (1 +A 2)-lbelongtoWb.Consid-
er Ce(Wb)~' We have (A (1 +A 2)-1. Cg) = (C*J,A (1 + 
A 2)-lg) = (C*J,(1 + A 2)-IAg) = ((1 +A 2)-1. CAg) [be
cause C commutes weakly with (1 +A 2)-1]. Because m is 
symmetric we have (1 + A 2) -1!i1 = !i1 so that the first and 
thelasttermoftheequalityshowthatCem~ (see Ref. 13). 0 

Remark: A similar proof in Ref. 6 shows that m~ 
= (mb)~ so that finally for symmetric algebras each commu
tant is equal to the analogous commutant of the bounded 
part. 

To end this paragraph concerning the strong* topology 
let us say a few words about strongly* continuous linear 
functionals. 

Proposition 15: Every s*-continuous (let s* stand for 
strong*) linear functional W on m k C(!i1 ,J¥} is a limit of 
weakly continuous linear functionals. 

Proof: As in the proof of Proposition 9 we consider the 
extension 

~ = {1 = ~ AO*)IAem}, 

which becomes a *-invariant subset of C (!i1 EB :P, K EB Jf1 
with the mixed product when the product of two elements is 
defined. 

For a fixed fe!i1 consider the following subspace of 
KEBJY: 

%1= {(~ AO*)(;)lvAem}. 

Now for every g = (g1,g2)e!i1 EB:P, define a linear functional 
Wg on %1 by 

wgLA:) = (g1,Af) + (A *f,g2) . 

This functional is weakly and strongly continuous on %1' 
Putting 

wg./(A )=wg (:~), 
we define a linear functional on W, and moreover 

Iwg./(A )1 <K(IIAfil + IIA *fll)· 

Hence this functional is s* continuous. 
Conversely, let W be an s*-continuous functional on m. 

Thereexistsfe!i1 such that Iw(A )1 <K(ilAfil + IIA * fill. Put
ting 

W(:~)=W(A) , 
we define in this way a linear functional on %1' which is 
strongly continuous. Then, by Riesz's theorem there exists a 
vector he% I' h = (h l,h2), such that 

w(A ) = w(:~) = (h l,Af) + (A *J,h2) . 

But he% 1 means that there exists a Cauchy netA a in m such 

that hi = limA af and h2 = limA a·f so that, finally, 
a a 

w(A) = lim(A af,Af) + lim(A *f,A a·f). o 
a a 
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B. A natural topology for the weak unbounded 
blcommutant 

As we pointed out in the remark following Corollary 2, 
the s* topology is not the only one for which a weak commu
tant or bicommutant is closed. Indeed, they are also closed 
for the topology defined by the seminorms AeC(!i1 ,J¥} 
~(k,Af)andAeC(!i1 ,J¥}~(k,A *f)whenfrunsin!i1 andk 
inK. 

Given a *-invariant subset m of C (!i1 ,J¥) we can parti
cularize the seminorms above by taking k of the form Xg, 
where ge!i1 and XeW~. We get in this way a topology on 
C(!i1 ,J¥} depending on m~ and given explicitly by the se
minorms 

{
PXf,g(A ) = I (Xf,Ag) I , 
qXf,g(A ) = I(Xf,A +g)1 , 

for any f,ge!i1 and Xem~. Let us call this topology "c," the 
"commutant topology." This topology is weaker than the s* 
topology and finer than the weak topology but not compara
ble to the strong one. 

Proposition 16: Let t!I be a *-invariant subset of 
C (!i1 ,J¥). Then m;;" is closed with respect to the commutant 

topology. That is, m;;" ~ i e ~ is·. 
Proof: It is obvious by the definition of m;;", the latter 

being an intersection of kernels of linear functionals contin
uous with respect to c 

wX.f,g(A) = (X*f,Ag) - (A *f,xg) , 

withf,ge!i1 andXem~. 0 
Proposition 17: Let m be a *-invariant subset of 

C(!i1 ,J¥). Then we have 

iSnW;;" k i e 
• 

Proof: Let Yeis. There exists {A aJ km such that 
Yf= s-limA af for every fe!i1, and moreover Vge!i1 and 
Xem~, we have 

I(X+g,(Y -A alf)1 =Px+gjY -A a)~. 

On the other hand, if Yem;;" we have 

qXf,g(Y -A a) = I(XJ,(Y* -A a.)g) I 
= I((Y -A alf,x+g)I~· 

We may conclude that Yeie
• 0 

Corollary 18: If a *-invariant subset m of C (!i1 ,J¥) is 
such that t!I" cis then m" = i e 0 uu' uO' • 

Corollary 19: If t!I k C (!i1,J¥) satisfies one of the follow-

ing conditions, then m;;" = is· = i e
• 

(i) m is an op* algebra of bounded operators. 
(ii) m contains an op* algebra !In of bounded operators 

such that !In:,. = m~. 
(iii) t!I contains an op* algebra !In of bounded operators 

dense in m for the s* topology or for the commutant topology 
coming from !In~. 

(iv) m is a symmetric op* algebra. 

C. Blcommutants and weak topology 

Following Ref. 14, we call a subspace % of K" ortho
complemented with respect to !i1" iff we have the following. 
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(i) % is a closed subspace of Jr' [i.e., corresponds to a 
bounded projection P = P * = P 2ElJ (JY)]. 

(ii) PEL +(1)>) [which implies that %n1» is a a(1)> ,1»)
closed subspace of 1»]. 

(iii) %n1» is norm dense in %. 
Proposition 20: Let & be an op* algebra and assume that 

for every IE1» the closure &IU of &1 in the topology 
a( 1» ,1») is the intersection with 1» of a subspace % of Jr', 
orthocomplemented with respect to 1». Then 

&;~ = NWnL +(1)>) and &;u = Nw . 

Proof Let P be the projection operator of &Iu. Since 
every AE& is a(1)> ,1») continuous, it leaves the subspace 

&IU invariant and thus PE&~. By assumption PEL +(1)>) so 
that finally Pbelongs to the four commutants &;, &~, &;, &~. 
Now take YE&~: YI = YPI = PYland thus Y/E&IU, which 
implies that YENw. Since &~ lies inL +(1)>) we have &;c ~Nw 
nL +(1)>) and since we know (Corollary 5) that &;~ is weakly 
closed in L +(1)>) we have the equality. 

Similarly, take YE&;u' By the same calculation as in the 
proof of Proposition 9 we have YI = PY/E% and since by 

assumption & IU is norm dense in % it follows that YI is a 
weak limit of elements of &1 and &;u ~ Nw. The equality 
follows from Corollary 2. 0 

We now have independent criteria in order that &;;u 
= Ns* and &;c = NWnL + (1)>). We shall now examine some 

situations where the two results hold at the same time. 
Proposition 21: Let & be an op* algebra. Assume that for 

every IE1», the projection P on the norm-closed subspace 

&1 of Jr'belongs to L +(1)>). Then 

and 

&;;c = &~ = NS*nL +(1)>) = NSnL +(1)>) 

= NWnL +(1)>) = NCnL +(1)>) . 
Proof The assumption of this proposition is stronger 

than the hypothesis of Proposition 20. Indeed &/n1» is 

now a(1)> ,1») closed and coincides with &Iu. So the results 
of Proposition 20 hold and Pbelongs to &;, &~, &;, and &~. 

Now consider YE&;;u or YE&;u' The same calculation 

then in the proof of Proposition 9 shows that Y/E &1 and 

Y*/E &1. Hence YENs·. We thus have &;;u ~&;:,. ~Ns*~Ns 
~ Nw, and since &;;u and &;u are strongly* closed we also 

have Ns* ~ &;;u ~ &;u and &;u = Nw by Proposition 20. Fin
ally they are all equal. 

Intersecting all members of this equality with L +(1)>) 
we get immediately the second line of the thesis. 0 

The conclusion of this proposition is that under those 
hypotheses there are only two bicommutants to consider. 
One is the closure of& in e(1)> ,JY) for any of the four topo
logies we have introduced, and the other one is the closure of 
& in L +(1)>) with respect to those four topologies. 

Remark: In this proposition it is sufficient to ask that 
there exists a * subalgebra &0 dense in & for the strong* 
topology such that for every IE1» the projection on &o/be
longs to L + (1)>). The results of Proposition 21 then hold for 
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& because & and &0 have the same commutants and bicom
mutants. The result still remains true if we ask 2ro to be only 
weakly dense in &, although in this case only strong commu
tants are equal. 

Proposition 22: Let & be an op* algebra and &0 a weakly 
dense sub*-algebra of it. If for every IE1» the subspaces 

&01 are orthocomplemented with respect to 1», then 

and 

&;;" = &~ = Ns*nL +(1)>) = NSnL +(1)>) 

= NWnL +(1)>) = NCnL +(1)>) . 

Proof The &0 weakly dense in & implies &; = (&0);' 
Hence &;u = (&o);u. Since &0 satisfies the assumption of Pro
position 21 we have (&o);;u = (&o);u and so &;u = (&o);u 
= (&o);;u ~ &;;u ~ &;u· Thus &;;u = (&o);;u· 

Although weak commutants of &0 and & might be dif
ferent, the bicommutants will be equal and the result then 
follows easily. 0 

This last proposition could be applied, for instance, to 
symmetric op* algebras because in this case the bounded 
part &b is weakly dense in &. It then suffices to ask that the 

subspaces &b I be orthocomplemented. 
Let us now describe some situations where the assump

tions of Proposition 21 are satisfied. 
Proposition 23: Let & be an op* algebra such that (&b); 

= (&b)~' Then for every IE1», the projection operator on 

&1 belongs to L +(1)>). 
Proof Let P be the projection operator on the norm

closed subspace &1. Every AE&b leaves this subspace invar
iant so that PE(&b)~' Since by assumption (&b)~ = (&b); and 
by definition (&b); = (&b)~nL +(1)>), it follows that 
PEL+~~ 0 

In the particular case of a symmetric op* algebra, we 
have6 that (&b)~ = &~ and thus also (&b); = &;. The hy
pothesis of Proposition 23 thus becomes &; = &~ so that we 
have the next proposition. 

Proposition 24: Let & be a symmetric op* algebra such 
that &; = &~. Then for every IE1», the projection operator 

on &1 belongs to L +(1)>). Hence 

and 

&;;C = &~ = NS·nL +(1)>) = NSnL +(D) 

= NWnL +(1)>) = NCnL +(1)>) . o 
This proposition applies to closed symmetric op* algebras 
because they are self-adjoint and hence satisfy &; = &~. 

To end this section let us see what can be said about self
adjoint algebras in general. Some of them satisfy the hypoth
esis of Proposition 21: they are the closed symmetric ones as 
we have just seen and also the Abelian algebra generated by 
one single self-adjoint operator T = T + on its domain 
D COlT) (see Ref. 4). For other self-adjoint algebras we do not 

know in general if the projections on & I are in L + (1)>) and 
we have to check it in every particular case. Nevertheless, 
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because for self-adjoint algebras we have ~~ = ~;, they also 
have only two different unbounded bicommutants. 

Proposition 25: Let ~ be a self-adjoint op* algebra. Then 
(i) ~;u = ~;u is weakly closed in C(ii" ,JY); 
(ii) ~~ = ~~ is weakly closed in L +(ii"). 
Proof This is the immediate consequence of Corollaries 

2 and 5. 
Remark: We do not know, in that case, if the bicommu

tants are the closure of~ for the weak topology unless we are 
in the two cases mentioned above. 

V. REGULAR op* ALGEBRAS AND V* ALGEBRAS 

In this last section we shall consider special classes of 
op* algebras which have been introduced in Ref. 4. The aim 
of introducing such classes was to find algebras of unbound
ed operators with properties similar to those of von Neu
mann algebras. This has motivated the introduction in Ref. 4 
of regular op* algebras, V * algebras, and SV· algebras (to 
which some theorems of von Neumann algebras may be ex
tended). It thus seems interesting to see what are the topo
logical properties of the bicommutants of such algebras. 

We first recall some definitions of Ref. 4. 
An op· algebra is called regular iff ~;u maps ii" into 

itself. 
A v· algebra is an op· algebra which is equal to its weak 

unbounded bicommutant ~ = ~;u. 
If, moreover, ~ is weakly closed then it is called V* 

algebra. 
An SV * algebra is an op* algebra which is equal to a 

larger bicommutant (that we have not considered here so far) 
~ = ~:.:., and if it weakly closed then it is an SV· algebra. 

Obviously this third class is contained in the second 
one, which is contained in the first. 

From the definition of a regular op* algebra, it follows 
immediately that they have only three unbounded bicommu
tants with the following relations: ~;u = ~;c ~ ~~ ~ ~;u. 

An interesting situation occurs if a regular op* algebra 
satisfies the assumptions of one of Propositions 21-24, or if~ 
is self adjoint. Indeed, in that case the four bicommutants 
will coincide and we have the following proposition. 

Proposition 26: Let ~ be a regular op* algebra, either 
self-adjoint or such that Vjeii" the projection operator P on 
~j belongs to L +(ii"). Then 
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D 

Proposition 27: Let ~ be a V * algebra or anSV * algebra. 
Then ~ = 2rs* = 2rc. 

That is, a V * algebra is closed with respect to the 
strong· topology and with respect to the commutant topol
ogy.) 

Proof This follows from the fact that ~ = ~;u, and 
from Corollaries 2 and 18. D 

Of course, if a V * algebra is self adjoint we are in the 
situation of Proposition 26. 

Proposition 28: Let ~ be a self-adjoint V * algebra. Then 
~ is equal to its four unbounded bicommutants and ~ is 
weakly closed and closed with respect to the commutant 
topology. D 

Corollary 29: (i) A self-adjoint V* algebra is a V* alge-
bra; (ii) A self-adjoint SV* algebra is a SV* algebra. D 

ACKNOWLEDGMENTS 

I thank Dr. C. Trapani for his help and for many stimu
lating discussions. I am also indebted to Professor J. P. An
toine and Dr. W. Timmermann for their suggestions and 
comments about this manuscript. 

IS. Gudder and w. Scruggs, Pac. J. Math. 70, 369 (1977). 
2A. Inoue, Pac. J. Math. 65, 77 (1976). 
3R. T. Powers, Commun. Math. Phys. 21, 85 (1971). 
'G. Epifanio and C. Trapani, J. Math. Phys. 25, 2633 (1984). 
sH. J. Borchers and J. Yngvason, Commun. Math. Phys. 42, 231 (1975). 
6A. Inoue, Proc. Am. Math. Soc. 69, 97 (1978). 
1G. Lassner, "Algebras of unbounded operators and representations," in 
Proceedings of the International Conference on Operator Algebras, Ideals 
and their Applications in Theoretical Physics, 1977 (Teubner, Leipzig, 
1978), pp. 200-214. 

"G. Lassner, Wiss. Z. Karl-Marx-Univ. Leipzig, Math. Naturwiss. Reihe 
30,572 (1981). 

"F. Mathot, Pac. J. Math. 90, 411 (1980). 
lOG. Lassner, Rep. Math. Phys. 3, 279 (1972). 
"0. Bratteli and D. Robinson, Operator algebras and Quantum Statistical 

Mechanics I (Springer-Verlag, Berlin, 1979). 
12J. Dixmier, Les algebres d 'operateurs dans l'espace hilbertien (Gauthier

Villars, Paris, 1962). 
I3If A is not equal toA *, the same proof holds with A *A instead of A 2. 

14J. P. Antoine and A. Grossmann, J. Math. Phys. 19, 329 (1978). 

Francoise Mathot 1124 



                                                                                                                                    

Nontrivial zeros of the Racah quadrupole invariant 
Simcha Brudno 
Chicago College o/Osteopathic Medicine, Chicago, Illinois 60615 

James D. Louck 
Los Alamos National Laboratory, Theoretical Division, Los Alamos, New Mexico 87545 

(Received 5 December 1984; accepted for publication 1 February 1985) 

It is shown that a class of nontrivial zeros of the Racah quadrupole invariant operator is given by 
two orbits of the group action of an infinite discrete subgroup of the proper two-dimensional 
Lorentz group SO(l,l) on the hyperbola 4x2 

- 3y2 =.l}. 

I. INTRODUCTION 

It has been known since Racah'sl classical series ofpa
pers on spectroscopy that certain 6j symbols (Racah coeffi
cients) may be zero even when all the triangle conditions for 
a tetrahedron are fulfilled (nontrivial zero). (A similar result 
is true for the 3jm symbols [Wigner-Clebsch-Gordan coeffi
cients for SU(2)].) Judtf extended Racah's result, using a 
similar Lie algebraic treatment, while Koozekanani and Bie
denharn3 listed over a thousand nontrivial zeros of the Ra
cah coefficient obtained from computer calculation (see also 
Bowick4

). These results are presented and discussed in Vol. 9 
of Ref. 5. More recently, Vanden Berghe et al.6 have given 
further examples of nontrivial zeros of 6j symbols originat
ing from Lie algebras. 

The possibility for "explaining" zeros of the 6j symbol 
in consequence of Lie algebraic structures may be under
stood in the following way: Let I denote a Lie algebra that 
contains the Lie algebra SU2 as a subalgebra; that is, l:::>su2' 
Then there always exists a basis of I such that each basis 
element is a unit irreducible tensor operator with respect to 
the subalgebra su2• The structure constants in this basis are 
related to 6j symbols. Thus, the vanishing of a 6j symbol may 
imply the existence of a Lie subalgebra a with a C I and 
a :::>SU2' Conversely, the existence of a Lie subalgebra a such 
that l:::>a:::>su2 may imply the existence ofa zero ofa 6jsym
bol. 

The zeros discovered by Racah, Judd, and Vanden 
Berghe et al. are all associated with Lie algebras as described 
above. 

A different approach to the classification of the zeros of 
3jm and 6j symbols has been used in Ref. 7. In this approach, 
it is observed that the explicit expression for each of these 
coefficients is an alternating sum. By restricting the domain 
of the angular momenta, it is possible to limit the number of 
terms in this sum to one term ("stretched" angular momen
tum), two terms, three terms, .... Thus, in the case of two or 
more terms, there is the possibility of obtaining zeros by 
equating the resulting two or more terms to zero. While 
there is no a priori reason for the zeros of such expressions to 
correspond to nontrivial zeros, it is a fact (see Ref. 7) that one 
obtains already a denumerably infinite family of nontrivial 
zeros for both the 3jm and 6j coefficients in the simplest two
term case. We henceforth use the term "zero of a 6j coeffi
cient" (resp. of a 3jm coefficient) to mean a nontrivial zero in 
the sense that the entries in the symbol for the coefficient 
satisfy all domain constraints (triangle and projection quan-

tum number rules). 
The procedure described in the preceding paragraph is 

entirely equivalent to finding the zeros of the polynomial part 
of a Racah coefficient [resp. 3jm coefficient], when written in 
canonical pattern calculus form as given explicitly by Eqs. 
(4.98) and (A. 18) of Appendix A, Chap. 4 in Ref. 5, Vol. 9 
[resp. Eqs. (3.32) and (3.39)]. Accordingly, the Brudno classi
fication scheme is by weights of the corresponding Racah 
(resp. Wigner) operator. 

The purpose of the present paper is to present the zeros 
of a special class of 6j symbols corresponding to three-term 
cancellations in the sense described above, but which are 
restricted to the quadrupole invariant operator 

{4 : 0}. 11a) 

which is defined by the following action on the so-called 
coupled basis vectors of the tensor product spaceK. ® K· 

11 12' 
where Kit denotes any inner product vector space of dimen-
sion 2jj + 1 (i = 1,2) that carries the irreducible representa
tion Dit of SU(2): 

{4 : oJ IU,j,Vm) ~ [11J, + 1)11J, + 111'" 

X WU,jl,j2,2;j2,jl)IUd2~m) . 

(lb) 

Moreover, we restrict the present discussion to basis vectors 
in Kh ® Kh havingj = j2' In standard 6j-symbol notation, 
the present paper is concerned with the zeros of 6j coeffi
cients of the form . 

f2 jl j2} ( lY'I+2h W (' .. 2 .. ) 0 2 . . = - h,it,h, ;h,it = . 
h it 

(2) 

[SeeEq. (4.35) in Ref. 5, Vol. 9.] While we could have started 
with Eq. (2) and developed the results given in the present 
paper, it is significant for future work on this subject to point 
out that each zero of the 6j coefficient (2) determines a corre
sponding vector IUd2li2m) in the null space of the Racah 
invariant operator given by Eq. (la). [This is a general result 
for all zeros of6j coefficients-see Eq. (4.35), Ref. 5, Vol. 9.] 
The domains of definition of j I and j2 in the 6j coefficient in 
the left-hand side ofEq. (2) are, respectively, 

2j2 = positive integer, jlE{ 1,2,oo.,2j2} . (3) 
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While the determination of the zeros of the 6j symbol 
given by Eq. (2) is a highly specialized case, we believe the 
results are sufficiently interesting and important to justify 
this presentation. Let us turn now to the explicit formulation 
of the problem, developing first the necessary notations and 
concepts for stating its solution. 

II. DETERMINATION OF ZEROS 

Using the explicit expression for the Racah coefficient 
in Eq. (2), one easily finds that the necessary and sufficient 
condition for a zero is that the equation 

3x2 - 4y2 =¥ 
be satisfied, where we have defined 

X=jl +!, y=j2+!' 

(4a) 

(4b) 

Accordingly, the domains of x and Y for which we seek solu
tions of Eq. (4a) are, respectively, 

2y = positive integer> 2 , xe{~,~, ... ,2y-!}. (4c) 

Let us first consider the graph of relation (4a) for all 
(x, y)eR2. For this it is useful to define the hyperbolic sets 
H+ CR2 and H_ CR2 by 

H+ = {(x,y)eR213x2 - 4y2 = ¥, x>O} , (5a) 

H_ = {(x, y)eR2 I 3x2 - 4y2 = ¥, x<O} . (5b) 

Thus, the graph of relation (4a) is the set of points H+uH_. 
Since the points in H_ are obtained from those in H+ by 
reflection through the y axis, it is sufficient for the present 
treatment to consider the hyperbolic set H+ alone. 

We next introduce the matrix group G with elements 
defined by 

G = {g(O)I- 00 <0< oo} , (6a) 

where g( 0) is the 2 X 2 matrix given by 

o = (COSh 0 (2v'3/3)sinh 0) =Ah (O)A -I, 
g() (v'3/2)sinh 0 cosh 0 

where A is the fixed numerical matrix defined by 

4v'3/3) 

5v'3/4 

and h (0) is the hyperbolic "rotation" matrix 

(6b) 

(6c) 

h (0) = (COSh 0 sinh 0). (6d) 
sinh 0 cosh 0 

Thus, the group G is isomorphic to the Lorentz group 
Sot I, I)/Z where Z denotes the two-element invariant sub
group {I, - I }. (The matrix A transforms the hyperbola 
H = H+uH_ to standard form u2 

- v2 = 1.) 
We now define the action of the matrix group G on the 

set H+ in the standard way: For each g(O leG, the map g(0): 
H + -.H + is given by 

g(O ):(x, y)t--+(x(O), y(O )) , (7a) 

where the image point (x(O ), y(O)) of point (x, y) is obtained by 
matrix multiplication as 

( X(O)) = (0) (x). 
y(O) g Y 

(7b) 
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Finally, we introduce the infinite order discrete sub
group G a C G defined by 

Ga = {gn = (g(aW =g(na)ln = 0, ± I, ± 2, ... } , 

where a is the fixed numerical value of 0 given by 

cosh a = 7, sinh a = 4v'3 . 

The matrix g 1 is given explicitly by 

with inverse 

(Sa) 

(Sb) 

(9a) 

(9b) 

Using the preceding definitions and notations, we can 
now state our main mathematical result. 

Theorem 1: The set of all points K+ in H+, such that the 
x coordinate is half an odd positive integer, is given by 

K+ = K1uK2 , (1Oa) 

where the sets KI and K2 are defined by 

Kl = {(Xn,Yn) I t:) =gn(~)' n = 0, ± I, ± 2, ... } , 

(1Ob) 

K2 = {(X~,y~) I CJ =gn(D, n = 0, ± I, ± 2, ... } . 

(1Oc) 

Proof We first note that for each (x, y)eH+ the coordi
nate x is half an odd integer (necessarily positive) if and only 
if 2y is an integer (including negative integers). 

It is easily verified that either of the matrices g 1 or g 1- 1 

maps each point in H+ having an x coordinate of the form 
(2k + I )/2 with k a positive integer and a y coordinate of the 
form 2y = integer into a new point in H + of this same form. 
Thus, each point in K+ has an x coordinate that is half an 
odd positive integer. 

Let us next prove the converse, namely, that each point 
in H+, with an x coordinate that is half an odd integer (nec
essarily positive), is contained in K+. We begin by noting 
that each point (x,y)eH+ satisfies 6x>6y-1 and 6x.;;;Sy 
+ lforally> I; 6x <7yfory>6. These relations follow from 

3x2 - 4y2 = ¥, which implies (6x)2 = 4Sy2 + 33, so that 
(6x)2>(6y-I)2and(6x)2.;;;(Sy+ Wfory>I;(6x)2 < (7y)2for 
y>6. Using these results, we now find that each point 
(x,y)eH+ havingy>I has an image (x',y') under the trans
formationgl-

I in whichx'';;;x + I andy'<,y + 1. Moreover, 
if y>6, then y' > 0. Suppose now that there exists a (finite) 
point (xo, yo)eH+, which is not in K+, but which has an Xo 
coordinate of the form (2k + I )/2 with k a positive integer 
(necessarily, 2yo = integer) and a Yo coordinate with yo>6. 
Since each application of the transformation g 1- 1 to (xo, Yo) 
reduces each coordinate by at least I, there exists a unique 
nonnegative integer r such that (g 1- I)' transforms (xo' Yo) to a 
point (xr,Yr)eH+ withYr>6, and such that one more trans
formation by gl-I yields a point (xr+ 1 ,Yr+ I) withYr+ 1 <6. 
But then, since 6xr < 7y" it follows thatYr+ 1 > 0. Thus, the 
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point (xo,Yo) is transformed by (gl-I),+ 1 to a point 
(xr+ 1 ,Yr+ 1 )EH+ in which xr+ 1 is half an odd positive in
teger and 2y r + 1 is an integer with 0 <Y r + 1 < 6. But it is 
easily verified that among the points (x, y) withy coordinates 
Y = 1,2, ... ,5 only the points (P) and (P) belong to H+ and 
have x coordinates that are half an odd integer; hence, 
(xo,Yo)EK+, which is a contradiction. • 

Using Theorem 1, we can now state the complete solu
tion to the determination of all zeros of the Racah coefficient 
(2) with domain given by Eqs. (3). 

Theorem 2: The set of all zeros of the equation 

V2 ~I ~2} = 0 , 
12 12 h 

(lIa) 

such that all SU(2) conditions on the angular momenta are 
satisfied, namely, 2j2 = positive integer andjIEll,2, ... ,2j2j, 
is given by 

(lIb) 

where (xn,Yn)EK+ with n = 0,1, .... 
Proof This is a trivial deduction from Theorem 1, it 

only being necessary to verify thatjl,,2j2; that is, Xn ,,2Yn - ! 
for each n = 0,1,... . • 

III. CONCLUSIONS 
We conclude with a number of remarks. 
(a) The sets KI and K2 are distinct orbits of the group 

action ofGa in H+. 
(b) The discrete group with elements 

(~ ~) (- ~ -~) (~ -~) (- ~ ~) , 
(12) 

which is generated by reflection through the x and Y axes, 
may be adjoined to Ga thereby obtaining a group Ga whose 
action transforms solutions (xn,Yn)EK+ having both Xn >0 
and Yn > 0 to the other branches of the hyperbola H. The 
transformation ofthe angular momentum pair (j1,j2) corre
sponding to the group (12) are those generated by the substi
tutions jl-+ - jl - 1, j2-+j2 and jl-+jl' j2-+ - j2 - 1. This 
type of substitution (generically,j-+ - j - 1) is a well-known 
symmetry of 3jm and 6j coefficients; it is particularly ob
vious in the pattern calculus forms of these coefficients and 
corresponds to the extension of these coefficients to the 
group SU(1,I). 

(c) Since 

( 
~) -I (~) 

- 1 =gl 2' 
the two orbits KI and K2 with respect to the action of Ga 

become a single orbit under the action of Ga. 
(d) There are other families of zeros of the type dis

cussed in this paper obtained by applying the Regge symme
tries of the 6j coefficient. 
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(e) The Racah coefficient occurring in Eq. (Ib) also has 
zeros forj=l=j2' The enumeration of these zeros is more diffi
cult than those considered here; this will be reported on in 
another paper. 

(f) Equation (4a), when multiplied by 4, has integer so
lutions and is a Diophantine equation known as Pell's equa
tion. There is, of course, a general theory of such equations 
(see, for example, ChrystaI8

). As we have shown above, the 
special problem at hand can be treated by elementary means. 
This offers, perhaps, some hope that the Diophantine equa
tions of higher order (quartic, ... ) that will occur for more 
general zeros of 6j coefficients can be treated. 

(g) Zeros of 3jm and 6j coefficients imply zeros of the 
associated 3 F2 and 4 F3 hypergeometric series. 

(h) Zeros of 6j coefficients may imply algebraic sub
structures for the general Racah-Wigner algebra in addition 
to the Lie algebraic structure mentioned earlier. 

(i) For the physicist, it is the Racah invariant operators 
that provide a basis for all SU(2) invariants of the group 
SU(2) X SU(2) (and the 3nj symbols for. higher products). 
Mathematicians have a quite different view of this subject 
(see Kung and Rota9

). Zeros of6j coefficients may have some 
implication for this latter view. 
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Given a symmetry chain of physical significance it becomes necessary to obtain states which 
transform properly with respect to the symmetries of the chain. In this article we describe a 
method which permits us to calculate symmetry-adapted quantum states with relative ease. The 
coefficients for the symmetry-adapted linear combinations are obtained, in numerical form, in 
terms of the original states of the system and can thus be represented in the form of numerical 
tables. In addition, one also obtains automatically the matrix elements for the operators of the 
symmetry groups which are involved, and thus for any physical operator which can be expressed 
either as an element of the algebra or of the enveloping algebra. The method is well suited for 
computers once the physically relevant symmetry chain, or chains, have been defined. While the 
method to be described is generally applicable to any physical system for which semisimple Lie 
algebras playa role we choose here a familiar example in order to illustrate the method and to 
illuminate its simplicity. We choose the nuclear shell model for the case oftwo nucleons with 
orbital angular momentum I = 1. While the states of the entire shell transform like the smallest 
spin representation ofSO(25) we restrict our attention to its subgroup SU(6)X SU(2)T' We 
determine the symmetry chains which lead to total angular momentum SU(2)J and obtain the 
symmetry-adapted states for these chains. 

I. INTRODUCTION 

In this article we describe a method for an explicit con
struction of symmetry-adapted bases for chains of symme
tries. Given a symmetry chain, symmetry adaptation of 
quantum mechanical states according to a symmetry chain 
is an extremely important step if one indeed wants to make 
full use of symmetry properties. The first, and relatively easy 
step, consists in the determination of the symmetry proper
ties of the states of a physical system. That is to assign to each 
state, if possible, unique labels which characterize its trans
formation properties with respect to the various symmetry 
groups of the symmetry chain. 

Tables which contain such symmetry characterizations 
of states of quantum systems are found quite commonly in 
the literature. Familiar examples are the symmetry classifi
cation of states for the atomicl

-
3 and nuclear4

,5 shell models. 
The second, and much more difficult step, consists in 

the explicit construction of the symmetry-adapted physical 
states. That is, the coefficients need to be determined, for 
each symmetry group of the chain, which define the symme
try-adapted state in terms of the original states of the phys
ical system. While a symmetry classification of the transfor
mation properties of the states alone permits us to draw 
important information regarding selection rules, the symme
try-adapted states need to be known in explicit form if matrix 
elements are to be calculated. It is quite apparent from the 
literature that this second step is much more difficult. This is 
demonstrated by the lack of extensive tables and by the many 
methods which have been developed to solve this difficult 
task. Isoscalar factors and coefficients of fractional parent
age represent some of the methods employed. 1,6 

In this article we want to describe a method for the 

determination of the coefficients for symmetry-adapted 
states which is both relatively easy and valid for a large class 
of symmetry chains; namely for all symmetry chains which 
involve semisimple Lie algebras. 

The method is based upon Oykin's theory for the em
bedding of semisimple Lie algebras in semisimple Lie alge
bras.7

-
9 The method yields the actual coefficients for the 

symmetry-adapted states. That is, it is a numerical method 
and thus well suited for computer use. Apart from the coeffi
cients of the symmetry-adapted states this method also 
yields the matrix representations of all symmetries which are 
involved in a symmetry chain. That is, the method automati
cally gives the matrix elements of any physical operator 
which can be expressed in terms of the generators of the 
symmetry groups of the chain. 

In order to illustrate the method we choose a familiar 
example. We take the example from the nuclear shell mod
e1.4,6 The nucleons have spin and isospin ! and, for orbital 
angular momentum I = 1 for the individual nucleons, there 
are 4096 states in the nuclear shell. These states transform 
irreducibly with respect to the special orthogonal group 
SO(25) (see Refs. 1 and 3). In fact they transform like the spin 
representation of SO(25) with highest weight !(1,1, ... ,1) (12 
components). The special unitary group SU(12) forms a sub
group of SO(25). With respect to this subgroup the shell 
breaks up into a direct sum of irreducible representations, 
each of which forms a configuration of states. The two-parti
cle states then transform irreducibly with respect to SU(12) 
and the representation is characterized by the highest weight 
!(1,1, - 1, ... , - 1)(12 components). This representation con
tains 15 X 3 + 21 X 1 = 66 states. Since we merely want to 
give in this article an outline which describes our method we 
calculate the symmetry-adapted states for the 15 isotopic 
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spin-l states only. This is done via the three possible symme
try chains which correspond to j-j coupling, L-S coupling, 
and seniority-dependent coupling. Moreover, the matrix ele
ments are obtained for the generators of all· the symmetry 
groups involved (at least implicitly, for reasons ofspace; they 
can be read off easily). 

the physical process will depend on the nature of the nu
cleons considered. 

The defining matrices for the embeddings through the 
chains of Fig. 1 are3

•
9 (In denotes the n X n unit matrix) 

f(SO(25)~SU(12)) = 112, 

f(SU( 12~SU(6) X SU(2)T) 

(2.1) 

The coefficients for the symmetry-adapted states will be 
given in the form of tables which are analogous to the famil
iar tables for Clebsch-Gordan coefficients. These tables then 
permit to switch easily from one kind of symmetry adapta
tion to another one by simply reading off the coefficients for 
the desired symmetry adaptation of the states. 

[ 

16 

= ~(1 1 1 1 1 1 
16 1 

- 1 - 1 - 1 - 1 - 1 - Itl' 
(2.2) 

II. STATE LABELING FOR SYMMETRY CHAINS 

In this section we define the symmetry chains and de
termine the transformation properties of the two-particle 
states according to the three chains. The symmetry chains 
are defined through a set of embedding matrices. 9 

Using the technique of creation and annihilation opera
tors for fermions1

•
3 it is easily shown that for nucleons hav

ing orbital angular momentum I = 1 the states of the com
plete shell transform like the (smallest) spin representation of 
SO(25). Then, employing the methods of Refs. 7-9, the sym
metry chains of Fig. 1 are found. Note that in between the 
symmetry group SU(6)X SU(2)T and SU(2)JXSU(2)T there 
exist no additional symmetry chains. 

f(SU(6)~SU(3) X SU(2)s) 

~ ~(:; 1 -I ~'I -l 
f(SU(3)~SO(3)d = (1,0, - 1), 

f(SO(3)L XSU(2)s~SU(2h) = (1,1), 

f(SU(6)~Sp(6)v) 

~ [~ 
o 0 0 0 
1 0 0 -1 
o 1 -1 0 

-1] o , 
o 

[
10-1] f(Sp(6)v~SO(3)L XSU(2)s) = , 
!(1 1 1) 

f(SU(6)~SU(4)! XSU(2)1) 

3 -1 0 0 -1 

-1 3 0 0 -1 
! -1 -1 0 0 3 

-1 -1 0 0 -1 

-1 
-1 
-1 

3 

In Fig. 1 the symbols T,S,L, J stand for total isotopic 
spin, total spin, total orbital angular momentum, and total 
angular momentum. The symbol v denotes the seniority 
quantum number. The suffix t stands for I + ! and the suffix 
l forl-!. 

In Fig. 1, the highest weights are given for those repre
sentations which we consider in this article. Note that the 15 
states which we actually discuss form a subset of the 4096 
states ofSO(25) which transforms irreducibly with respect to 
SU(6). These 15 states are two nucleon states with 1= 1. In 
Fig. 1 we also give the dimension of the representations in
volved. 

!I~ 0 
0 

-1 0 
~I 1 -1 0 

f(SU(4)!~Sp(4)!) = [~ 0 0 - 1] 
1 -1 o ' 

f(Sp(4)!~SU(2)!) = !(3,1), 

f(SU(2)! XSU(2)1 ~SU(2)J) = (1,1), 

The three symmetry chains which are given in Fig. 1 
correspond to L-S coupling,j-j coupling, and a seniority-v
dependent coupling. Which of these couplings dominates 

[ 100 ] 010 
f(Sp)(6)v~Sp(4)! X SU(2L) = , 

!(OO - 1) 

SU(4)+ XSU(2)~XSU(2)T - -

/ 

(\(3-1-1-1),I:>,lJ+(1:>(11-1-1),O,lJ+ 
+(1:>(3-1-1-1),O,OJ+(0000),O,lJ+ 

+(OOOO)'l'OJ+(~--

SO(25)----t SU(12)--~) SU(6)xSU(2)T..:;; __ :.-----~ Sp(6),.XSU(2)T 
1:>(11 ••• 11), 1:>(11-1.··-1), ~ ~ 
2'0,. 4096, 121 (1/6 (44-2-2-2-2t,lJ+ ~ (110);lJ+(000),lJ+(200),OJ --

iOT2i =66, (1/6(10-2-2-2-2-2) ,oJ , ~ 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

15x3+21xl = 66 SU(3)XSU(2)sXSU(2)T --

(l/3(4-2-2),O,lJ+(l/3(11-2),l,lJ+ 
(1/3 (11-2) ,o,oJ+ (1/3 (4-2-2), l,OJ 

FIG. 1. The 1= 1 symmetry 
chain and the two-particle repre
sentations. 

- ----+ Sp(4)+xSU(2)~XSU(2)T:-----~) SU(2)+XSU(2)~xSU(2)T~ 
_-~ (11),0,lJ+(10);I:>,lJ+(00),O,lJ+ (2,0'1)+(O,O'1)+(3/2'l:>ll)~SU(2) xSU(2) 

(20) ,o,oJ+( (00) ,l,OJ+( (10) ,I:>,OJ + (0,0,1)+ (3,0,0)+(1,0,0)+ J T 
+ (0, 1, 0)+ (3/2,1:>, ° (2,1)+ (0, 1)+ (2, 1)1---------... ________ =+~) SO(3)LxSU (2)sxSU(2)T 

(1,1)+(0,1)+(3,0)+ 
(1,0)+ (1,0)+ (2,0)+ 
(1,0) 

1129 

(2,0,1)+(0,0,1)+(1,1,1)+ 
+(1,0,0)+(2,1,0)+(0,1,0) 
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I(SU)(6)-SO(3)L X SU(2)s) 

[ 1 0 - 1 - 1 ] 1 o 
-1 -1 

III. SUBALGEBRAS AND THEIR EMBEDDINGS 

(2.13) 

(2.14) 

(2.15) 

In this section we want to give the embedding of the 
various algebras as subalgebras in the larger algebras. That 
is, given two Lie algebras Land L we ask the question 
whether there exists an embedding/of Lin L such that/(L ) 
satisfies in L the Lie products of L. 

We denote the shift operators by Ea and the elements of 
the Cartan subalgebra by H;. The symbol a stands for the 
roots, i.e., for the shift which is affected by Ea if acting upon 
a state. The index i = 1,2, ... ,1,1 the rank of the algebra 
[i = 1,2, ... ,1 + 1 for SU(I + 1 )). The e; stands for the ith Car
tesian unit vector, i.e., (e;)j = 8ij. 

We obtain the following. 
SO(25)-SU(12): The embedding ofSU(I2) in SO(25) is 

trivial as it is signified by the unit matrix 112, That is, reject
ing all shift operators of SO(25) whose a is not a root of 
SU(I2) we obtain the subalgebra SU(I2). 

SU(12)-SU(6)xSU(2Jr: In this case we obtain, for the 
diagonal elements ofSU(6) in SU(12), 

Thus, 

I(HI) = HI + H7 , I(H2) = H2 + Hs, I(H3) = H3 + H9 , 

I(H4) = H4 + H IO, I(Hs) = Hs + Hw I(H6) = H6 + HI2 
(3.1) 

are the six elements of the Cartan subalgebra of SU(6) em
bedded in SU(I2). It is clear that 

12 

"'; = L hkmk' i = 1,2, ... ,6 
k=1 

(3.2) 

defines weights", = ("'1,"""'6) ofSU(6); that is, the defining 
matrix/also yields the projection of the SU( 12) weights upon 
the weights of its subalgebra SU(6). 

One obtains similarly for the diagonal element T3 of 
SU(2)r in SU(12) 

(3.3) 

and the third component of isotopic spin is obtained through 
the projection 

mf = !(ml + m2 + .. , + m6 ) 

- !(m7 + ms + ... + mu), (3.4) 

where the m;, i = 1,2, ... ,12, are the components of an SU(I2) 
weight [as well as of an SO(25) weight, since the group SU( 12) 
is trivially embedded in SO(25)]. Knowing this it is easy to 
understand why the representation of SU(12) with highest 
weight 
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!(I,I, - 1, ... , - 1) (12 components) 

decomposes into the direct sum of representations of 
SU(6)XSUr (2) with highest weights 

(!(4,4, - 2, - 2, - 2, - 2);1) 

+ (~(1O, - 2, - 2, - 2, - 2, - 2);0). 
Note that for the case of these particular representations all 
other weights are obtained through permutations of compo
nents only, except for the representation 1 of SU(2)r which 
has the three weights 1,0, - 1. 

We do not give here the embedding of the shift opera
tors Ea since we will not need them in the following. 

SU(6)-SU(3)xSU(2)s: Since SU(2)r shows up in the 
form of a direct product on both sides we need not consider 
it. Thus, we are left with the embedding ofSU(3) X SU(2)s in 
SU(6). This is obtained for SU(3) as 

I(Hd= HI + H4, I(H2) = H2 + Hs, I(H3) = H3 + H6, 

I(E )=E +E (1 - 10) e l - e'l e4 - es ' 

I(E(OJ_I)) = Ee2 - e• + Ee,_e.' 

I(E(JO_I)) = Ee, -e, + Ee._ e., 

and for SU(2)s as 

I(S3) = !(HI + H2 + H3 - H4 - Hs - H6)' 

(3.5) 

I(S+) = (lIv'1){Ee, - e. + Ee2 - e, + Ee, _ eJ, (3.6) 

I(S_) = (lIv'1){E -e, +e. + E -e2+e, + E -e, +eJ 

The e; on the right sides of the equations are six compo
nent vectors since the operators on the right sides belong to 
SU(6). 

It always holds that 

I(£_a) = Lc!E_ a, (3.7) 
a 

with the' star denoting complex conjugation. 
SU(6)-SU(3)-SO(3)L: Since SU(2)s shows up in the 

form of a direct product we can ignore it. We get for the 
embedding SU(6)-SU(3)-SO(3)L' 

I(L3) =HI -H3 =HI +H4 -H3 -H6, 

I(L+)=£(I_IO) +£(01-1) 
=Ee,-e2 + Ee._ e, + Ee2 - e• + Ee,_e.' (3.8) 

I(L_) =£(-110) +£(0 -II) 
= E _ e, + e2 + E - e. + e, + E - e2 + e, + E - e, + e •. 

This is SO(3)L first embedded in SU(3) and then in SU(6). 
SU(6)-SU(3)X SU(2)s-SO(3)L X SU(2)s-+SU(2)J: The 

combined defining matrix ofSU(2h in SU(6) is given as 

1= !(3,I, - 1,1, - 1, - 3), 

and we obtain, for the embedding ofSU(2)J in SU(6), 

I(J+) =Ee,-e2 + Ee2 - e, + Ee._ e, + Ee,_e. 
+ (lIv'1)(Ee, _ e. + Ee2 - e, + Ee, - eJ, 

(3.9) 

(3.10) 

I(J _) = E _ e, + e2 + E _ e2 + e, + E _ e. + e, + E - e, + e. 
+ (lIv'1)(E _ e, + e. + E - e2 + e, + E - e, +eJ. 
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SU(6)---+sp(6)y: The embedding ofSp(6)v in SU(6) is giv
en as 

I(Hd = HI - H6, I(H2) = H2 - Hs, I(H3) = H3 - H4, 

I(Ee,-e,) = Ee,_e, + Ee,_e.' 

I(Ee, - e,) = Ee, - e, + Ee. - e,' 

I(E2e,) = v"lEe, _ e •. 

(3.11) 

As before, the shift operators which correspond to the nega
tive roots are given by the same expressions in terms of the 
negative roots of SU(6). The remaining shift operators are 
defined through Lie products. 

Sp(6)y---+SO(3)LXSU(2)s: SO(3)L is embedded in Sp(6)v 
as 

I(L3) = I(HI) - I(H3) = HI - H3 + H4 - H6, in SU(6), 

I(L+) =I(E(I_I 0)) + I(E(ol_I)) 

= Ee,_e, + Ee,_e. 
+ Ee, _ e, + Ee. _ e,' in SU(6). 

SU(2)s is embedded in Sp(6)v as 

I(S3) = !if(HI) + I(H2) + I(H3)) 
= !(HI - H6 + H2 - Hs + H3 - H4), in SU(6), 

I(S+) = !1(E(020)) + (lIv'2)f(E(lol)) 

(3.12) 

= (lIv'2)Ee, _ e, + (lIv'2)(Ee, _ e. + Ee, _ eJ, in SU(6). 
(3.13) 

SU(6)---+SU(4) r X SU(2) I: 

I(HI ) = l(3HI - H2 - Hs - H6), 

f(H2) = l( - HI + 3H2 - Hs - H6), 

I(H3) = l( - HI - H2 + 3Hs - H6), 

I(H4) = l( - HI - H2 - Hs + 3H6), 

/(Ee.- e2 ) = Ee, - e2 , f(Ee2 -e)) = Ee2 -es ' 

I(Ee,-e,) = Ee, -e.' 

for SU(4)r in SU(6). Here we have subtracted 
l(HI + H2 + Hs + H6) in order to have the property 

4 _ 

L/(H;) =0. 
;=1 

And for SU(2)) in SU(6), 

I(M3) = !(H4 - H 3), 

I(M +) = (lIv1)Ee, - e,' 

I(M _) = (1Iv'2)E - e, + e,' 

SU(4) r ---+Sp(4) r: 

I(HI) = HI - H4, I(H2) = H2 - H3, 

(3.14) 

Sp(4) r ---+SU(2) r: 

I(N3) = !(3HI + H2), 

I(N +) = ~(3/2)Ee, - e, + E2e,· 

Sp(6)v---+Sp(4)r XSU(2),: 

I(HI ) = HI' I(H2) = H2, 

I(Ee, - e,) = Ee, - e,' I(E2e,) = E2e" 

I(M3) = - !H3, I(M +) = !E - 2e,' 

(3.15) 

(3.16) 

(3.17) 

SU(6)---+SU(4) r X SU(2) ,---+sp(4) r X SU(2) ,---+SU(2) r 
X SU(2) J ---+SU(2) J: 

I(J3 ) = I(M3) + I(N3) 

(3.18) 
I(J +) = I(M +) + I(N +) 

= ~(3/2)(Ee, _ e, + Ee, - e.) 

+ v"lEe, - e, + (lIv'2)Ee, - e, . 

IV. SYMMETRY ADAPTATION COEFFICIENTS AND 
MATRIX ELEMENTS 

A. Symmetry adaptation coefficients 
The embedding of SU(6) X SU(2)T in SO(25) yields the 

symmetry-adapted states with respect to SU(6)X SU(2)T' It 
is seen from the defining matrices for this embedding that the 
two-particle states transform like the states of the represen
tations (A(4,4, - 2, - 2, - 2, - 2);1) + (A(1O, - 2, - 2, - 2, 
- 2, - 2);0) of SU(6) X SU(2)T' That is, the totality of two 

nucleon states transforms according to two irreducible re
presentations ofSU(6), the first of which has isotopic spin 1, 
the second has isotopic spin zero. Thus for a realization of 
these representations in terms of products of one-particle 
wave functions appropriately symmetrized expressions have 
to be used [see Eq. (4.4)]. 

We consider now the representation i(4,4, - 2, 
- 2, - 2, - 2) of SU(6). We could obtain the symmetry

adapted states through the embedding of the shift operators 
ofSU(6) in SO(25). However, the situation is here quite sim
ple if one realizes that the states of this representation can be 
chosen as Slater determinants for two nucleons. Let 

lP;(m/,m s ) (4.1) 
denote a single nucleon wave function for the ith nucleon 
with third component of orbital angular momentum m/ and 
third component of spin ms. The possible values (m/,ms),Jz 
are 

(q),~ (O,!),! (- l,!), -! (1, - !),! (0, - !), -! (- 1, - !), - ~ 
(4.2) i= 1 2 3 4 5 6 

Note that J itself is in general not a good quantum number 
with respect to this basis of SU(6). The values i = 1,2, ... ,6 
label the six possible values (m/,ms) in the order indicated. 
We introduce the symbol 
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{I-- I--}. (4.3) 
The two 1 's in the symbol { } represent the occupation of 
the corresponding (m/,ms) states by nucleons. This symbol 
thus represents two nucleon wave functions. That is 
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(l--I--) 

1 = v'l (97I(l,!)q1z(l, - !) - 971(1, - !)q1z(I,!l). (4.4) 

These wave functions are seen to be antisymmetric. There 
are 15 wave functions of this type which form a basis for the 
representation A (4,4, - 2, - 2, - 2, - 2) ofSU(6), while the 
21 symmetric combinations form a basis for the representa
tion A (10, - 2, - 2, - 2, - 2, - 2) ofSU(6). 

The relationship of the states (1 1- - - -) with the 
states IA(4,4, - 2, - 2, - 2, - 2) of SU(6) is made as fol
lows. The index i of Eqs. (4.2) and (4.3) corresponds to the 
index i ofthe elements Hi ofSU(6). It holds 

Hi 1m) = mi 1m), m = (m l ,mZ,···,m6)' 

and the Hi "measures" whether the ith nucleon is contained 
in the state or not. If m i > 0, then the nucleon with the quan
tum numbers (m/,m.), which correspond to the value i by 
Eqs. (4.2) and (4.3), is present. If mi < 0, this particular nu
cleon is not contained in the state. Thus 

IM4,4, - 2, - 2, - 2, - 2)++( 11----}, 

IM4, - 2, - 2,4, - 2, - 2)++( 1-- 1--), 

and so forth. One could add a multiple of the identity matrix 
16 to each of the Hi without changing the commutation rellt
tions. For example the new H; could be chosen as 

H; =Hi +1'/6' 

The eigenvalues of Hi are now 1 or 0 and the weights ofSU( 6) 
take on the form (1 10000) (and all permutations). Then 
the l's characterize the presence of a nucleon with the quan
tum numbers given by the position of the 1 'So 

In order to illustrate the method of calculation of sym-

TABLE I.SU(6}--+SU(3} X SU(2}s. 

~ 
~ ~ ~ ~ ... ~ 'i' ~ ~ ~ 'i' I I I I .... I I 'i' I 
I I I .... I I I 'i' I 'i' I I .... I I I 'i' I .. 
I .... I I I ... I I .... 'i' ::l I I I I .... 'i' .... 'i' I 

:;!. :;!. :;!. .... I I I I 

SU(3) x SU(2)s - - - - - - - -
[1/3 (4-2-2110) 1 

[1/3 (1 1-,!) ,0) 1/12 1/12 

[1/3 (-24-2) ,0) 1 

[1/3 (1-2 111 0) 1/12 1/12 

[1/3 (-2-24) ;0) 

[1/3 (-211) ,0) 1/12 1/12 

[1/3 (11-2) ;1) 1 

[1/3 (11-2) ;0) -112 112 

[1/3 (11-2) ;-1) 

[1/3 (I-21) ;1) 1 

[1/3 (1-21) ,0) -1/12 1/12 

[1/3 (1-21) ,-1) 

[1/3(-211) ,1) 1 

[1/3 (-211) ;0) -1/12 1/12 

[1/3 (-211) ,-1) 
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'i' 
I .... 
I 
I -

1 

metry-adapted states we carry out the symmetry adaptation 
SU(6)---+SU(3) X SU(2)s in detail. 

There are 15 states of the type (4.4). The defining ma
trix, Eq. (2.3), yields the weights of SU(3) X SU(2)s which 
correspond to the states ( ). For example, 

!(HI){lI----) 

= (HI + H4)IA(4,4, - 2, - 2, - 2, - 2) 

=Hll----), 

!(Hz)( 11----) 

= (Hz + HsliA(4,4, - 2, - 2, - 2, - 2) 

=Hll----), 

!(H3 )( 11----) 

= (H3 + H6)IM4,4, - 2, - 2, - 2, - 2) 

= -Hll----), 

!(S3)( 1 1 - - - - ) 

= !(HI +H2 +H3 -H4 -H5 -H6) 

X IA(4,4, - 2, - 2, - 2, - 2) 

= 1.{lI----), 

and thus the vector (11 - - - -) ofSU(6) corresponds, under 
restriction of SU(6) to the subgroup SU(3)X SU(2)s, to the 
weight W1,1, - 2);1). Then, making use of the property that 
the highest weight of irreducible representations of simple 
compact Lie algebras is unique, and of the embedding of the 
shift operators of SU(3)XSU(2)s in SU(6), Eqs. (3.5) and 
(3.6), the symmetry-adapted states can be calculated. Some 
care needs to be taken for weight subspaces whose dimension 
exceeds 1. 

'i' ~ ~ 'i' .... .... .... 
'i' .... I 

I I 
I I I 
I I I - - -

1 

1 

1 
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TABLE II. SU(6j-.[SU(3)XSU(2)s ]--.SO(3)L XSU(2)s· 

:~ 
T 'i' 'i' ..... ..... 'i' 'i' ..... 7' ..... ..... ..... 'i' ..... ..... 

I .... I I I .... .... .... 
I I 'i' I ! I 'i' I .... I .... I 'jI I I .. I .. I ... .!t .... 'i' [5U(3) x 5U(2)8 .!t 'i' I I ... , 

'i' 'i' I I 
I I I 'i' .... 'i' 'i' I I I , 

.:;'. ... .:;'. ... ... I I I , I I I 

SO(3)L x SU(2) s 
..... ..... ..... ..... ..... ..... ..... ..... ..... ..... ..... ..... ..... 

{.l1----} 

[1/3 (4-2-2) ,0) 

(2,0) 1 

(1,0) 1/12 1/12 

(0,0) 1/~ 2/~ 1/~ 

(-1,0) 1/12 1/12 
(-2;0) 1 

(0,0) 1/13 -113 1/13 

{ll----} 

[1/3 (2-1-1) ,1) 

(1;1) 1 

(1,0) 1/12 -1/12 

(1;-1) 1 

(0,1) 1 

(0,0) 1/12 -1/12 

(0;-1) 1 

(-1;1) 1 

(-.I, (j) 
1/12 -1/12 

(-1,-1) 1 

TABLE III. SU(6j-.[SU(3)X SU(2)s ]--.[SO(3)L XSU(2)s ]--.sU(2)J. 

:~ 
'i' T 'i' ..... ..... 'i' T 

..... ..... 'i' 'i' ..... 'i' ..... ..... 
I 'i' 

, ... ... ... ... 
[SU(3) x 5U(2)8 I , 

l' 
, ... I I 'i' I ... I ... 

! , ... I I 'i' I I .... I ... .... I ... I , .... I I 'i' 'i' ... I I I 

[SO(3)L x SU(2).) ... I , , I ... I' 'i' ... I I I I ... .:;'. .:;'. .:;'. .:;'. I I I I , I I I ..... ..... ..... ..... ..... ..... ..... ..... ..... ..... ..... 
5U(2)J 

{1l----} 

[1/3 (4-2-2) ,0) 

(2,0) 

2 1 

1 1/..2 1/12 
0 1/~ 2/16 lilt" 

-1 1/12 1/12 
-2 1 

(0,0) 

0 11 v'! -1/13 1/13 -
{ll----} 

[1/3 (2-1-1) ,1) 

(1,1) 

2 1 

1 1/12 1/2 -1/2-

0 1/$1/,76 -1/13 1/16 

-1 1/2 -1/2 l//! 
-2 1 

1 1/12 -1/2 1/2 

0 1/ff -1/12 
-1 1/2 -1/2 -1/12 

0 -1/~ 1/13 1/~ 1/13 
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TABLE IV. SU(6}-+Sp(6) •. 

..... ..... ..... ..... ..... ..... ..... ..... ..... ..... ..... ..... ..... ..... ..... 

~ 
I I I I ... I I , ... I . ... , ... ... 
I I I 'i' I I , ... I , ... I .... I ... 
I I ... I I 'i' I I ... , I ... 'i' I , ... I , , ... , ... ... ... I I 

Sp(6)v ... , , , , .... ... ... ... , , , , , , 
:! ... ... ... :! 

, , , , , , I , , , 
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

{ll----} 

(110) 1 

(101) 1 

(10-1) 1 

(1-10) 1 

(000) 1 1/12 1/12 

(000)2 -1/16 1/16 1273 
(all) 1 

(01-1) 1 

(-110) 1 

(0-11) 1 

(-101) 1 

(0-1-1) 1 

(-10-1) 1 

(-1-10) 1 

{1l.----} 

(000) -1/13 1/13 -1/13 

TABLE V. SU(6}-+SU(4), xSU(2),. 

~ 
'I' 'I' 'I' 'I' ...... 'I' 'I' 'I' ..... 'I' 'I' ..... "7' ..... ..... 

'i' 'i' 'i' ... ... , , , ... I , ... , ... ... , ... , , 
'i' 

, , , 
'i' 

, , ... , , 
'i' 'i' 

, , 
'i' 

, , ... , , ... ... ... , ,... , , , 
'i' 'i' 'i' 'i' 

, , , , , , 
SU(4)t x SU(2) ... 

... ... ... :! ... , , , , , I 
~ ~ ~ ~ ~ ~ ~ ~ ..... ..... ..... ..... ..... ..... 

[1/2 (11-1-1) ,a] 1 

[1/2 (1-11-1) ,a] 1 

[1/2 (-111-1) 'a] 1 

[1/2 (1-1-11) ,a] 1 

[1/2 (-11-11) 'a] 1 

[1/2 (-1-111) ,a] 1 

[1/4 (3-1-1-1) ,1/2] 1 

[1/4 (-13-1-1) ,1/2] 1 

[1/4 (-1-13-1) ,1/2] -1 

[1/4 (-1-1-13) ,1/2] -1 

[1/4 (3-1-1-1) ; -1/2] 1 

[1/4(-13-1-1} ;-1/2] 1 

U/4(-1-13-1) ,-1/2] -1 

[1/4 (-1-1-13) ,-t/2] -1 

[(0000) ,a] 1 
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TABLE VI. SU(6)--+[SU(4) X SU(2)]--.Sp(4) , XSU(I),. 

~ 
~ ~ ~ ~ ~ ~ .. ~ - ~ ~ 'rl ~ ~ ~ 

I I I I ... I . .... I I I 'i' .... 
I I I ... I I . ... I I 'i' I ... ';' I I ... I I .... I I ... I 'i' 'i' [SU(4) x SU(2)] I ... I I I ,.. I . ... ... ... I ... I I I . ... ... ... ... I I I I I I 

~ ~ ... ~ ~ I I I I ..!.. I I ..!.. Sp(4)t x SU(2)f ~ ~ ~ ~ ~ ~ ~ ~ ~ 

{ll---- } 

[1/2 (11-1-1) ,0] 

[(11) ,0] 1 

[(1-1) ,0] 1 

[(00) ,0] 1/12 1/12 

[(-11) ,0] 1 

[(-1-1) ,0] 1 

[(00) ,0] 1/12 -1/.-'2 

{1l---} 

[1/4(3-1-1-1),1/2] 

[(10) ,1/2] 1 

[(01) ,1/2] 1 

[(0-1) ,1/2] 1 

[(-10) ,1/2] 1 

[(10) ,-1/2] 1 

[ (01) ,-1/2] 1 

[(0-1) ,-1/2] 1 

[(-10) ,-1/2] 1 

{ll---- } 

[(0000) ,0] 

[(00);0] 1 

TABLE VII. SU(6)--.[Sp(6)]--.SO(3)L XSU(2)s. 

,~ 
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ .... 

I I I I ... I I . ... I I 'i' I ';' ... 
I I I ... I I I ... I I ... ... 'i' I I ... I I I 'i' I I ... I I 'i' ... 

[Sp(6)] I 'i' I I I .... I ... 'i' 'i' I I ... I I I ... .... ... ... I I I I 

~ ... ~ ... ... I I I I I !... I I I !... 
SO(3)L x SU(2)8 

~ ~ ~ ~ ~ ~ ..... ..... ..... ..... ..... 

{ll----} 

(110) 

(2,0) 1 

(1,0) 1/..2 1/..2 

(0,0) 1/.€" 2/.€" 1/.€" 
(-1,0) 1/..2 1/..2 
(-2,0) 1 

{11---- } 

(110) 

(1,1) 1 

(l,O) 1/..2 -1/..2 

(1,-1) 1 

(0,1) 1 

(0,0) 1/1i -1/12 

(0,-1) 1 

(-1,1) 1 

(-1,0) 1/12 -1/12 

(-1,-1) 1 

{ll----} 

(000) 

(0,0) 1/13 -1/13 1/13 
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TABLE VIII. SU(6)-+[SU(4) X SU(2)]---+[Sp(4) X SU(2)]---+[SU(2) X SU(2)]---+SU(2)J. 

~ 
- -- - - -;-- ..... - - - - - - - -I I I .... I I I 'i' I I .... I 'i' .... 

I I I 'i' I I 'j' I 'i' I .... .... [SU(4) x SU(2)J I I .... I I t;4 I ... 'i' 'i' I 
I ... I I I ... I 'i' ... 'i' I [Sp (4) x SU (2)] ... I I ... 'i' 'i' 'i' I I I I .... .... ... .... C- I I I .!.. .!.. .!.. I [SU (2) x SU (2)] ..... ..... ..... ..... ..... ..... ..... ..... ..... - -SU(2) J 

[1/4 (3-1-1-1) ,1/2] 

[(10) ,1/2] 

(3/2,1/2) 

2 1 

1 1/2 13/2 

° 1/12 -1/12 
-1 -13/2 -1/2 
-2 -1 

1 /3/2 -1/2 

° 1/>'2 1/>'2 

-1 -1/2 13/2 

[1/2 (11-1-1) ,0] 

[(11) ,0] 

(2,0) 

2 1 

1 1 

° 1/12 1/1t 
-1 1 

-2 1 

(0,0) 

° 1/,!2 -1/12 

[(0000) ,0] 

[(00) ,0] 

(0,0) 

° -1 

TABLE IX. SP(6).--+(L,s). 

~ 
;;; 0 

~ ... ~<"I ;;; 0 ;::; S ;;; ;;; 0 

~ <> ;::; 0 0 ;::; 'i' ... 0 0 ... ... ... 0 0 I e e e ... ... , 
! 'j1 0 

::! ::! ::! ::! e .!. e e 1 ! (L,S) 

(no) 

(2,0) 1 

(1,0) 1/12 1/12 

(0,0) -13/2 1/2 
(-1,0) l/12 l/12 

(-2,0) 1 

(no) 

(1,1) 1 

(1,0) 1 

(1,-1) 1 

(O,l) -1/12 1/12 

(0,0) -1/2 13/2 

(0,-1) -1/12 lfi/2 

(-1,1) 1 

(-1,0) 1 

(-1,-1) 1 

(000) 

(0,0) 1 
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TABLE X. SP(6).--+Sp(4), XSU(2),. 

I¥ .. of 

0 ;:::; ;;< 0 0 0 ;:::; ;;< 0 ;:::; ;:::; ;::; 
'i' 0 0 ... 'i' 0 

, 
Sp(4)t ... 0 0 e e g ... ... ... 'i' d d d d e ..!. e ..!. e 

x SU(2)", 

{11---- } 

(110) 

(11,0) 1 

(1-1,0) 1 

(00,0) 1 

(-11,0) 1 

(-1-1,0) 

{n----} 

(110) 

(10,1/2) 1 

(01,1/2) 1 

(-10,1/2) 

(0-1,1/2) 1 

(10,-1/2) 1 

(01,-1/2) 1 

(-10,-1/2) -1 

(0-1,-1/2) -1 

{U---- } 

(110) 

(00,0) 1 

{ll----} 

(000) 

(00;0) 

An example will illustrate the above. The highest SU(3) 
weight that one obtains is H(4, - 2, - 2);0) and corresponds 
to {I--I--J. Thus, {I--I--J is a unique SU(3) vector 
and we can construct the SU(3) representation to which it 
belongs by acting upon this vector with the SU(3) shift opera
tors. The shift operators do what their subscript indicates. 
For example, the operator 

I(E( _ 1 1 0)) = E - e, + e2 + E - e. + e, 

yields (in general) a linear combination of two states. In the 
first state the first component is decreased by I and the sec
ond component increased by I, while in the second state the 
fourth component is decreased by I and the fifth increased 
by 1. That is 

I(E( _ 1 1 0)) { I - - I - - J 

={-I-I--J+{l---l-J. 

This then is another (unnormalized) SU(3) state, which be
I 

;;< 
0 

'i' 

1 

1M), 1M), I!, - p, I~,!), I~, - p, 
i 2 3 4 5 

0 0 ... 
I 0 ... e ..!. 

1 

1 

longs to weight WI, 1, - 2);0). Acting in tum upon this state 
one obtains 

I(E(-110))({ - l-I--J + {l---I-J) 

=2{-I--I-J. 

The state {- 1 - - 1 - J is again an SU(3) state and its weight 
is W -2,4, - 2);0). This state is mapped to zero: 

I(E( _ 1 1 0) )( - 1 - - I - J = o. 
It is easily checked that/(S ± ) maps all these states to zero, 
i.e., they correspond to a spin singlet. 

The labeling of the one-particle states ofSU(6), Eq. (4.1), 
as given by Eq. (4.2), is based upon their transformation 
properties according to the symmetry chain given by Eq. 
(3.10). The same states of SU(6) transform differently if in
stead the symmetry chain given by Eq. (3.18) is chosen. The 
labels of the SU(6) states according to this symmetry chain 
are given as 

1
3 - 3) 
2' 2 

6 
Thus it follows that the two symmetry chains, Eq. (3.10) and Eq. (3.18), determine two distinct bases for the same representa
tions ofSU(2h, namely J = M. The two bases are obtained as two distinct sets of linear combinations of the basis elements 
Eq. (4.2) of the six-dimensional irreducible representation of SU(6). The symmetry chain Eq. (3.10) corresponds to L-S 
coupling, while the symmetry chain Eq. (3.18) describesj-j coupling. 

For the two-particle states (1 = I, s = 112)2 one obtains in L-S coupling (a = antisymmetric, s = symmetric) 

(1;!)X(I;!) = (2;1) + (2;0) + (1;1) + (1;0) + (0;1) + (0;0) , 
ss sa as aa ss sa 
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where only the antisymmetric total angular momentum 
states 

2 + (2 + 1 + 0) + 0 

survive, while inj-j coupling one obtains 

(1;!)X(I;!) = (~;~) + (M) + (M) + (!;!), 
where again the antisymmetric total angular momentum 
states 

(2 + 0) + (2 + 1) + 0 

survive. While the SU(2!J representation content consists of 
the same representations for both symmetry chains, it is 
clear that the form of the SU(2!J states, expressed in terms of 
the same two-particle SU(6) states [the same SU(6) represen
tation], depends on the symmetry chain (coupling) which is 
chosen. The embedding of the two symmetry chains in the 
same group SU(6) thus establishes a relationship among the 
two types of couplings which is equivalent to finding the 
transformation brackets which relate the two distinct SU(2)J 
bases. 

B. Matrix elements 

In this section we give the matrix elements for some of 
the subalgebras of the symmetry chain Fig. 1. Only the less 
obvious cases of matrix representations will be considered. 
The matrix elements are arrived at in a natural manner if one 
calculates the symmetry-adapted states given in Tables I-X. 

The raising and lowering operators ofSU(n) can be rep
resented as nXn matriceslO 

Eej_e,-(C{)st=8js8jt, (4.5) 

where the 8 are Kronecker symbols. The diagonal elements 
H j are then given as 

H j-(C;)st=8js8jt . (4.6) 

The Lie products are given by the commutators 

(4.7) 

In these equations iJ,s,t = 1,2, ... ,n. We choose in the follow
ing the phases in such a manner that relation (4.7) is satisfied. 
That is, we give the matrix elements for the simple negative 
roots and the diagonal elements H j only. Equation (4.7) then 
determines the remaining matrix elements. A useful proper
ty to remember is 

(4.8) 

where the symbol + denotes Hermitian conjugation. The 
ordering of the states is so chosen as to correspond to the 
ordering of the states in the tables. 

SU(3) X SU(2)s: 

(~(4 - 2 - 2);0), 

0 0 0 0 0 0 

v1 0 0 0 0 0 

I(E( -110)) = 
0 v1 0 0 0 0 
0 0 0 0 0 0 
0 0 0 1 0 0 
0 0 0 0 0 0 
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0 0 0 o 0 0 
0 0 0 o 0 0 

I(E(o_II)) = 
0 0 0 

0 1 0 
o 0 0 
o 0 0 

0 0 v1 o 0 0 

000 v100 
I(HI ) = diag~(4,1, - 2,1, - 2, - 2), 

I(H2 ) = diagj( - 2,1,4, - 2, - 2,1), 

I(H3) = diag!( - 2, - 2, - 2,1,4,1); 

Wl,l, - 2);1), 

[ 0 

o ] 
I(E( -110)) = 

[ 0 ] 

[~ ! ~l [ 0 I 

I(S3) = diag(I,O, - 1,1,0, - 1,1,0, - I), 

I(HI ) = diag!(I,I,I,I,I,I, - 2, - 2, - 2), 

I(H2 ) = diag~(I,I,I, - 2, - 2, - 2,1,1,1), 

I(H3 ) = diagj( - 2, - 2, - 2,1,1,1,1,1,1). 

[ 0 ] 
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Sp(6)v: 

(110) The nonzero matrix elements are 

f(E( _ I 10) ):aS4 = v'2, an = 1, aS3 = 1, a9S = v'2, 
a11,10 = 1, a13,12 = l. 

f(E(o _ I I) ):a21 = 1, a43 = 1, ass = 1Iv2, a6S = ~3/2, 
a9S = 1/v2, a96 =..[372, a11 ,9 = 1, a14,13 = l. 

f(E(oo _ 2) ):an = v2, aS7 = v2, a12,10 = v2, a 13, 11 = v'2. 
fIB!) = diag(I,I,I,I,O,O,O,O, - 1,0, - 1,0, - 1, - 1), 

f(H2 ) = diag(I,O,O, - 1,0,0,1,1,1, - 1,0, - 1,0, - 1), 

f(H3 ) = diag(O,I, - 1,0,0,0,1, - 1,0,1,1, - 1, - 1,0). 

Sp(4): 

(11), 

0 0 0 0 0 

0 0 0 0 0 

f(E( - 110)) = 0 v2 0 0 o , 
0 0 v2 0 0 

0 0 0 0 0 

0 0 0 0 0 

v2 0 0 0 0 

f(E(00-2)) = 0 0 0 0 0 

0 0 0 0 0 

0 0 0 v2 0 

f(H I ) = diag(I,I,O, - 1, - 1), 

f(H2) = diag(l, - 1,0,1, - 1,). 
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(10), 

0 0 0 

f(E_ llO)) = 
1 0 0 

0 0 0 

0 0 

0 0 

f(E(oo - 2)) = 
0 0 

0 v2 
0 0 

f(Hd = diag(I,O,O, - 1), 

f(H2 ) = diag(O,I, - 1,0). 

0 

0 

0 

0 

0 0 

0 0 

0 0 

0 0 
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A realization of the spinor algebra of the rotation group SO(N). N = 2n or 2n + 1. in the covering 
algebra ofU(2" ) is exploited to obtain explicit representation matrices for the SO(N) generators in 
the basis adapted to the subgroup chain SO(N):::> U(n):::> U(n - 1):::> ... :::> U( 1). As a special case the 
computation of matrices ofU(n) representations characterized by a k-column Young tableau is 
reduced to the evaluation of at most k-box totally symmetric representations of U(2" ). 

I. INTRODUCTION 

The spinor algebra of the rotation groups SO(N). 
N = 2n or 2n + 1. were recently realized by Nikam and 
Sarma I (NS) by an embedding in the covering algebra of 
U(2"). This led to a simple realization of the multispinor 
basis of SO(N) in terms of the canonical basis spanning the 
representations ofU(2" ). One of the major problems encoun
tered by NS was that multiply occurring states of a given 
representation of SO(N). having the same weight. could not 
be satisfactorily labeled. As an illustration of this problem 
note that the weight (! ! ! !) of the representation q !! -!) 
ofSO(8) occurs three times. An obvious solution to this state 
labeling problem is to adapt the multispinor basis to the Gel
fand-Tsetlin canonical chain2 SO(N):>SO(N - 1) 
:::> ... SO(3):>SO(2). However. this mathematically ideal 
chain of subgroups suffers from two drawbacks. First. while 
SO(2n) is a regular subgroup3 of SO(2n + 1). the group 
SO(2n - 1) is not a regular subgroup of SO(2n). Second. in 
many physical applications we may not need all the sub
groups ofSO(N) but rather a special class of subgroup chains 
such as 

SO(N):>U(n):>U(n -l):> ... :::>U(l). (1) 

or 

SO(N):::>U(n):::>SO(n):> .. ·:::>SO(3):::>SO(2). (2) 

Thus. most chains which are encountered in physical appli
cations will start with the embedding ofU(n) in SO(N). Since 
U(n) is a regular subgroup ofSO(N). this fact makes the sym
metry adaptation SO(N)iU(n) a relatively simple task. 

We shall consider the subgroup chain (1) in some detail 
in Sec. II. Starting with a brief summary of an earlier work 
by NS we indicate a simple procedure for the restriction 
SO(N)iU(n). using the SO(8)iU(4) case as an example. In Sec. 
III we present a brief discussion of this scheme and consider 
the nature of a class of operators ofSO(N) which can be used 
to characterize rearrangement processes in systems de
scribed by specific symmetry under U(n). In particular we 
indicate how general k-column U(n) representation matrices 
can be simply obtained by considering at most k-box totally 
symmetric representations of U(2" ). 

II. THE RESTRICTION SO(N)iU(n) (N = 2n,2n + 1) 

Consider the fundamental representation space V
2

" of 
U(2" ) spanned by an ordered orthonormal set of spinors 

V2" = Span{ Ik )=I(m1km2k· .. m"k) 

Ik = 1.2 ..... 2"; Im;k 1 =!. Vi]. 

The 22
" unitary shift operators on V2". 

Eij=l(mJjm2;· .. m,,;) «(mljm2j • .. m"j)l. 

induce the transformations 

Eijlk) =c5jk li). 

where 

" c5jk = II c5(mpj .mpk )· 
p=1 

(3) 

(4) 

(5) 

(6) 

Using a subset of these shift operators we define a set of n 
linear operators {Xa la = 1 ..... n] as [cf. Eq. (29) ofNS] 

(7) 

where 

Pa = ± (mlk + 21 ). 
l=a+ I 

and the prime on the summation symbol indicates that the 
mak values are fixed as explicitly indicated. Since also 

Eij =Ejj> (8) 

we can define an additional set of n operators Xa as 
- _ t 
Xa -Xa' (9) 

The set of 2n operators. {Xa:Xa la = 1 ..... n]. which satisfy 
the fermion-type anticommutation relations on V

2
", can now 

be used to define a set of commutators4
,5 

Aaa = [Xa:Xa 1. a = 1, ... ,n; 

Aab = [Xa:Xb ], 

Aab = [Xb,xa], 

Aab = [Xa,xb]' 

Aab = [Xb'xa]. a=fb = 1, ... ,n. 

(lOa) 

(lOb) 

(lOc) 

(lOd) 

(toe) 

a) Permanent address: Department of Physics, Indian Institute ofTechnolo- Using the commutator algebra for Eij of U(2"). it readily 
gy, Bombay 400076, India. follows that Eqs. (10) lead to the forms defined by Eqs. (11). 
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(16), (21), (15), and (20) ofNS, respectively. They can be con
veniently expressed in the following compact form, e.g., 

Aab = (- )b-a+ I ~ ( )"(})E 
~ - E+2"-b.E + 2"-a 
i,j.k 

and 

A - ( )b-a+ I ~( )"(})E ab - - ~ - E,E+2n -o+2n - b , 
i,j.k 

where 

E=Eab(i,j,k) = i + 2n + 1- b(j + 2b- ak), 

with the summations extending over 

i = 1,2, ... ,2n - b, 

j = 0,1, ... ,(2b
-

a - 1 
- 1), 

k = 0,1, ... ,(2a
-

1 
- 1), 

(a:jb) 

(lla) 

(Ub) 

and r2(]1 designates the digital sum of (}12' the latter repre
senting the binary form ofj. The remaining generators follow 
from relations Aab = - Aba and Aab = At.. These opera
tors define the Lie algebra of SO(2n). The generators of 
SO(2n + 1) are then obtained by adjoining to the above oper
ators (10) the 2n operatorsAoa=='xa andAoacla defined by 
Eqs. (7) and (9). Their explicit form is 

A = ( _ )n - a + I ~ ( _ ),,(I)E 
aO i,E+2"-a, 

i. 

(12) 

where 

E:=Ea (i,k) = Eaa(i,O,k) = i + r + I - ak, 

with i and k given as in Eqs. (11). The mu1tispinor basis 
spanning any representation (A IA2 .. ·An) (A I >A2>· .. > IAn 1 

for all integer or all half-integer Ai) can now be obtained 
following NS. 

The set of n2 generators Aab (a,b, = 1, ... ,n), Eqs. (lOa) 
and (lOb), define the Lie algebra ofU(n) satisfying 

(13) 

and 

(14) 

Thus, U(n) defines a regular subalgebra ofSO(N). Since U(n) 
admits only non-negative integer representations, we intro
duce a constant shift for the diagonal generators and define 

Ha = Aaa +! N', (15) 

where N' is the rank of the U(r ) representation from which 
the given representation of SO(N) is subduced. The weight 
space basis of U(n) is then characterized by the ordered 
eigenvalue set (WIW2"'Wn) of the operators Ha, a = 1, ... ,n. 

As an illustration of the restriction SO(N)! U(n) we con
sider the representation q 11 -!> of SO(8). This represen
tation requires for its definition at least a rank 3 spinor space 
[ V24] .. 3 ofU(16). Since it is immaterial what representati?n 
ofU( 16) we choose, we select the simplest one, namely [1 3 0], 
which yields the highest weight state (HWS) H 11 - 1) of 
SO(8). Using the ordered set of fundamental spinor basis 
states [cf. Eq. (24) ofNS] we find the HWS of this representa
tion of SO(8) to be 
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~, (16) 

where the Weyl tableau notation6
•
7 has been used on the 

right-hand side to label the canonical basis states of U(16). 
The fact that Eq. (16) represents the HWS can be readily 
verified by noting that all elementary weight raising genera
tors [cf. Eqs. (11)], 

A 12 = ES•9 + E6•10 + E7•ll + ES•12 ' 

A 23 = E 3,s + E4•6 + Ell. 13 + E 12•14 , 

A34 = E I •4 + Es•s + E9•12 + E 13,16' 

(17) 

of SO(8) annihilate it. Since the subset {Aa,a + I la = 1,2,3} 
also annihilates the HWS(16), it is also a HWS ofU(4) char
acterized by the weight (3,2,2,1) as follows from Eq. (15). 

Thus, we can write ~, 1 1. 1 

1 q B -1)(~ B-1) = : ++ 4 (16') 

Before proceeding to the HWS of other representations 
of U(4), it is useful to consider the correspondence between 
the spinor basis indices mik and the orbital indices defining 
the fundamental representation Vn of U(n). Applying the 
weight generators, Eq. (15), to any fundamental spinor of 
U(r ), we obtain an eigenvalue + 1 for each mik = ! (or + 
sign) occurring in the spinor, and 0 for each m ik = -! (or 
- sign) occurring in it. The nonzero eigenvalues of Ha 

(a = 1, ... ,n) on any spinor of V2" may be interpreted as indi
cating the occupancy of that orbital in the set 
{ tPa la = 1, ... ,n} spanning Vn ofU(n)CSO(N). The validity 
of this identification follows from the fact that the weight
raising(-lowering)generatorsAab;a <b (Aab;a > b )ofSO(N) 

acting on V2" induce the shifts ( ... - '" + ... ) 
Aab 

++ ( ... + ... - ... ), which in tum induce the shifts (Ha.Hb) 
= (1,0)++(0,1) implying thatAab are shift operators on Vn of 

U(n). Thus for a multispinor state, such as that given by Eq. 
(16'), this correspondence and Eq. (15) yield the configura
tion tP ~ tP ~ tP i tP4 of [V4] .. s. Since the state (16') is a HWS of 
U(4), the Weyl tableau representation follows. 

The realization of the lower weight states of [3221] of 
U(4), and the highest weights of other representations be
longing to q ! 1 -!) ofSO(8), can be obtained by exploiting 
this identification and the harmonic level excitation proce
dure8

•
9 for SO(8). This procedure is based on the successive 

application of elementary lowering generators Aa + I,a 
(a = 1,2,3) andA43 ofSO(8) to the HWS ofEq. (16'). Apply
ing these generators [given by Hermitian adjoints of the rais
ingones, Eq. (17)] to Eq. (16') we obtain (after normalization) 
the distinct nonzero basis states for the first level states of the 
harmonic level excitation diagram8

•9 (HLED), namely 

A,,(16'), (ll! - I) ~ I ~ J -F ' (18) 
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A,,116'), III -!I) ~ I ; 1-r (19) A,,(22), Ij-j -j-I)~1 n -f . (27) 

Proceeding to the next level of HLED we obtain 

A,,(18), 1l!l-I)~UI-J' (20) 

(21) 

(22) 

At the third level of HLED we obtain several states having 
the same weight, namely, 

x ~+~
~~ 

'

14 r13 
2 2 2 2 

, 3 4 
4 

A,,(20), II!! -j) ~ ~ _ ~ 
G2jtillj 

Ad21): (~~! !)i = _1 
fi 

x 

A2J(22): (!!! m = _1 
fi 

'

13 
2 2 , 

'

12 
2 3 

4 

(23) 

(24) 

(25) 

x J~L~ 
~~ - mil21, (26) 
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In the same way we proceed to the subsequent levels of 
HLED until the lowest weight state is reached. The states 
defined by Eqs. (23)-(27) need some explanation for the way 
they are characterized at the U(4) level. The states defined by 
Eqs. (24) and (27) are readily verified to be the HWS ofU(4) 
characterized by the weights (2220) and (3111) using Eq. (15). 
Hence the Weyl tableaux representations used. The state 
given by Eq. (26) defines uniquely the first of the lexically 
ordered Weyl tableau for the configuration t,6 i t,6 i t,6 ~ t,6 ~ of 
[3221] of U(4), (!!! !)1 = (! !! m. (Equivalently, it corre
sponds to the highest Yamanouchi symbol.) The other two 
states of this weight are then obtained by Schmidt orthogon
alization procedure yielding 

(BBb= ~ 

and 

x JL8l~ 
@j~~ 

(BBb= ~ 

~m~ 7 + 6 - 4 

10 11 13 

x 

r13 
2 2 

+---+ , 

(28) 

-r 
(29) 

The other multispinor basis states spanning (~ !! -!> 
of SO(8) may be obtained analogously using the SO(8)! U(4) 
subduction. From the tables of Patera et al., 10,11 we find that 

(B! -!) = 2[211] + [222] + [200] + [110] (30) 

for SO(8)tSU(4). The twofold multiplicity at the SU(4) level 
was resolved by Patera et al.IO,1I using the intermediate sub
group SO(7). In our approach we find the HWS for one of 
these representations to be given by Eq. (16). Proceeding sim
ilarly we get another HWS 

(31) 

belonging to [2110] of U(4). Consequently, the use of U(4) 
rather than SU(4) obviates the need to use the chain SO(8) 
::J SO(7)::J SU(4). This type of multiplicity appears frequently 
in the tables of Patera et al. 10,11 
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III. DISCUSSION 

The analysis of Sec. II indicates that the multiplicity 
problem for the SO(N) multispinor states is resolved to a 
large extent by exploiting the chain (1). The reason for choos
ing the chain (1) rather than the canonical chain SO(N) 
::JSO(N - Ip···::JSO(2) is twofold. First, the fact that U(n) 
is a regular subgroup ofSO(N) leads to a considerable simpli
fication of the basis states determination. Second, U(n) is a 
very useful group in the many-body correlation prob
lem. 12- 15 Explicit algebraic expressions are available for U(n) 
generator matrix elements in the canonical basis l2- 16 and 
these have been successfully implemented in large-scale 
computations. 17-21 In spite of this success it is interesting to 
examine the nature of the U(n) basis obtained by a subduc
tion from a covering group such as SO(N). As indicated in 
Sec. II, every basis state of the carrier space for the represen
tation [Aet2"'An] of U(n) can be realized as a multispinor 
basis state ofSO(N). For this realization we need a spinor of 
rank 2A I. However, in each such state there are Al +An 
spinors 1=( + + '" + ) with all mil =!. These spinors are 
not at all affected by the generatorsAab (a,b = 1, ... ,n) ofU(n) 
for reasons given in Sec.II. Consequently, these spinors can 
be ignored when considering the weight space basis ofSO(N) 
induced by the representation [A IA2"'An] of U(n), so that 
only spinors of rank 2AI - (AI + An) = Al - An need be 
considered as long as we are not concerned with the specific 
representation of SO(N) in which [A IA2"'An] is embedded. 

I 

In order to better illustrate the simplifications achieved 
in computing the U(n) representation matrices, we consider 
the 27-dimensional irreducible representation [420] ofU(3). 
[Explicit representation matrices for U(3) generators Aab 
(a,b = 1,2,3) can be found in Ref. 12.] The HWS is easily 
found in this case to be 

11)= 1212\4\4\ . 

Applying U(3) elementary lowering generators, 

A21 = E53 + E64, 

A32 = E32 + E76, 

we obtain at the first level of HLED the states 

1143 

A2111)=~ \2\214\61 =~12), 

Ad1) =~ 12131 4141 =~14), 
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(34) 

(35) 

(36) 

The SO(N) basis thus generated is characterized by the or
dered set of weights (lUllU2"'lUn) with 

lUi = Ai - ~(AI - An), i = 1, ... ,n. (32) 

For example, the representation [332000] ofU(6) is charac
terized by rank 3 spinors of weight (~~! - ~ - ~ -~) of 
SO(12) which are stable under Aab(a,b = 1, ... ,6). The HWS 
of [A IA2."An] of U(n) follows if we choose a set of spinors 
satisfying the above weight structure and ordered in such a 
way that in each spinor all the +'s precede all the - 's 
when read from left to right. This ensures, as outlined in Sec. 
II, that all weight-raising generators ofU(n) annihilate this 
multispinor state thus yielding the HWS. Thus, for example, 
the HWS for [332000] of U(6) with the weight 
(~B - ~ - ~ -~) is the third rank product OO~OO ~ B§I 
where [[I =( + + + - - -) and ~ 
= (+ + - - - -). Since odd and even spinors of 
SO(2n) cannot be mixed, we note that the highest representa
tion ofSO(12) in which (~~! - ~ - ~ -~) can be contained 
is (~BB -p, whose HWS can be chosen asl112121. 
Thus, the covering representation of [332000] ofU(6) is this 
representation of SO(12). Since each spinor of V

2
" can be 

regarded as an antisymmetric state at the U(n) level, it fol
lows that all representations of this group expressed in terms 
of the totally symmetric representation ofSO(N) are symme
trized direct products of single column Young diagrams. 
Thus, for the HWS considered above, we have 

(33) 

I 
where the ket symbols are labeled by the sequential numbers 
of the corresponding lexically ordered Gelfand-Tsetlin ba
sis. The next level yields 

and 

A21 14) -121414151+~ r21314161=v'315), 

Ad4) = ~ 131314141 = ~18), 

A2d2) =v'3 121216161 =~13), 

Ad2)=~12131416J+121214171 

(37) 

(38) 

The last state has the same weight (210) as the state 15). 
Schmidt orthonormalization to 15) gives 

113) = (31 21 21417 1 + ~ 1 21 314161 

-2121414\51 )/.,ffS, 
so that 
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T ABLE. I. The list oeweights and corresponding Gelfand-Tsetlin states oethe [420] irreducible representation oeU(3) represented by the U(B) Weyl tableaux. 

(3 1 -1) 

(1 3 -1) 

(2 1 0) 

(1 2 0) 

(0 3 0) 

(2 0 1) 

(111) 

(0 2 1) 

(-1 3 1) 

(1 0 2) 

(0 1 2) 

(-1 2 2) 

(0 0 3) 

I 1 > = Iz 12 14 1 41 (2 2 -1) 12 >'" 121214161 

I 3 > = 1,12161 61 (3 0 0) 14 >'" 121314141 
15> = (I~12b14161 + \21414bl)/!3 

11 3 > = (12"121314161- 2121414Isl+312121417/>/1iS 

16 >= (12"12gls161 + 12131616) )//3 

Jl4 > = (-12"1 21415 161 +2 121316161 +3 .... 12....,.12--.-16....,.1--7 hIm 

7 > = h Is 16 161 

9 > = ( b b k 161 + b 1414 Is 1>//2 

115> = (bbk 161 - bl414s1 +2 1212 b 14171>/110 

110 >=03bI6161 +14141s1sl + 2\3bISI61)/16 
116 > = (j 3 P 16161 - 1 4141sls1 + 212 131617 1 + 2 h k I slz h 1110 

122> = (13131 6161 +14141slsl - h1 41 s161+ 
+3121217171 +3 121316171- 31 ij41s17 1)/130 

Ill> = (bls/6/61 + 14151s161 )/12 

117> = (hlsl6161 - 141515161+21212~ 16PP/If(J 

112 > = 15 b 16 I 61 

119 > = (b b 16 Iz 1 +/21 jJ 4 h Iz I> 113 

123 > = (2 b 13 16 1 71 - 121 314 Is 1 71 + 3 b h 1 tlz /)/1iS 

120 > = (12" b I S\ 6 b I + 141sls 17\)/13 
124 > = ( 12" 1 31 s16171 - 2 1 4lsls/ 71 + 3 121sp171>//IT 

121 > = 1515161 zl (1 -1 3) 12s >=\31317171 

126 > = 131s 17 1 71 (-1 1 3) 127 >-lslsI7171 

Ad2) = (2/~)15) + vTl13). (40) 

Continuing this process we easily generate the complete Gel
fand-Tsetlin basis, given in Table I, and evaluate at the same 
time all the non vanishing generator matrix elements exploit
ing only a simple rule for action of Aab on totally symmetric 
states. We stress that any other k-column irreducible repre
sentation ofU(n) can be treated with the same ease and that 
the nonelementary generator matrices are just as easily cal
culated, e.g., 

Thus, we can easily realize the Lie algebra ofSO(N) using the 
embedding U(2n )::) SO(N) and since only totally symmetric 
representations ofU(2n) are required to obtain any Urn) irre
ducible representation, simple algorithms for generation of 
explicit representation matrices of generators can be given. 

Let us, finally, indicate other possible advantages ofthe 
U(r PSO(NpU(n) chain for the many-fermion correla
tion problem. Invoking a higher than Urn) symmetry for 
many-body systems, we can first of all consider also particle 
number nonconserving operators. However, even for sys
tems with well-defined particle number a subdivision into 
the subsystems with variable particle number can be advan
tageous.22 As an illustration, consider the operator 

A 3l 11) = (E74-Ed 121214141 

(41) 
(42) 
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which belongs to the center of the SO(N) and hence conserves 
not only the rank but also the weight of each basis state of 
U(n). [In fact, e is similar to an SO(N) Casimir operator 
l:a.bAbaAab'] Unlike the generators of U(n), however, the 
generators Aab and Aba can affect the vacuum state spinors 
1==( + + + ... +) and 2"==( - - - ... -). Inclusion of 
these [SU(n)-invariant vacuum] spinors in defining the HWS 
of a representation of U(n) will lead to an interesting result 
under the action of e, since this operator redistributes the 
+ 's and -'s among the defining spinors. Since the number 

and location of + 's in each spinor indicates the occupancy 
of the corresponding <Pi E V"' it follows that e transfers 
these <Pi'S from one antisymmetric subsystem to another. 
This is best illustrated on a simple example. Consider the 
HWS tPl=[I[[)of the representation of [2111] of 
U(4)CSO(8). Applying e to tPl we obtain (after normaliza
tion) 

e¢'1 = (..j3/2)tPl + !tP2, 
where 

(43) 

(44) 

Note that while both tPl and tP2 are HWS of [2111], tPl con
sists of symmetrized products 

I~xo 
sym 

(45) 

and tP2 belongs to 

\§x8j 
sym. 

(46) 

Thus, e induces a subsystem rearrangement and its non van
ishing matrix elements between states of the types (45) and 
(46) give the weightage with which each rearrangement takes 
place. Other possible interesting operator combinations of 
SO(N) generators are worth examining. 
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In general, if the parameters of a real or complex algebraic matrix group are replaced by 
Grassmann parameters, without changing the algebraic constraints, the resulting set fails to form 
a group. It is shown how to remedy this defect of naive Grassmannification by generalizing the 
constraint relations. In particular, it is shown how to define Grassmann analogs of the 
orthogonal, unitary, and symplectic groups. 

I. INTRODUCTION 

In a recent paper, I Ebner initiated the study of Grass
mann analogs of classical matrix groups. Ebner's idea was 
that a group, whose elements are real or complex matrices 
subject to algebraic constraints, should be Grassmannified 
by replacing the field of real or complex numbers by a Grass
mann algebra, retaining the algebraic constraints without 
change. Grassmannification is deemed to be successful if the 
resulting set is actually a group. Ebner I showed that, al
though general linear groups could be Grassmannified suc
cessfully, the same was not true of orthogonal groups. Thus 
the concept of Grassmannification seemed to be of limited 
scope. In this paper we demonstrate that Grassmannifica
tion is, on the contrary, a natural and widely applicable pro
cess provided that we allow the defining relations of the clas
sical matrix groups to be modified on replacing the 
parameter set by a Grassmann algebra. We construct Grass
mann generalizations of the classical orthogonal, unitary, 
and symplectic groups. 

Our paper and that of Ebner I are contributions to the 
development of matrix groups beyond the well-established 
theory of matrix supergroups.2 We recall, for example, from 
Rittenberg,3 that a matrix supergroup consists of invertible 
matrices of the form 

~~ I~), (1) 

where the entities in the square matrices A and D (respective
ly, the rectangular matrices Band C) are even (respectively, 
odd or uneven) elements from a Grassmann algebra. A num
ber of these supergroups and the corresponding infinitesimal 
Lie superalgebras, also listed in Ref. 3, have received consid
erable attention in recent years both with respect to their 
interesting mathematical properties2

•
4 and to the applica

tions to supersymmetric theories of particle physics.5 We 
remark that the groups we consider in this paper are Lie 
groups and, although not actually Lie supergroups, they are 
subgroups of the Lie supergroups of matrices of the form (1), 
having unit superdeterminant and for which A = D and 
B=C. 

The contents of the paper are as follows. In Sec. II we 
review the elementary theory of Grassmann algebras and 
introduce some terminology which we find useful in our de
velopment. Section III contains a review of the Grassmanni-

8) On leave of absence from Department of Mathematics, National Techni
cal University, Athens, Greece. 

fied full matrix group of Ebner I together with some remarks 
relating to special subgroups and the observation that the 
group can be embedded in the supergroup mentioned above. 
In Sec. IV we give our definition of Grassmannified classical 
matrix groups and establish their structure as semidirect 
products. In the remaining sections, Secs. V, VI, and VII we 
consider in detail the Grassmannification of the classical or
thogonal, unitary, and symplectic groups. 

II. GRASSMANN ALGEBRAS 

Denote by Bp(F) the Grassmann algebra, over the field 
F, generated by the identity 1 and the p independent genera
tors ()j> l<iq. Then Bp(F) has as basis the 2P independent 
monomials 

1 , 

();, l<iq, 

()A, l<i <jq, (2) 

()1()2"'()P . 

The product in B p (F) is associative and is subject to the iden
tity 

()A + ()j(); = 0 , (3) 

for all i,j. 
The general element of Bp(F) can be written as 

p 

x = aol + L a;(); + L aij()A + ". + a I2",p()I()2"'()p , (4) 
;= 1 i<j 

where a o, aj> aij' ... belong to F. 
The summand 

(5) 

which is a homogeneous element of degree k, we call the k th 
part of x, for k = 1,2, ... ,p. Then 

p 

X nil = L X k , Xnum = X - Xnil , 
k=1 

define the nilpotent and numeric parts of x, respectively. 

(6) 

Corresponding to expression (4) for a general element is 
the direct sum decomposition 

Bp = k~O Bp.k , (7) 

where Bp •k contains the homogeneous elements of degree 
k> 0, and Bp.o contains all numeric elements. We have for 
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convenience suppressed mention of the field F. Then 

B B C {Bp.k + k " k+k'<p, 8) 
p,k' p.k' - (O} k + k ' > p , ( 

which implies that Bp is a Z-graded algebra. There is a secon
dary grading by Z2 

Bp = Bp.e EB Bp,u , (9) 

where B p.e (respectively, B P.u ) consists oflinear combinations 
of elements of even (respectively, uneven; i.e., odd) degree. 
At the element level 

X =Xe +xu , (10) 

wherexeE Bp.e is the even part ofx and Xu EBP.u is the uneven 
part of x. Furthermore, as a consequence of (3) 

XeYe =YeXe' 
(11) 

XuYu = -YuXu' 

forallxe, YeEBp.e and Xu, YuEBP.u' The members of the set 
Bp.euBp.u are the even and uneven elements of Bp. Here, Bp.e, 
but not Bp.u' is a subalgebra of Bp. 

With respect to multiplication, the inverse X-I of xEBp 
exists, and is unique, if and only if Xnum #0. The set of all 
invertible elements in B p is a multiplicative group, which we 
call the Grassmann group and denote by B ;. There is a sub
group B;"', the unipotent Grassmann group, consisting of 
those elements x for which Xnum = 1. Then B ;'" is a normal 
subgroup of B; and appears in the semidirect product de
composition 

B; = F"'CS>B;* , (12) 

where F· is the multiplicative group of nonzero elements of 
the field F. Two other natural subgroups are the intersec
tions of B ; and B ;* with B p.e' Finally, if F = R or C, then 
B; and B;* are Lie groups over F of dimensions 2P and 
2P - 1, respectively. 

III. THE FULL MATRIX GROUP Gn(p,F) 

The Grassmann group B; is the analog in Bp of the 
group F'" of the field F. Noting that F· can be considered as 
the group of invertible 1 X 1 matrices over F, we can ask if 
there is a Grassman analog of the general linear group of 
invertible n X n matrices over F. An affirmative answer to 
this question was given by Ebner,) who defined the Grass
mannified full matrix group. In our notation let M be an 
n Xn matrix with entries in Bp(F). We denote the set of all 
such matrices by Mn(p,F). Then we can write 

(13) 

where the matrix elements of Mourn (respectively, Mnil ) con
tain only the numeric (respectively, nilpotent) parts of the 
matrix elements of M. It is not difficult to see that M is 
invertible if and only if Mourn is invertible, or equivalently, if 
and only if det Mnurn #0. This condition is also equivalent to 
det Me #0, where Me is the matrix whose entries are the 
even parts of those of M, and the determinant makes sense 
because Bp.e is a commutative algebra. It is perhaps worth
while interjecting here that the usual definition of the deter
minant of a matrix does not extend unambiguously, let alone 
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multiplicatively, to general Grassmann matrices. Also, 
det Me is not multiplicative. For supermatrices, however, 
there is a multiplicative function called the superdetermin
ant.5•6 

It is straightforward to check that the set of all inverti
ble nXn matrices over Bp(F) forms a group. This group, 
which we denote by G n (p,F), has a number of easily defined 
subgroups: 

SGn(p,F) = (M:detMnurn = 1} , 

IGn(p,F) = (M:Mnurn = 1} , 

EGn(p,F) = (M:Mu = O} , 

and intersections of SGn' IGn with EGn • Clearly, 

IGn <SGn <Gn , 

with strict inclusions for n > 1. For n = 1 we have 

G)(p,F) = B ;(F), 

IG)(p,F) =SG)(p,F) =B;*(F). 

(14) 

(15) 

(16) 

Of more interest, however, are the subgroups in which 
the nilpotent parts of matrix elements are subject to algebra
ic constraints. It is such subgroups which we consider in the 
next section. 

To close this section we note that the full matrix group 
Gn(p,F), although not a matrix supergroup in the usual 
sense, let alone a Lie supergroup, is isomorphic to a sub
group of the Lie supergroup Q2n of 2n X 2n invertible super
matrices of the form 

(11:), (17) 

where A (respectively, B) is an n X n even (respectively, un
even) Grassmann matrix. To see this we merely check that 

M=Me+Mu-~e Mu 

Mu Me 
(18) 

is multiplicative. 
This isomorphism enables us to define subgroups of 

Q2n' We note that the elements of Q2n have supertrace zero 
and unit superdeterminant. It remains to be seen whether 
this isomorphism is a useful tool in Grassmann group the
ory, possibly taking advantage of the w-superdeterminant on 
Q2n (see Rittenberg3

). 

IV. SUBGROUPS OF Gn(p,F) 

Ebner) has shown, as a counterexample to the general 
applicability of Grassmannification, that it is not possible to 
Grassmannify the real orthogonal group in the obvious way. 
Ebner observes that the set of members G n (p,R ) which sa
tisfy 

MM'=I, (19) 
where t means the usual matrix transpose, does not form a 
group. The failure to form a group can be seen in the context 
of the following result. 

Theorem 1: LetXbe a fixed member of G n (p,F), and let 
w:M_M'" be an operation on Mn (p,F) preserving the iden
tity matrix. Define the set 

A = {MEGn(p,F):MXM"'=X}. (20) 
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Then A forms a group if and only if we have the follow-
ing. 

(i)(MOrl = (M- I )"" for all MEA. 
(ii) (MN)'" = N"'M"', for all M, NEA . 
Proot W~ are given that li) preserves the identity matrix, 

which ensures, from definition (20), that A contains the iden
tity. 

If MEA, then, again from (20), both M and 
M"'EGn(p,F). This in particular implies that both M and 
M'" are invertible. The constraint relation (20) can therefore 
be rewritten 

M-IX(M",)-I =X. (21) 

It follows that A contains M -I if and only if 

(M",)-I = (M- I)",. (22) 

If M, NEA, then 

MNX(MN)'" = X(M",)-I(N"rl(MN)'" 

=X(N"'M",)-I(MN)'" . 

Then MNEA if and only if 

(MN)"'=N"'M"'. 

(23) 

(24) 

The theorem is seen to be true when we recall that a set with a 
binary, associative product, and containing an identity, is a 
group if and only if it is closed under the taking of inverses 
and product~. This concludes the proof. 

TakingX to be the identity matrix and li) to be the ordi
nary matrix transpose, the set A defined by (20) fails to be a 
group because the transpose operation does not satisfy (24). 
We shall see, however, in Sec. V, that is is possible to extend 
the matrix transpose operation in a number of ways each of 
which gives rise to a group in accordance with Theorem 1. 
Now we consider the structural consequences of imposing 
some further conditions on the operation and the matrix X. 

We say that the operation li) is Z linear if 

(MI +M2)",=Mf+M,{, (25) 

for all Grassmann matrices M I ,M2' 

We say that li) is numeric if 

(M"')num = (Mnum )"', (26) 

for all M. Then, if li) is also Z linear, we have 

(M"')nil = (Mnil )",. (27) 

We say thatM = 1 + Pis unipotentifPnum = O. Using these 
definitions we can state and prove Theorem 2. 

Theorem 2: A group A defined by a condition of the 
form (20), where X is numeric and li) is a Z linear, numeric 
operation, has the semidirect product factorization, 

A =Anum~uni , (28) 

where Anum is the subgroup consisting of numeric matrices 
andAuni is the normal subgroup consisting of unipotent ma
trices. Furthermore, Auni is nilpotent in the usual group 
theoretic sense. 

Proof: Anum and Auni are subgroups of A because each 
contains the identity and is closed under the taking of in
verses and products. Furthermore, if MEA and 1 + PEAuni ' 
then the identity 

M(l +P)M-I = 1 +MPM- I , (29) 
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establishes that A uni is a normal subgroup of A . 
If M = Mnum + Mnil is an arbitrary member of A then 

condition (20) can be written as 

(Mnum + Mnil)X ((Mnum)'" + (Mnil )",) = X , (30) 

using the Z linearity of li). But both X and li) are numeric, so 
the numeric part of (30) gives 

(31) 

Thus Mnum EAnum. In particular, Mnum is invertible so we 
write 

M = Mnum + Mnil = Mnum{1 + P), (32) 

where Pnum = O. Here, 1 + P is both unipotent and a mem
ber of A, so it belongs to A uni ' Furthermore, it is clear that 
AnumMuni = 11), from which it follows that the factoriza
tion (32) is unique. This establishes that A has the semidirect 
product structure (28). 

We must now show that A uni is a nilpotent group.7 First 
observethatanymatrixP forwhichPnum = o can bedecom
posed as a sum of homogeneous components 

(33) 

where the matrix elements of P k are homogeneous of degree 
k, k = 1,2, ... ,p. Define the set 

Auni,k = 11 + P:1 + PEAuni and P; = 0, 

for all kk ) . (34) 

Then A uni,k is a subgroup of A uni and there is a chain of 
subgroups 

Auni = Auni,1 ;;;'A uni,2 ;;;'",;;;'Auni,p + 1 = II) . (35) 

Ifwe form the lower central series of A uni , 

Auni = F 1;;;.r2 ;;;. .. • , (36) 

then we can check that F; .. ;;;Auni,;, for all i. In particular the 
lower central series (36) terminates, which implies that Auni 
is nilpotent. 

Corollary: The series (35) is a central series which is 
normalized by A. 

Proot If 1 + PEA uni ' then (1 + P)-I = 1 + P' for P' 
with P ~um = O. Also, if 1 + Q (k )EAuni,k and MEAnum ' then 

M(l +P)(l + Q(k))(l +P)-IM- 1 

= 1 + MQ (k )M -I + terms of degree> k . (37) 

In (37), taking M to be the identity, we see that A uni,k is 
normal in Auni . But, a fortiori, the homogeneous component 
oflowest degree in Q (k ), namely of degree k, is fixed under 
conjugation. This means that Auni,k/ Auni,k + I lies in the cen
ter of A unJAuni,k+ 1 for all k. Thus (35) is a central series.7 

Furthermore, if M is not necessarily the identity in (37), 
it is clear that MQ (k )M -I has no component of degree less 
than k, so the right-hand side of(37) lies in A uni,k . Thus A uni,k 
is normal in the whole of A. This completes the proof. 

Theorem 2 reduces the problem of determining A to the 
independent problems of finding Anum and A uni ' However, if 
we are trying to Grassmannify a classical matrix group, then 
Anum will be that group and can therefore be assumed 
known. To solve the second problem we seek the set of uni
potent matrices M = 1 + P which satisfy condition (20). 
This reduces to 
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PX + XP'" = - PXP'" . (38) 

In general this still leaves us with an unpleasant nonlinear 
equation to solve. For our purposes we can achieve a sub
stantial computational simplification by further restricting 
the form of the operation m. We now assume that m is homo
geneous of degree zero: That means if M is a matrix, homo
geneous of degree k, then so is M"', for all k. This restriction 
is stronger than demanding m to be numeric, and further 
implies that m stabilizes the central series (35). To take ad
vantage we write Pin terms of its homogeneous components, 
as in (33). We substitute into (38) and equate terms of the 
same degree of homogeneity: 

P,X+XPf=O, 

P~+XPi= -P,XPf, 

P7 +XP~ = - (P~Pf +P,XPi) , 

P~ +XP't = - (P7Pf +P~Pi +PIXP~), (39) 

PpX+XP; 

= - (Pp_,XPf + Pp_2XPi + ... P1XP;_I)' 

Now the determination becomes a problem in linear rather 
than nonlinear algebra. To see this it is perhaps now time to 
curtail the general treatment and to look at the particular 
problems ofGrassmannifying a selection of the classical ma
trix groups. We first consider the real orthogonal groups. 

v. GRASSMANN ORTHOGONAL GROUPS 

If Anum is the n X n real orthogonal group, the X of 
Theorem 1 is the identity matrix, and the operation m must 
coincide with the transpose for numeric matrices. The sim
plest way of extending the transpose to non-numeric matri
ces is to combine it with a certain Bp(R ) action, ., on matrix 
elements, which is independent of and leaves invariant their 
positions. We impose the following conditions on • in order 
to satisfy the requirements of Theorem 1. 

(i) • is an R-linear transformation which respects the Z 
grading of Bp. 

(ii) (xy). = y.x., for all x,y,eBp ' 

(iii) (x.). = x, for all xeBp-

Conditions (i) and (ii) together imply that • is completely 
determined by its linear action on a set of generators and (iii) 
further implies that this action is invertible. Choosing x to be 
numeric in (ii), we see that • leaves invariant the numeric 
elementsofBp- Let ° = (OI,02,03, ... ,Op)tbe the column vector 
whose entries are members of a set of generators. Then 

0. =AO, (40) 
where A . is an invertible p Xp numeric matrix. Evidently 
condition (iii) implies that A 2 = 1. There are of course many 
solutions of this equation, of which we only require the sim
plest class representatives with respect to some reasonable 
equivalence relation. In fact, if if> = RO is another set of gen
erators, where R is an invertible matrix, then the. matrix of 
if> is RAR - I. It is sensible to seek solutions A under the usual 
matrix equivalence relation 

A-RAR -I • (41) 
We have Lemma 1. 
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Lemma 1: 

A-Diag(E"E2,···,Ep ) , 

where E; = ± 1 and E; >E; + 1 for all i. 
Proof: Here, A satisfies a polynomial equation with dis

tinct real factors. By a standard result of linear algebra,8 A is 
diagonalizable and has eigenvalues E; = ± 1, 1<;;<1'. Al
lowing for permutations amongst the generators we can ar
range for E;>E;+ 1 for 1 <.i<.p - 1. 

It follows from Lemma 1 that there are p + 1 inequiva
lent operations •. For each such operation we can extend to 
the whole of Mn(p,R) by application to matrix entries, and 
then define an adjoint m by 

M"'=(Mt).=M(.Y, (42) 

for all MEMn (p,R ). 
The set of Grassmann orthogonal matrices defined by 

such an operation is 

(43) 

Thus MEA if and only if M'" = M -I. Condition (i) of 
Theorem 1 reduces to M = (M"')"', which is easily seen to be 
satisfied. Indeed M = (M"')'" is valid for all members of 
Mn (p,R ). We now show that condition (ii) is also valid for all 
members of Mn (p,R ) and therefore in particular valid for all 
members of A. 

We first observe, as has been assumed in (18), that any 
Grassmann matrix can be decomposed as 

M=Me +Mu' (44) 

where the matrix elements of Me (respectively, Mu) are even 
(respectively, uneven) members of Bp(R). We say that M is 
even (respectively, uneven) if Mu = 0 (respectively, Me = 0). 

For such matrices we define 

if M is uneven, 

if M is uneven. 

Then it is easy to show that 

(MN)t = ( - 1)1 MllNINtMt , 
and 

(MN). = (- 1)IMIINIM.N., 

and therefore 

(45) 

(46) 

(47) 

(MN)'" = N"'N'" , (48) 
for all even and uneven members of Mn (p,R). Using the 
decomposition (44), the identity (48) extends to all members 
ofMn(p,R). 

Finally, noting that m preserves the identity, Theorem 1 
establishes that A is a group. 

By construction, each possible m is Z linear and homo
geneous of degree zero. It follows that the structure 
Theorem 2 applies to each of the p + 1 distinct Grassmanni
fied orthogonal groups and that we may use the linear con
structive theory, embodied in (39), to find the unipotent sub
groups. 

Let us now consider specific forms for the operation m. 
Of the p + 1 inequivalent forms we choose for illustration 
the two simplest. The first, which we refer to as positive, 
leaves invariant all first~degree parts, and the second, which 
we refer to as negative, reverses the signs of all first-degree 
parts. For notation we use 0 ~)( p,R ) to mean that Grass-
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mannified orthogonal group for which r of the numbers Ei , 

i = 1,2, ... , p, defining the relevant (tJ, are + 1. 

A. Positive orthogonal group O,,"l(p,R) 

If (tJ is the positive operation and P k is homogeneous of 
degree k, then 

P': = (- W12)k(k-I)P~ . 

Then the system (39) becomes 

PI +P~ =0, 

P2 -P~ = -PIP~ , 

P3 -P~ =PIP~ -P2P~ , 

P4+P~ =PIP~ -P2P~ -P~~, 

(49) 

(50) 

~ n(n - 1) (~) + ~ n(n - 1) (~) + ~ n(n + 1) (;) + ... 

Each of these equations has the form 

or (51) 

where S, T are matrices of appropriate symmetry with re
spect to matrix transposition and of appropriate degree of 
homogeneity. The general solution for A (respectively, B ) is 
~ (respectively, !T) plus an arbitrary antisymmetric (respec
tively, symmetric) matrix. Thus PI contains !n(n - 1)(f) free 
real parameters, P2 contains !n(n + l)(f) parameters, etc. 
We can calculate the dimension of 0 ~P)( p,R ) as a real Lie 
group, to be 

=~ n2
r
t

o
e) - +n{(~) + (~) - (;) - (~) + ... } =2P-

l
n
2
-!nf(p). (52) 

To compute f(p) we observe that 

(1 + i)P = (~) + i (~) - (;) - i (~) + "', (53) 

so that 

f(p) = Re(1 + Z}p + Im(1 + Z} P 

= 2PI2(COS(1Tp/4) + sin (1Tp/4)) . (54) 

Therefore 
dim O~P)(p,R) = 2P- l n2 - (n12)2 pI2 

X (cos(1Tp/4) + sin (1Tp/4)) . (55) 

B. Negative orthogonal group ~Ol(p,R) 

If (tJ is the negative operation and P k is homogeneous of 
degree k, then 

P': = (_ 1)(1I2)k(k+ I)P~ . 

The system (39) becomes 

PI-P~ =0, 

P2 -P~ =PIP~ , 

P3+P~ =PIP~ +P2P~, 

P4+P~ = -PIP~ +P2P~ +P~~. 
An analysis similar to that for 0 ~P)( p,R ) gives 

dim O~O)(p,R) = 2P- ln2 - (n/2)2 PI2 

X (cos (1Tp/4) - sin (1Tp/4)). 

VI. GRASSMANN UNITARY GROUP 

(56) 

(57) 

(58) 

If Anum is the n X n complex unitary group, the X of 
Theorem 1 is the identity matrix, and the operation (tJ must 
coincide with the Hermitian conjugate for numeric matrices. 
For general Grassmann matrices we combine the transpose 
with an operation. on Bp(C) which satisfies the following. 

(i) • is a conjugate-linear transformation which respects 
the Z grading of B p' 
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(ii) (xy). = Y.X., for all x, yeBp' 
(iii) (x.). = x, for all xeB p' 

Here, • is determined by its action on a set of generators: 

(h = B(J , (59) 

where B is a complex invertible p Xp numeric matrix. Con
dition (iii) implies 

BB=BB= 1, (60) 

where the bar means complex conjugation. We seek solu
tions of (60) up to the equivalence relation 

B-:::diBR -I, (61) 

where R is a complex invertible matrix. 
Lemma 2: Every solution of (60) is equivalent to the 

identity. 
Proof: Here, B has a finite number of eigenvalues. 

Hence we can find a such that eia is not an eigenvalue ofB. It 
follows that 

Q = ie/a121 _ ie - ial2 B 

is invertible. Also we have 

(62) 

BQ = ieia12B - ie- ia12 1 = Q. (63) 
We deduce, putting R -I = Q, that B-1. The (tJ operation 
obtained from. satisfies the conditions of Theorems 1 and 2. 
Thus a Grassmann unitary group Un (p,C) exists. To deter
mine the structure of the unipotent subgroup we examine the 
action or. on elements of fixed degree in Bp(C). First we can 
check 

((J. (J ..•• (J. ). = ( - 1)(1/2) k(k - I)(J. (J .... (J. . (64) 
'1'2 'k '1'2 'k 

Then, if Zk = Xk + iYk has degree k in Bp(C), 

Zk. = (- 1)(1/2)k(k-I)(Xk - iYk) , (65) 

wherexk , Yk' Bp(R) are the real and imaginary parts ofzk. 
Extending this action to matrices, if 

Pk = Pk,re + iPk,im (66) 
is the decomposition of a complex Grassmann matrix of de-
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gree k into real and imaginary parts, then 

pw = (_ 1)(1I2)k(k-I)(P 1 _ ipl. ). 
k ~ ~m (67) 

Hence the system (39) becomes 

Pl,re + iPl,im + (P~,ee - iPLm) = 0, 

P2,re + iP2,im - (P tee - iP i,im) = - PIPf , (68) 

The dimension of Un (p,c), as a real Lie group, is 

n
2 (~) + {~ n(n - 1) + ~ n(n + l)l (~) 

+ {~ n(n + 1) + ~ n(n - 1) 1 (~) + 

= n2 L (p) = n22 P • 

r=O r 
(69) 

VII. GRASSMANN SYMPLECTIC GROUP 

If Anum is the 2n X 2n real (or complex) symplectic 
group Sp(2n,R) [or Sp(2n,C)), the matrix X of Theorem 1 is 
the skew-symmetric matrix 

J=( 0 
-In 

(70) 

and the operation CiJ must coincide with the ordinary trans
pose for numeric matrices. We note that J -I = - J, In our 
development there is no essential difference between the real 
and complex group, and we assume for definiteness that we 
are dealing with the real case. The extension of the transpose 
to general Grassmann matrices is taken to be any of those 
used for the orthogonal groups. This ensures that the condi
tion (ii) of Theorem 1 is satisfied for all members of G2• (p,R ) 
and therefore, in particular, for all members of 

(71) 

To deal with condition (i) of Theorem 1, we suppose MeA 
and first take the inverse of both sides of the defining rela
tion, giving 

(Mw)-IJM- I =J, (72) 

This can be rewritten as 

JM- I =MwJ. 

We apply CiJ to this relation, giving 

(M-I)wJ=JM. 

(73) 

(74) 

In this we have used JW = - J, Mww = M, and condition 
(ii) of Theorem 1, which we have observed above is satisfied. 
Finally, multiply (72) on the right by M and compare with 
(74). Thus 

(M-I)W=(MW)-I, (75) 

for all MeA. This is precisely condition (i) of Theorem 1. 
It follows that A forms a group, which we shall call a 

Grassmann symplectic group. As in the case of Grassmann 
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orthogonal groups there are p + 1 different cases depending 
on the specific choice of CiJ, To exemplify the dimensionality 
analysis we only consider the positive operation. 

;, 

A. Positive symplectic group Sp~)(PIR) 

If CiJ is the positive operation, then combining (39) with 
(49) for the constraints on the homogeneous parts of P, we 
have 

PIJ+JIP~ =0, 

P2J-JPi = -PIJP~, 

P3J-JP~ =PJPi -P2JP~, 

Each of these equations is of the form 

AJ+JA I=S, 

or 

BJ-JBI=T, 

(76) 

(77) 

where S, T are 2n X n matrices of appropriate symmetry, 
with respect to matrix transposition, and of appropriate de
gree of homogeneity . Then the general solution for A (respec
tively, B) is - !SJ (respectively, - !TJ) plus a generalsolu
tion of (77) with zero right-hand side. Thus P contains 
(2n2 + n)(f) real parameters, P2 contains (2n2 - n)(f) real 
paraemters, etc. The dimension of Sp~~)( p,R ) is easily calcu- ' 
lated to be 

dim Sp~~)(p,R) = 2P + In2 + n2 pI2 

X (cos(1Tp/4) + sin(1Tp/4)) . (78) 
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For operators of Yang-Mills typeH = 1:.;= I [ - i(a/axj) ® 1 + Aj(x)] 2 + W(x) in L 2(R4) ®7" 

the infrared singular.ty of the resolvent (H - t ) -I is described completely in terms of asymptotic 
expansions ast-o. Aj(x) and W(x) are required to satisfy Aj(x) = O(lxl- 2

-
6

), W(x) 
= O(lxl- 2

-
6

), as Ixl-oo, 8>0. 

I. INTRODUCTION AND SUMMARY 

The present paper is concerned with the structure of the 
infrared singularity of the resolvent of a Euclidean Yang
Mills operator in K = L 2(R4) ® r (r a finite-dimensional 
Hilbert space). One is interested in the resolvent because it is 
the covariance of a Gaussian process. 

The operators considered here have the form 

H=HA + W= ±( -i~® 1 + Aj (X))2 + W(x), 
j= I aXj 

(Ll) 

where W(x) and the Yang-Mills potentials Aj(x) are func
tions on R4 with values in the Hermitian operators on r. 
The Aj(x) are related to the internal symmetries of the sys
tem. The W (x) can describe additional coupling to the Yang
Mills potentials via the field tensor and also coupling to oth
er external fields. 

The results on the resolventR (t) = (H - t)-Iaregiven 
in the form of asymptotic expansions as t-o. In order to 
obtain results with only algebraic decay of A j (x) and W (x) it is 
necessary to use a somewhat complicated topology for the 
expansion. The expansions are given in the operator norm of 
the bounded operators from H-I,s to "I, -s', where HI,s 
denotes the weighted Sobolev space (see Sec. II). The s, s' > 0 
are suitably chosen, depending on the order of the expan
sion. 

Disregarding topology, we can briefly describe the re
sults as follows. First consider R A (t ) = (H ~ - t ) -I, HA as 
in (Ll). For generic Aj(x) (see Assumption 2.3) we have 

RA(t)=Fo+tlogtFl +tF? +t2(logt)2F~ 

+ t 2 10g tF~ + t2F~ + 0(t 2), 

as t-o. The Fj are explicitly given. 
Adding W we get expansions of four different types, 

depending on whether zero is an eigenvalue, a zero reso
nance, both, or neither, for H = HA + W. Let us note that a 
zero resonance occurs whenHu = 0 has a solution of u # 0 in 
a space slightly larger than K. The leading singularity can 
be described in each case as follows. 

(i) If zero is neither an eigenvalue nor a zero resonance 

R (t) = Bo + 0 (t log t) as t-o· 

(See Theorem 3.4.) 

(ii) If zero is a zero resonance, but not an eigenvalue, let 

{tfj }j"! I denote a maximal linearly independent set of zero 
resonance functions, suitably normalized; 

1 No 

R (t) = - -- L (0, tMth + O((t~ogtf)-I) as t-o· 
tlogt j=1 

(See Theorem 3.5 for a more precise result.) 
(iii) Ifzero is an eigenvalue, but not a zero resonance, let 

Po be the orthogonal projection in K onto eigenspace for 
eigenvalue zero: 

R(t)= -(lItJPo+logtCo+O(I) as t-o. 

Note that besides the expected t -I singularity there is also a 
log t singularity. Co is found explicitly. (See Theorem 3.6.) 

(iv) If zero is both an eigenvalue and a zero resonance, a 
specific choice of zero resonance functions {tfj} gives an ex
pansion where the leading term is the sum of the leading 
terms in (ii) and (iii) above. (See Theorem 3.7 for a more 
precise statement.) 

Several results on asymptotic expansion of the resolvent 
of SchrOdinger operators in the low energy limit have been 
obtained recently. 1-4 Expansions are obtained by applying a 
perturbation argument to the expansion of the kernel of the 
resolvent of the Laplacian, which is given in terms of a Han
kel function. The argument needed to obtain the results of 
the present paper are similar to those given by Jensen-Kato l 

and Jensen,3 so some details will be omitted here. The pertur
bation arguments require a decay Aj(x) = O(lxl- 2- 6

) and 
W(x) = O(lxl- 2- 6)as Ixl-oo,8>0. Topologicallynontri
vial Yang-Mills potentials have a slower decay or too-strong 
local singularities to satisfy our assumptions. Recent resultsS 

indicate that an expansion of R (t ) with, e.g., A j (x) the instan
ton solution will have a form different from the expansions 
given here. 

The results obtained here can be used to obtain asymp
totic expansions of the regularized perturbation determinant 
in the infrared limit. These results will be given elsewhere. 

It is possible to include an external metric in the opera
tor HA , provided it satisfies an assumption similar to As
sumption 2.3. For several results on Yang-Mills operators 
with an external metric, see Cotta-Ramusino et a/.6 

Finally let us note that the results given here are specific 
to four dimensions. Results are known in any dimensions, 1-4 
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but we have restricted our attention to the physically inter
esting one. 

II. NOTATION AND PRELIMINARY RESULTS 

In this section we introduce our notation and give some 
preliminary results. Let r be a finite-dimensional Hilbert 
space. Our basic Hilbert space is J¥' = L 2(R4) ® r. Let 
Y'(R4) denote the tempered distributions and Y the Fourier 
transform. The weighted Sobolev space is given by 

H m,S(R4
) = {IE Y'(R4 )lllfllm,s 

= 11(1 + x2)'12(1 -.d tl'iIlL2 < 00 J, 
for any m, s E R. The spaces used here are given by 

lEIm, s = H m, S(R4) ® r, 
The inner product (',' > on J¥' = HO,o = L 2(R4) ® r ex
tends to a natural duality between Hm, sand 
lEI- m, - s, m, s E R. We also note that the Fourier transform 
Y ® 1 extends to an isomorphism from Hm, S to lEIS' m for 
any m,sER. 

We consider operators of the form 

4 (a )2 H=HA + W= L -i-®1 + Aj(x) + W(x), 
j= I aXj 

whereAj(x) and W(x),x ER4,areHermitianoperatorson r, 
In some computations it is convenient to decompose HA as 
follows: 

HA = Ho + VA' Ho = -.d ® 1, 

VA = ±((-i~®I\"j(X) 
j=1 aXj r 
+ Aj(X{ -ia~j ®1)+Aj(X)2} 

In applications,Aj(x) and W(x) are multiplication by Hermi
tian matrices (in a given basis in r) for each xER4. We need 
some regUlarity and decay assumptions, The following gen
eral assumption is used for U = VA and U = W. 

Assumption 2.1: Let U be a symmetric operator such 
that for some/3> 0, U defines a compact operator from HI, s 

to H - I, s + /3 for all s E R. 

If A j (x) is a multiplication operator and VA is defined as 
above, VA compact from HI,o to lEI- I, /3 implies that VA is 
compact from HI,s to H- I,s+/3 for any SE R, This follows 
by computing the commutator between VA and (1 + X2)s12, 
The same result holds for W(x). 

As an example consider A j (x) and W (x) which are multi
plication operators. Let III' III denote any norm on the 
bounded operators on r. Assume 

IIIAj(x)lll<c(1 + Ixl)-Il, 

IIIW(x)lll<c(1 + Ixl)-Il, 

for some p > 0, c > O. Then VA and W satisfy Assumption 2.1 
for any /3 <p. 

Let VA and W satisfy Assumption 2.1. Then 
HA = (-.d ® 1) + VA and H =HA + W are the self-ad
joint operators obtained from the quadratic form sum.7

,8 

LetB (m, s; m', s') = B (Hm,S, Hm'.s,) denote the bound-
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ed operators from Hm,s to Hm',s', with the operator norm. 
We also use the notation 

Hm, s + 0 = u Hm, t, Hm, s - 0 = n JH[m, t, 
t>s t<s 

but we do not introduce any topology on these vector spaces. 
Let Ro(t) = (Ho - t )-1. In Jensen3 an asymptotic ex

pansion for ( -.d - t ) -I was obtained by expanding the in
tegral kernel of this operator, which is given explicitly in 
terms of a Hankel function. Only the two finite expansions 
used in the sequel are given here. In the sequel we assume 
1m t>O and log t denotes the principal branch of the natural 
logarithm. We have the following lemma. 3,4 

Lemma 2.2: (i) Let s, s' > 2. We have in 
B ( - 1, s; 1, - s') the expansion 

sion 

Ro(t)=Go+tlogtG: +tG? +o(t) as t-o· 

(ii)Lets,s'>4. We have inB( -1,s; 1, -s')theexpan-

Ro(t) = =Go+tlogtG: +tG? 

+ t 2 10g tG~ + t2G~ + O(t2) as t-o. 

(iii) The coefficients are given as follows. G J = G J ® 1, 
and G J are given by the following integral kernels: 

Go:(4r)-llx _ yl-2, 

G:: - (4r)-ll, 

G?(41T) - 2(1Ti - r)' 1 - (8r)-llog(lx - yI/2), 

G~:(8r)-llx _ y12, 

G~: - (8r)-I(~ - 2r + 1Ti)lx _ yl2 
+ (41T)-210g(lx - y1/2)lx _ Y12. 

Here r is Euler's constant. 
(iv) The coefficients have the following properties: 

Go EB ( - 1, s; 1, - s'), for s,s' > 0, s + s'>2, 

G:' G? EB( -1,s; 1, -s'), for s,s'>2, 

GL G~ EB( - 1, s; 1, -s'), fors, s'>4. 

In discussing expansions of the resolvent 
R (t) = (HA + W - t ) -I we are interested in separating the 
contribution from Aj(x). For this purpose we need the fol
lowing assumption. 

Assumption 2.3: Let VA satisfy Assumption 2.1 for 
some /3 > 2. Assume that the operator 
1 + GOVA E B (1, - s; 1, - s), 0 <s </3, is invertible. 

Note that Lemma 2.2 (iv) and Assumption 2.1 on VA for 
/3> 2 imply Go VA EB(I, -s; 1, -s)foranys,O<s</3.As
sumption 2.3 means9 that 0 is a regular point for HA . There
fore lo HA u = 0 has only the trivial solution u = 0 in 
JH[I, - s, 0 <s<2. When Aj(x) is multiplicative, 0 is not an 
eigenvalue. 6 Thus in this case the assumption excludes a zero 
resonance. Let us note that Assumption 2.3 is satisfied ge
nerically; i.e., consider a family 

4 (a )2 HKA = L -i-®I+KAj(x) . 
j= I aXj 

Then the assumption is satisfied except for a discrete set of 
K E R, as is easily seen using the analytic Fredholm theorem. 8 
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We have the following expansion result for the resol
ventRAl;) = (HA - ;)-1 = (Ho + VA _ ;)-1. 

Theorem 2.4: Let VA satisfy Assumption 2.3. 
(i) Let VA satisfy Assumption 2.1 for some 

/3 = /3 (VA) > 2. Let s, s' > 2. We then have in 
B ( - 1, s; 1, - s') the expansion 

RA(;)=Fo+;log;F: +;F? +0(;), 

as;-o. 
(ii) Let VA satisfy Assumption 2.1 

/3 = /3 (VA ) > 4. Let s, s' > 4. We then 
B ( - 1, s; 1, - s') the expansion 

2 j 

RA(;)= L L Fj;j(log;)I+o(;2), 
j= 11=0 

as;-o. 

for some 
have In 

(iii) The coefficients are given as follows. We write 
X = (1 + Go VA )-1 andX* = (1 + VA GO)-I. Then 

Fo=Fg =XGo=GoX*, 

Fl =XGIX*, 

F? =XG?X*, 

F~= -XG:VAXG:X*, 

Fj =XGjX* -XGI VAXG?X* 

-XG?VAXGIX*, 

F~ =XG~X* -XG?VAXG? 

(iv) The coefficients satisfy 

FoEB( -1,s; 1, -s') for s,s'>O, s +s'>2, /3(VA) > 2, 

FLF? EB( -1,s; 1, -Sf) for s,s'>2, /3(VA»2, 

FLFj,F~ EB( -1,s; 1, -s') for s,s'>4, /3(VA»4. 

Proof: These results follow from Jensen,3 except the im
proved conditions on s, s', /3, which are due to Murata.4 

III. INFRARED EXPANSIONS FOR THE EUCLIDEAN 
YANG-MILLS OPERATOR 

We begin our discussion of R (;) = (H - ; ) - I by classi
fying the possibilities for the point zero in the spectrum of H, 
using the coefficients in the expansion of 
R A(;) = (HA - ;)-1. The proofs run along the line of Jen
sen,3 except that here dim 'Y> 1. We shall sketch the 
changes necessary to accommodate this case. The idea of the 
proofs is to use the expansion for (Ho + VA + W _ ; ) - I, 

which can be obtained as in Jensen3 and Murata,4 and then 
to separate out the contribution from VA' using assumption 
2.3. 

Let VA' W satisfy Assumption 2.1 with /3 = /3 (VA) 
=/3(W»2. Let VA satisfy Assumption 2.1. Then 

Ar= IUElEI I
• -'1(1 + GO(VA + W))u=Ol, 

ff = I v E lEI -1"1(1 + (VA + W)Go)v = OJ, 

0< s </3. These spaces are finite-dimensional and indepen
dene of s. By assumption (1 + Go VA) is invertible. Thus one 
has 

1 + GO(VA + W) = (1 + GOVA)(1 + (1 + GOVA)-IGOW) 

= (1 + GoVA)(1 +FoW), 
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and then (O<s</3) 

Jt = I u E lEI I
• -'1(1 + FoW)u = Ol = Ar, 

%= IVElEI- I "I(1 + WFo)v=Ol =(1 + VAGOV. 
Let us note that generically Jt = % = 10 l. More precisely, 
consider H (K) = HA + K W. The compactness of Fo W im
plies that (with an obvious notation) Jt(K) = %(K) = 10 l ex
cept for a discrete set of K ER. 

Lemma 3.1: Under the above assumptions we have the 
following. 

(i) (HA + W)Jt = 10l. 
(ii) Jt = I u E lEI I

• - 'I(HA + W)u = 0 j, 0 <s<2. 
Proof: See Jensen-Kato l and Jensen.3 

Lemma 3.2: Let u EJt. Then u EJY'( = lEIo.o 

= L 2(R4) ® 'Y) if and only if F: Wu = O. 
Proof: We use some results from Jensen.3 Let u EJi. 

Then u E JY' if and only if G I (VA + W)u = O. This condi
tion is rewritten as follows. By Lemma 3.1 u E lEI I. 0 - 0, and 
(Ho + VA + W)u = O. Hou = - (VA + W)u E lEI- I

•
2+

O
, 

so (see Ref. 3) u = GoHou, and (1 + GO(VA + W))u = O. 
Hence 

(VA + VA Go VA + VA GoW)u = 0 
and 

(VA + W + VAGOVA + VA GoW)u = Wu. 

Thus one has 

(1 + GOVA)(VA + W)u = Wu 

or 
(VA + W)u = (1 + GOVA)-IWU. 

Then the condition G I (VA + W)u = 0 can be written 
G 1(1 + VA GO)-I Wu = 0 or, using Theorem 2.4 (iii), 
FIWu=O. 

Let Po denote the orthogonal projection onto eigen
space for eigenvalue zero for H in JY'. If zero is not an eigen
value, Po = O. Lemma 3.2 shows dim(Jt / 
PoJY') = rank(F: W)<dim 'Y, and simple examples using 
spherical square well potentials show that dim(Jt /PoJY') 
can have any value between 0 and dim 'Y. IfJt /PoJY':I=O, H 
is said to have a zero resonance. 

Any function 1/1 E Jt \.P oJY' can be called a zero reso
nance eigenfunction. There is a choice 1.3 ofa maximal linear
ly independent set in Jt \.P oJY', which gives a particularly 
simple form of the expansions. Note that no such result is 
given by Murata.4 

Let us briefly describe how this set is chosen. Let Q be 
the canonical projection onto the algebraic null spacell for 
1 + Go VA (= Jt). Assume/3> 4 and write V = VA + W for 
simplicity. Define in lEI I

• - ',0 <s </3 - 2, the operators 

Qo = 1 - Q, QI = (1 - PoVG? V)Q, Q2 = PoVG? VQ. 

By definition Qo + QI + Q2 = 1, and one can show QjQk 
= OJ k Qk' j, k = 0,1,2. We use these operators to classify the 

point zero in the spectrum of H. Here 0 is said to be a regular 
point for H,ifQI = Q2 = O. Here,Oissaid to be an exception
al point of the first (second; third) kind, if QI #0, 
Q2 = O(QI = 0, Q2:1=O; QI:I=O, Q2:1=O). In other words, if 
Jt = 10 l, 0 is a regular point. If Jt :1= 10 l , and contains only 
zero resonance functions, 0 is an exceptional point of the first 
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kind. If 1 =1= { 0 l and 1 C JY', 0 is an exceptional point of 
the second kind. 

The canonical zero resonance functions are chosen as 
follows. Assume QI =1=0. Choose a basis for r such that we 
can assume r = eN. For s > 2, HI. - S contains a copy of eN, 
viz, the constant functions. Thus we can consider G : V as a 
map from 1 to eN. Call it <P. By Lemma 3.2 the null space of 
<P is P~. Then No = dim ran <P = dim 1 - dim P~. 
Let { ej L = 1 ..... N o denote an orthonormal basis for the range of 
<P. There exist t/lj E 1, j = 1, ... ,No' such that <Pt/lj = 41Tej . 
Since the null space of <P is P~, we can assume Q I t/lj = t/lj' 
This set { t/lj L = I , ... ,No is the normalized canonical zero reso
nance/unction. Obviously, this choice is not unique, but two 
different sets are related by a unitary transformation. 

Lemma 3.3: For small; the operator 

QTV(log;G: + G~)vQI 
is invertibleinB (QIHI. - s, Q TH -I, S), 2 <s <{3 - 2. The in
verse is given by 

QI( -log;QTQI + QTVG~VQI)-IQT 

1 No 

= - -1 t- L (., t/lj)t/lj + O(llog; 1-2), 
og ~ j= 1 

as ;-0. Here V = VA + Wand {t/lj L= 1 •...• No is a set of nor
malized canonical zero resonance functions. 

Proof: See similar proofs in Jensen-Kato l and Jensen.3 

A complete description of the possible singularities for 
R (;) = (H - ;)-1 = (HA + W - ;)-lisgiveninthefollow
ing four theorems, corresponding to the four possible cases. 

Theorem 3.4: Let 0 be a regular point for H. Assume 
{3={3(VA) ={3(W»2, and s,s'>2. We then have in 
B ( - 1, s; 1, - s') the expansion 

R (;) =Bo + ;log;B: + ;B~ + 0(;) 

as ;-0. The coefficients are given by 

Bo = (1 +FOW)-IW, 

B: =(1 +FOW)-lFW + WFO)-l, 

B~ = (1 +FoW)-lF~(1 + WFO)-l. 

Proof: It follows as in Jensen3
•
12 that we have 

R (;) = (1 + GO(VA + W))-IGO 

+;log;(1 + GO(VA + W))-lG: 

X(I + (VA + W)GO)-I 

+ ;(1 + GO(VA + W))-IG~ 

X(I + (VA + W)GO)-l 

+0(;). 

We now use 

and 

1 + (VA + W)Go = (1 + WFo){1 + VAGO)' 

together with Assumption 2.3 and Theorem 2.4. 
Theorem 3.5: Let 0 be an exceptional point of the first 

kindforH. Assume{3 ={3(VA) ={3(W»4ands, s'> 2. We 
then have in B ( - 1, s; 1, - s') the expansion 
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R(;)= _;-lQl(log;QTQI 

- Q TWF~ WQ1)-lQ T + B + 0(1) 

as; -0. B is a bounded operator which can be found explicit
ly. 

Proof: It follows as in Jensen.3
•
12 We note that as in the 

proof of Lemma 3.2 we have 

Q T(VA + W)G~(VA + W)QI 

= QTW(1 + VAGO)-lG~(1 + GOVA)-IWQl 

=QTWF~WQI' 

Let us note that Lemma 3.3 and Theorem 3.5 show that 
the leading singularity in the case of an exceptional point of 
the first kind is given by 

1 No 

R (;) = - ; log ; j~1 (., t/lj)t/lj + O(I;(log ;)21-
1
), 

as;-o. 
Theorem 3.6: Let 0 be an exceptional point of the sec

ond kind for H. Assume {3 (VA) = {3 (W) > 4, and s, s' > 2. In 
B ( - 1, s; 1, - s') we then have 

R (;) = -; -lPO + log ;PoWFiPo + C + 0(1), 

as ;-0. Here C is a bounded operator which can be found 
explicitly. 

Proof: Existence of the expansion 

R (;) = -; -IPO + log ;PO(VA + W) 

XGi(VA + WlPo+C+o(l) 

follows as in Jensen. 3.12. As shown in the proof of Lemma 3.2 
one has for u E 1, (VA + W)u = (1 + VA GO)-l Wu. Hence 

PO(VA + W)G i (VA + WlPo 

=PoW(l + GOVA)-lGi(1 + VAGO)-lWPO' 

Lemma 3.2 implies G:(1 + VAGO)-IWPO=O. Using 
Theorem 2.4 (iii), we then find 

PoW(l +Go VA)-lGW + VAGO)-IWPO=PoWF~WPO' 
Note that in case 0 is an exceptional point of the second 

kind for H, i.e., every function 1 is an eigenfunction for 
eigenvalue zero for H, we have besides the expected singular
ity -; -lPO also a logarithmic singularity. It follows from 
the explicit expression that 

rank(PoWFi WPo)<min(dim P~, 4· dim r). 

Using spherical square well potentials it is possible to give an 
example where Po WF ~ WPo = 0, and another where 
rank PoWF~ WPo = 4· dim r. (In this example 
4· dim r = dim Po JY). Details can be found in Jensen.3 

Theorem 3.7: Let 0 be an exceptional point of the third 
kind for H. Assume {3 (VA) = {3 (W) > 4 and s,s' > 2. We then 
have in B ( - 1, s; 1, - s') the expansion 

R (;) = - ;-IPO +; -lQI(log;QTQI 

- QTWF~ WQd-1QT 

+ 10g;PoWF~ WPo +D + 0(1), 
as ;-0. Here D is a bounded operator which can be found 
explicitly. 

Proof: The proof is similar to the ones given above, us
ing results from Jensen3 and Murata.4 
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Let us note that the simple form of the expansion above 
requires the specific choice of QI made above. 

Let us conclude this section with several remarks. 
Remark 3.8: (i) Expansion to any order can be given, 

with explicit coefficients.3.4 Murata4 has given a general pro
cedure for finding all coefficients explicitly. Higher-order 
coefficients are extremely complicated. Higher-order expan
sions require larger values of P and s, s'. Precise results can be 
obtained.4 

(ii) If r is one dimensional the above results are con
tained in Jensen.3

•
12 In this case H is a SchrOdinger operator 

with external electromagnetic field. 13 

(iii) Note that Assumption 2.3 is required only because 
we want to use the decomposition H = HA + W. If we use 
H = Ho + (VA + W) directly in the statement of Theorems 
3.4-3.7, this assumption is unnecessary, but VA may contri
bute zero resonances. 

IV. SOME RESULTS ON YANG-MILLS POTENTIALS 

In this section we give some results on Yang-Mills po
tentials, which satisfy our Assumption 2.1 and a mild regu
larity assumption. We refer to Jackiwl4 for some basic facts 
on non-Abelian four-dimensional gauge theories. Let us re
call a few results here. The basic objects are the Yang-Mills 
potentialsAj(x), j = 1,2,3,4,x E JR4. In generaIAj(x) takes val
ues in the Lie algebra of the gauge group G. Here we take 
G = SU(2) as an example, and introduce a factor i in various 
formulas in order to take Aj(x) as Hermitian matrices. To 
Aj(x) is associated the field strength tensor 

FJk(X) = ajAdx) - akAj(x) + i[Aj(x), Ak(x)], (4.1) 

where aj = a laxj for simplicity. The action is given by 

1 4 i S (A ) = "4 j. ~ I R' tr(FJk (x)2)dx. (4.2) 

The pure Yang-Mills equations are the Euler equations as
sociated with S (A ), viz. 

4 

I (ajFJk(X) + i[Aj(x), Ak(X))) = O. (4.3) 
j=1 

Several classes of solutions to (4.3) are known, and are 
associated with the vacuum. Besides the trivial classical 
vacuum solution Aj(x) = 0 there exist topologically nontri
vial vacua, e.g., the instanton solution. 15 

LetA [(x) be a solution to (4.3). Consider a perturbation 
of this vacuum solution 

Aj(x) = A [(x) + A fix). 

This set (Aj(x)j trivially satisfies the equation 
4 

I (ajFJdx ) + i[Aj(x), Ak(x)]) = Jdx) 
j=1 

in the sense that current is defined by the left-hand side. 
In Yang-Mills field theory the topological charge Q (A ) 

is an important gauge-independent quantity. Let us briefly 
recall its definition. Let Ejk1m be the Levi-Civita symbol with 
E1234 = 1. The dual to FJdx) is given by 

1 4 

*FJdx ) = - I EjklmFlm(x). 
2 /. m =1 

Q (A ) is defined by 
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Q(A) = ~. ± r, tr(FJk(x)*FJk(X))dx. 
41T- J,k=IJR 

Proposition 4.1: Let {A [(x)j be the trivial solution, or 
the instanton solution, to (4.3). Let A fIx) be continuously 
differentiable in x and satisfy 

A fIx) = O(lxl- 2- c5
), akA fIx) = O(lx l- 2

-
c5

), 

j, k = 1,2,3,4, as Ixl--oo, for some 8>0. Then 
Aj(x) = A [(x) + A fIx) satisfy 

S(A)< 00 and Q(A) = Q(A V). 

Proof; With an obvious notation we have 

FJdA)=FJdA V)+FJdAP)+i[A[,Af] +i[Af,An· 
(4.4) 

In a suitable gauge A [(x) = 0 (Ix I-I) as Ix 1 __ 00, and is a 
smooth function of x. The assumptions on A fIx) imply that 
each term in (4.4) is square integrable, hence S (A ) < 00. 

Let 

4 1 
I anJn = - I tr(EjklmFJkFlm)' 

n=1 2 j ,k,/,m 

Thus one has 

+ ji(A [A fA r +A fA fA mI. 
The above integral vanishes by the divergence theorem. Fur
thermore, the assumptions on A fIx) imply Q (A P) = O. 

The Yang-Mills potentials Aj(x) are used as the opera
torsAj(x) inHA andH discussed in Secs. II and III. LetAj(x) 
be a nontrivial vacuum solution. It is knownl4 that a smooth 
Aj(x) has decay rate 0 (lxi-I) or slower. Hence the results in 
Secs. II and III are not applicable to these Aj(x). Recent 
results5 indicate that a result similar to Theorem 2.4 with, 
e.g., Aj(x) the instanton solutions will have a different form. 

The results in Sec. II and III are applicable to Aj(x) 
which are perturbations of the classical vacuum solutions 
A [(x)==O. If Aj(x) satisfy both Assumption 2.3 and the as
sumptions in Proposition 4.1, they have finite action and 
zero topological charge, and we have very complete results 
on the infrared behavior of the resolvent. 

There is an explicit example which satisfies all our as
sumptions. 

Example 4.2: There is an explicit solution of a SU(2) 
Yang-Mills field, coupled to a massless Higgs doublet. 16,17 
We shall not go into any details, but we note that for generic 
values of the coupling constantsI6 ..t, e, the Assumption 2.3 is 
satisfied. The constructed Aj(x) are smooth and satisfy 
Aj(x) = O(lxl-3

), akAj(x) = O(lxl-4
) as Ixl--oo. The con

structed Wsatisfies W(x) = O(lxl- 4
) as Ixl--oo. Hence our 

assumptions are verified, and Theorem 3.4 is applicable. 
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V. BEHAVIOR OF EXPANSIONS UNDER GAUGE 
TRANSFORMATIONS 

Let x-g(x) be a map from ]R4 to the gauge group G. 
Since each g(x) is a unitary map in 'Y, g defined by 
(gu)(x) = g(x)u(x) is a unitary map inJY =L 2(]R4)® 'Y.Only 
a restricted class of gauge transformations g, with the prop
erty that g is bounded from HI, S to HI, s, for each seR, is 
considered here. A sufficient condition on g is that g(x) is 
differentiable with bounded derivative. 

Two Yang-Mills potentials related by 

A fIx) =g(x)A ](xlg(X)-1 + ig(X)(~g(X)-l) (5.1) aXj 

are said to be equivalent under the gauge transformation g. 
For the restricted class of g we have 

H A, =gHA Ig-I and RA,(t) =gRA tltlg- I. 

If A fIx) and A fIx) both satisfy the assumption in Theorem 
2.4, and are related by (5.1) for some g uniqueness of the 
coefficients in an asymptotic expansion implies 

PJ(A 2) =gPJ(A Ilg-I 

(with an obvious notation) and thus equivalence of the coeffi
cients. 
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Symmetries of the higher-order KP equations 
K. M. Case 
The Rockefeller University, 1230 York Avenue, New York, New York 10021 

(Received 19 November 1984; accepted for publication 14 February 1985) 

Symmetry generators T~) = tIn + L ~) are constructed for the I th-order Kadomtsev-Petviashvili 
(KP) equation for all n:>1 - 2. In the case of the ordinary KP equation (I = 2) these symmetries are 
those found by Chen et al. [Physica D 9,439 (1983)]. 

I. INTRODUCTION 

The Kadomtsev-Petviashvili (KP) equation I is of inter
est for at least two reasons. 

(1) It is relevant to certain physical problems. 
(2) It is an extension to one more space variable of the 

well-studied Korteweg-de Vries (KdV) equation. In this 
connection it is worth knowing which, if any, of the re
markable properties of the KdV equation it shares.2

•
3 

Recently,4 it has been shown that the KP equation has 
an additional set of symmetries not inherited from the KdV 
equation. 

Another property of the KdV equation is that it is but 
one of a hierarchy of equations. Here we want to point out 
the following. 

(a) The KP equation is also but one of a hierarchy. (This 
is not very surprising. It results from the fact that the infinite 
set of constants are in involution.) 

(b) For each member of the hierarchy there is an infinite 
set of new symmetries. These sets are different but are closely 
related. 

II. KP EQUATION 

We take the KP equation in the form5 

q, = ax- Iqyy - ax (3q2 + qxx)' (1) 

It is seen that this is a Hamiltonian system, i.e., it is of the 
form 

q,=[q,H], (2) 

when we define the Poisson brackets by 

[Po G] = IIdX d 8F a 8G 
, Y8q X8q 

and take as the Hamiltonian 

H = I { (ax- 1
2

ayq)2 + q; - q3 }dX dy. 

(3) 

(4) 

As stated above2
•
3 this is a completely integrable sys

tem. The first few constants are 

Iq2 1 I -I 10 = ~x dy, II = 3 (q ax ayq)dx dy, 

I 2=H, 

13 = I{2qxqy + ~(ax-Iay)3q - 4q2 ax-
I ayq}dx dy, 

14 = I{ ~(qxx)2 + ~ (ax-
2 

a;q)2 

IS 
_ ISq;q + Sq; + ~4 
- sq2 ax- 2 a;q - Sq(ax- I ayq)2 }dX dy. 

We remark that there is another constant which is not 
always mentioned. It is 

1= - I..!LJx dy. 
18 

(It will be shown to have a useful role.) 

III. THE NEW SYMMETRIES 

If we write Eq. (1) in the form 

( 
. 81) q, = K2(q) K2(q) = ax 8; , 

then a solution 8q of the linearized equation 

8q, = K; (8q) (K; (8q) = lim !!....K2(q + E8q)) 
£---+0 dE 

is called a symmetry. 

(S) 

(6) 

(7) 

Chen et al.4 have shown that in addition to the classical 
symmetries 8q = [q, In] there are new symmetries of the 
form 

8q = [q, Tn]' (8) 

where 

~=~+~. ~ 

The first few of the functionals J n are 

J o = - I ~ dx dy, J I = I yq2 dx dy, 
18 6 

J2 = I{ q: + qyax~ I ayq }dX dy, 

J - I{ [(~x-I ay q)2 + q; 3] 
3- Y '2 T- q 

+ qx ax~ I ayq }dX dy, 

J4 = I{2yqxqy + ~:yq(ax-I ay)3q - 3q2yax-
1 ayq 

_ 2a- I a (y )+ (ax-
I
ayq)2x 

q x y q 2 

+ x(q; - q3)}dX dy. 

[The role ofthe constant ofEq. (S) is now seen. It is used to 
construct Jo.] 

Chen et al.4 have derived relations between the Poisson 
brackets of the functionals In, I n . (More precisely, they have 
obtained relations between Lie products of[q, I n] and [q, In]. 
However, we have shown6 that these can be written as the 
following Poisson bracket relations: 
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[/n'/m] = 0, 

Jm+n- 2 = [3/(m - n)1[Jm,Jn], 

Im+n- 2 = [3/(m + 1)] [lm,Jn].) 

(10) 

(11) 

(12) 

Remark: Given 10, Jo, J3, J4 these relations determine 
all the remaining I's and J's. 

For example, if we choose n = 3 in Eq. (12) we have 

Im+1 = [3/(m + 1)l[lm,J3]' 

Therefore, 

11=3[/o,J3], 12=H/ I'J3], .. ·· 

Thus all 1m are generated by 10 and J3• Consider Eq. (11) with 
n = 3. It becomes 

(13) 

Thus, J I = - [Jo, J3], and J2 = - Uh J3]. However, if in 
Eq. (13) we put m = 3 we get the trivial identity [J3, J3] = O. 
We cannot obtain J4 from Eq. (11). However, given J4 (as in 
the previous section) all other J m are determined by Eq. (13). 

IV. THE HIGHER-ORDER KP EQUATIONS 

Just as for the KdV equation we have, in virtue of the 
involution property of the In' Eq. (10), an infinite hierarchy 
of KP equations. These are 

8// 
qt = K/(q), where K/ = ax -. (14) 

oq 
They are all completely integrable-having the common set 
of contants In , n = 0, 1, 2, .... In particular, then, these equa
tions all have the classical symmetries oq = [q, In]. 

The main question we wish to answer here is as to 
whether there are "new symmetries" for Eq. (14) for arbi
trary I, Le., are there T~) such that 

oq = [q, T~)] 

satisfies 

oqt =K;[oq]. 

Consider 

T~) = tIn + L~) 
and suppose 

[I/,L~)] =In' 

If oq is chosen as in Eq. (15) we have 

!!...oq= [q,ln ] + [[q,tln +L~)],/d. 
dt 

By the Jacobi identity 
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(15) 

(16) 

(17) 

(18) 

(19) 

[[q.tln +L~)],/d 

= - [[tIn +L~),/d,q] - [[I/,q],tln +L~)]. 

But [In' Itl = 0 and so in virtue ofEq. (18) 

[[q,tln +L~)],ltl = - [q,ln ] - [[1/,q],tIn +L~)]. 

Therefore, Eq. (19) becomes 

!!...oq = [[ q, Id ,tIn + L ~)]. (20) 
dt 

The theorem proved in Ref. 6 tells us that 

K;[q,tTn +L~)] = [[q,/d,tln +L~)]. (21) 

Comparing Eqs. (20) and (21) we see that Eq. (16) is 
indeed satisfied. Thus oq is a symmetry-if we can construct 
L~). 

The construction is as follows: Equation (12) is 

1,+s_2 = (3/(r+ l))[/,,/s]. (22) 

Let r = I, s = n - 1 + 2. Equation (22) becomes 

In = [//,(3/(1 + 1)) I n_/+ 2 ]. (23) 

Thus, an L~) satisfying Eq. (IS) is 

L~)=(3/(/+ 1)) I n_/+ 2 • 

Some examples are 

1= 0, L ~) = 3Jn + 2' 

1= 1, L ~) = ~ I n + 1> 

I = 2, L ~) = I n • 

(24) 

(This is precisely the case of Ref. 4.) Other examples are 

1= 3, L ~) = i I n _ I , 

I = 4, L ~4) = 3 I n _ 2 • 

In general we have thus found symmetry generators 
T~) for fixed I for all n>l- 2. 
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Connections on infinitesimal fiber bundles and unified theories8
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We provide an intrinsic coordinate-free formalism of Jordan's version of five-dimensional 
Kaluza-Klein or projective theory of relativity in terms of the so-called infinitesimal fiber 
bundles, whose structures are slightly more general than principal fiber bundles with connections. 
Higher-dimensional generalizations are then suggested, thereby providing a more comprehensive 
unified theory. 

I. INTRODUCTION 

Mathematically, a gauge field is the curvature of a con
nection on a principal fiber bundle over space-time with a 
certain structure group. Historically, Weyll was the first to 

. suggest such a connection, with the multiplicative group of 
positive real numbers as the structure group, in his pioneer
ing attempt at a unified field theory of gravitation and elec
tromagnetism. 

Shortly after Weyl, Kaluza and Klein and later Veblen, 
Jordan, and others2 gave another version ofthe unified the
ory, which is known as the five-dimensional or projective 
theory of relativity. Recently3 we tried to formulate Jordan's 
version of projective relativity in an intrinsic, coordinate
free manner and found that when one abstracts the geomet
ric structure of the theory one is led to the concept of so
called infinitesimal fiber bundles and Riemannian 
infinitesimal bundles whose structures are slightly more gen
eral than principal fiber bundles with connections. The ob
ject of this paper is to suggest that these structures may pro
vide a fruitful direction in the search for more 
comprehensive unified gauge theories. 

II. INFINITESIMAL FIBER BUNDLES AND 
CONNECTIONS 

An infinitesimal fiber bundle (of fiber dimension one) is 
a collection (M, ¢, V, X), where (i) M, Vare smooth manifolds 
with dim V = n, dim M = n + 1; (ii) ¢: M--+V is a submer
sion of M onto V; and (iii) X is a nowhere vanishing vector 
field on M, such that if x, y lie on an integral curve of X, then 
¢(x)=¢(y). 

A "connection" on (M, ¢, V, X) is a one-form q on M 
such that (i) q(X) = 1, and (ii) 2' xq + O. Here, (M, ¢, V, X, q) 
will denote an infinitesimal fiber bundle with connection q. 

A principal circle bundle (M, 1r, V, S I) has a fundamen
tal vector field X generated by the action of S I on M and it 
admits a connection one-form q such that (i) and (ii) above are 
satisfied. Similarly, a principal line bundle (M, 1r, V, R) can 
be made into an infinitesimal bundle with connection. 

However, in contrast to a principal bundle (of fiber di
mension one) the fibers of an infinitesimal bundle are not 
necessarily homeomorphic to each other. In general, the fi-

.) This is an enlarged version of what appears as an abstract in "Geometrical 
and Topological Methods in Gauge Theories," in Lecture Notes in Physics, 
Vol. 129, edited by J. Hamad and S. Shnider (Springer, New York, 1979), 
p.152. 

ber of an infinitesimal bundle is a circle over some points of V 
and a line over others. 

The "connection form" q provides a (direct sum) de
composition of the tangent space T m (M) at any point 
meM, into a horizontal subspace H m (M) 
= {EmeTm(MJlqm(Em)1 =O} and a vertical subspace 
V m (M) = {AX m IAeR}. Thus Em can be written as 

Em = C + qm(Em)Xm' qm(~) = 0, 

so that 

horizontal part of Em = Em - qm(Em)Xm' 

vertical part of Em =qm(Em)Xm' 

Note that X ~ = 0, i.e., Xm is vertical. 
Definitions: (1) A function/eC"" (M) is said to be a pro

jective/unction if/=j'0¢ forsomej'eC"" (V). Let CO'(M) 
denote the set of projective functions on M. 

(2) A vector field EefR?(M) is said to be aprojective vector 
field if q(E)eC O'(M) and E is ¢ related to some vector field 
E'efR?(V). 

Let fR? o(M) denote the CO' (M) module of projective 
vector fields on M and Ko(M) the horizontal subspace of 
fEo(M). 

(3) A one-form wefR?*(M) is said to be aprojective one
form if w(E)eC 0' (M) for all EefR? o(M). Let fR?~(M) denote the 
set of projective one-forms on M. 

(4) A tensor field 0 oftype (r,s) is a projective tensor field 
or a projector if ¢ (wl, ... ,W"EI, ... ,Es) eC O'(M) for all 
wiefR?~(M), EjefR? o(M). Let To(M) denote the set of all pro
jectors on M. 

Propositions: (1) fJeTo(M) ~2' xO = O. 
(2) ¢.mIHmIM,: Hm(M)--+T¢>(m) (V) is an isomorphism and 

Ker¢.m = Vm(M). 
(3) Given a vector field E'efR?(V), the condition 

Em eH m (M) and ¢.m Em = E~ (m)' V meM defines a unique 
vector field ¢ *E'eKQ(M), called the lift of E'. 

(4) Every EefR?o(M) is ¢ related to some E'efR?(V). We 
thus haveaprojection map¢.: fR? o(Ml--+fR?( V) and a lift ¢ *: 
fR?( V) ':::::'Ko(M). 

These processes can be generalized to arbitrary projec
tors 0 and we can define 0 to be horizontalif 0 (WI' ... , W" E I , 

... ,Es ) = 0 for at least one Wi = q or Ej = X, and given a hori
zontal projector 0 we can solve ¢ *0' = 0 for 0'. 

Definition: A pseudo-Riemannian metric g on M is said 
to be a projective metric if g is a symmetric projector of type 
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(0, 2) andg(X,x) =J #OonM. Notethat.2" xg = O,i.e.,Xis 
a Killing vector field for g. 

A projective metric g on an infinitesimal fiber bundle 
(M, r/J, V, X) gives rise to a canonical connection q by 

q=J-1X#, 

where X # is the one-form dual to X under the isomorphism 
provided by g. 

From now on we shall suppose that (M, r/J, V, X) is en
dowed with a projective metric g and the canonical connec
tion q = J-1X#, and we denote by (M, r/J, V, X, g) such a 
pseudo-Riemannian infinitesimal bundle (or a Rib space). 

Proposition: Given a Rib space (M, r/J, V, X, g), 
gv = r/J. g is a pseudo-Riemannian metric on Vand 

signature of g = signature of g v + sign J. 

III. PROJECTIVE RELATIVITY 

The projective theory of relativity can now be formulat
ed in the framework of a Rib space (M, r/J, V, X, g), where Vis 
the four-dimensional space-time, and g a projective metric 
such thatgv is a Lorentz metric with the proper space-time 
signature. 

Let V be now the Levi-Civita connection relative to g. 
Jordan2 introduced a so-called congruent connection K as 
follows 

KTfE= VTfE+J-lg(E, VTfX)X -J-1g(E,x)VTfX, 

for '1/, EEfR?(M), which is the unique projective connection [K 
is projective if KTfEEfR?o(M) for all '1/, EEfR?o(M)] such that 

KTfc = (V Tfc)l, 

~ (g(E,'1/» = g(K~E,'1/) + g(S,K~'1/), 
for all E, '1/, ~Ef¥' o(M). Let R be the Riemann curvature ten
sor relative to K. 

Proposition: r/J. R = R v' the Riemann curvature tensor 
on V relative to the Levi-Civita connection relative to gv. 

The projective interpretation of the electromagnetic 
field is as follows. The "curvature" of the "connection" form 
q, 

dq = d(J-1X#), 

is a two-form on M given by 

dq(E, '1/) = 2J-1g(Kx E,'1/). 

If g(X,x) = J = K = const, then dqlS,'1/) = 2K- 1g(V xE,'1/). 
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The two-form dq on M gives rise to a two-form F on Von 
projection, such that 

dq = r/J *F. 

Here, Fis closed, but not necessarily exact and is to be identi
fied with the electromagnetic field tensor. In the absence of 
electromagnetic field, i.e., F = 0 (and J = K), it can be shown 
that Tor K = 0 andK = V. 

Finally, the projection of Rice K = 0 or some similar 
equations (obtained, say from some variational principle) 
gives the combined Maxwell-Einstein equations on V. 

IV. REMARKS AND GENERALIZATION 

Thus, as far as nonquantum unified theory of gravita
tion and electromagnetic field is concerned a possible geo
metric setup seems to be a Riemannian infinitesimal bundle. 

This formalism seems to have some connection with the 
formalisms of G foliations (or Riemannian foliations)4 or 
that offibered spaces introduced by Yano and Ishihara.5 

In contrast to conventional prrincipal fiber bundles 
there is no (structure) group action on an infinitesimal fiber 
bundle. However, in a Rib space the fundamental vector 
field generates a local one-parameter group of local isome
tries. 

It should be possible to generalize this formalism to (M, 
r/J, V, E, m), where dim M = dim V + r, E is a r-dimensional 
(integrable) distribution, and m is a r-dimensional (integra
ble) codistribution on M, such that mi (Ei ) = 1, .2" E,m i = o. 
(Here Ei , mi span E and m.) 
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The problem of solving the combined gravitational and Yang-Mills field systems is regarded as a 
purely geometrical problem of determining a linear connection on the principal frame bundle 
L (M) from a connection on a SU(2) principal bundle over a space-time M. It is suggested that 
mapping theorems of connections on bundles may provide a means of actually solving "field 
equations. " 

I. INTRODUCTION 

In classical gauge field theories, whereas the electro
magnetic or the Yang-Mills field arises from connections on 
U(I) or SU(2) principal bundles P(M) over the space-time 
manifold M, the gravitational field arises as a linear connec
tion on the GL(4) principal frame bundleL (M) over M [or in 
particular on the SO(3, 1) principal bundle of Lorentz frames 
on M].1.2 According to the general theory of relativity every 
nongravitational field, via its energy-momentum tensor, 
should generate a gravitational field. Thus from the gauge 
viewpoint a SU(2) connection, which describes a Yang-Mills 
field, should determine a GL(4) connection according to the 
Einstein-Yang-Mills equations. 

We wish to regard the problem of "solving the field 
equations" for a combined gravitational and Yang-Mills 
field system as a purely geometrical problem of determining 
a linear connection on the principal frame bundleL (M) from 
a connection on a SU(2) principal bundle on M. It should be 
emphasized that we are not assuming any particular field 
equations (e.g., Einstein-Yang-Mills equations). What is as
sumed here only is that one has a nongravitational field in
teracting with and somehow determining the gravitational 
field. 

A geometrical link between the two fields is provided by 
the well-known 2-1 covering homomorphism ofSU(2) into 
SO(3) and thus into GL(4).1t suggests therefore that we con
sider homomorphisms of principal bundles. Then there ex
ists a mapping theorem of connection on bundles whenever 
there is a diffeomorphism of the base manifolds. This paper 
considers a simple possible application3 of such a mapping 
theorem and shows how, in principle, one can compute the 
linear connection components from a Yang-Mills connec
tion, given a base diffeomorphism. 

II. THE MAPPING THEOREM OF CONNECTIONS ON 
BUNDLES4 

Recall that a bundle homomorphism of a principal bun
dle (P, M, 11", G ) into another principal bundle (P', M', 11"', G ') 
is a triple of COO maps (fP,JG,JM)' where 
fp:P-+P',fM:M-+M' andfG:G-+G' is also a group homo
morphism and such that (i) the diagram 

/p 

P -+ P' 

commutes, and (ii)fpoRg = R/d.g) ofp for all gEG. Here Rg 
and R lcJ.g) are the group actions on P and P', respectively. The 
mapping theorem of connections on bundles then states the 
following theorem. 

Theorem: Let (fP,JG,JM) be a bundle homomorphism 
from(P, M, 11", G)into(P', M', 11"', G')suchthatfM:M-+M'is 
now a diffeomorphism. Let r be a connection in P. Then 
there is a unique connection r ' in P , such that the horizontal 
subspaces of r are mapped into the horizontal subspaces of 
r'. 

III. APPLICATION TO GAUGE FIELDS 

First of all, to see the relationship between rand r " let 
w, w' be the corresponding connection forms and n, n ' the 
corresponding curvature forms of r, r " respectively. If now 
6 and 6' are the Lie algebras of G and G', respectively, the 
homomorphismfG :G-+G ' induces a Lie algebra homomor
phismlG :6-+6'. Then according to the theorem 

f~(w') =IG"w (1) 

and 

(2) 

Equation (1) is to be interpreted as follows. For every 
XpETp(P), w;.Wp).p(Xp))E6', wherep'Eif'p(p). On the other 
hand, Wp(Xp)EG. Hence (1) means 

w;.((t;,.p(Xp)) =IG(wp(Xp)), 

for all p and Xp. Similarly for (2). 
We shall now apply the mapping theorem to the follow

ing situation. We take the same base manifold: M = M' = lR 
(for simplicity), and P= P(M) = M XSU(2) = lR4XSU(2), 
i.e., the SU(2) bundle overlR4, andP' = L (M) = lR4XGL(4), 
the frame bundle ofR4. Let now fM :lR4-+lR4 be any C 00 map. 
There is a natural 2-1 covering homorphism of SU(2) into 
SO(3)CGL(4). This gives us a homomorphism 
fG:SU(2)-+GL(4). If we now define fp:P-+P' by 
(X,g)-+(fM(X),JG(g)), wherexElR4 andgESU(2), it is easy to see 
that (fP,JG,JM) is a bundle homomorphism of P(M) into 
L (M). Iffurthermore./M is a diffeomorphism ofR4 onto lR4, 
then the mapping theorem on connections says that a con
nectionron SU(2) bundleP (M) determines uniquely a linear 
connection r' on the frame bundle L (M) via Eqs. (1) and (2), 
such that the horizontal subspaces of P (M) are mapped into 
the horizontal subspaces of L (M). 

Since SU(2), as a manifold, is homeomorphic to S 3, we 
can parametrize it by means of three real parameters u = (u l' 

u2, u3 ), as follows. 
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A typical element of SU(2) is 

(
X + iy z + iW) 
-z+iw x -iy , 

with x, y, z, W real and X Z + y2 + ZZ + W
Z = 1. The three 

parameters are thus given by 

1 - ~;uJ 
X= , 

1 + ~;u~ 

2u I 
Y = ----'--z ' 

1 +~;u; 

2U2 Z= ---=-
1 + ~;u~ , 

2u3 W = ----"'--
1 + ~;u; 

Now the 2-1 covering homomorphism SU(2)-SO(3) is 
given, in terms of x, y, z, w, by 

1
XZ_y2_zZ+WZ 

(
X + iY. z + i~) _ 2(xy _ zw) 

2(xy +zw) -2(xz-yw) ) 
XZ _ y2 + ZZ _ WZ 2(yz +xw) . 

- z + IW X - Iy 2( ) xz+yw -2(xw-yz) XZ+y2_zZ_wZ 

We thus have a map: SU(2)3(u l , Uz, u3~(a~(u)) 
eSO(3), and SO(3) itself can be homomorphically imbedded 
into GL(4), for example, as 

(

(auu)) 

(a~ (u))y. 

000 ~) 
We thus have a homomorphismfG from SU(2) into GL(4). 

LetfG: SU(2)_GL(4) be given by Ut----H1p(u) e GL(4), so 
that fp: R4XSU(2)_R4XGL(4) is given by 
(x,u)f--+(f,. (x), ap(u)), where fM: R4_R4 is (x,,,Jf--+(f,. (x)). We 
shall write the map asfp: (Xa )f--+( YA), where (Xa) = (x,u) and 
(YA) = (f,.(x), ap(u)). A Yang-Mills form won P(M) is then 
w(X) = Wa(X)dXa' whereas a linear connection form w' on 
L (M) is w'lY) = w~ (Y)dYA. Equation (1) is then simply 

oYA -
-w~(Y) =fG(wa(X)), (3) 
oXa 

Now 

w'lY) = W~(Y)dYA 

= {(a-Ifv(u)(da;(u) + r~A(y)a;(u)dYa)}ES' 
where the r ~A (y) are the connection components on the base 

manifold R4 and the (Es I are the standard basis of GL(4), 
and 

W(X) = wa(X)dXa = {w~(X)dXa IE; 

= {wJ(u)duj + w~(x,u)dxa IE;, 

where the w~(x,u) are related to the Yang-Mills potentials 

and the {E; I are the basis of SU(2). Thus from (3), we get 

((a-Ifv(u)(da;(u) + r~A(u)dYa)JES 
=IG({wJ(u)duj + w~(x,u)dxa IE;). (4) 

Recall that IG = (fG).e:Te(SU(2))-Tfo(e)(GL(4)), 
SU(2)3e++(u = 0). So we put u = 0 above and let 
IG(E;) = C !Es. Then (4) becomes 

(a-1fv(0{ O~~U) I u=o du; + r~(y(x))a;(O)dYa ) 
= {wJ(O)duj + w~ (x,O)dxa Ie!. (5) 

But a; (0) = (a- 1);(0) = 0; and wJ(O) = oj so 

1163 J. Math. Phys., Vol. 26, No.6, June 1985 

(6) 

f3 OYA _ f3; 
r Af.L (y(x)) - - C;Jt wa (x,O). 

oXa 

Equations (6) thus determine the connection components 
r~f.L in terms of the Yang-Mills potentials w~ and the func
tionsY,< =f«x). 

IV. CONCLUDING REMARKS 

(1) Every diffeomorphism (XA)f--+(YA =f«x)) of space
time M determines a linear connection on M in terms of a 
Yang-Mills potential in view of the natural homomorphism 
of SU(2) into GL(4). 

(2) If the linear connection is to come from a Lorentz 
metric then it will have to satisfy the usual metric compatibi
lity conditions. 

(3) SU(2) can be homomorphically imbedded into GL(4) 
or SO(3, I) in two different ways, e.g., 

Each of these homomorphisms gives rise to different linear 
connections according to (6). 

(4) Equations (6) also show that the contribution of the 
Yang-Mills potentials to the connection components is, in 
general, nonsymmetric and would thus give rise to torsion in 
the connection. 

(5) Similar conclusions apply to the case of the electro
magnetic field which arises out of connections on a U( 1) bun
dle over M, because there exist also natural homomorphisms 
ofU(I) into GL(4) (cf. Appendix). 

(6). This viewpoint seems to suggest that, in analogy 
with Yang-Mills (or electromagnetic) field, we should re
gard the r~f.L 's instead of the metric, as potentials of the 
gravitational field and this lends some support to the sugges
tion of Yang and Killmister that the source-free field equa
tions of gravitation should be of the form RfLa;/3 = Rf.Lf3;a. 
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APPENDIX: THE REISSNER-NORDSTROM SOLUTION 

In the case of combined electromagnetic and gravita
tional field, a connection on a U( 1) bundle over M determines 
a connection on the principal frame bundle L (M) according 
to the Einstein-Maxwell field equations. 

The simplest example is the Reissner-Nordstrom solu
tion,6 where the metric is 

dr = - e21 (r) dr - r(dO + sin2 tP dtP 2) + ~n(r) dt 2, 

with 

e21(r)=(1_ 2m + Xq2 )-1, e2nlr)=e-21(r), 
r 81Tr 

where m,q represent mass and charge, respectively, of a stat
ic point charged particle generating a spherically symmetric 
electric potential given by tPl = tP2 = tP3 = 0, tP4 = q/r, or 
tPa = Ba4q/r. The connection components are 

rl l =l'(r), r~2 = _re- 21 (r), r~3 =r~2 cos 20, 

r~3 = - sin 0 cos 0, ri2 = ri3 = l/r, r~3 = l/tan 0, 

r~4 =n'(r), r1 =n'(r)e2[n(r)-llr)). 

If this solution is to serve as an example of our mapping 
theoremwemusthavew~=tPa' G = (eiU},andG' = GL(4). 
Consider as an example the following homomorphism of G 
into G': 

{~U - sin u 0 

D 
Ic . eiU sin u cosu 0 

G' 0 0 1 

0 0 0 

so that 

ce=c:~(~ 
-1 0 

V· 
0 0 

0 0 

0 0 
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Since we are dealing with a Levi-Civita connection we have 
r~p' - r~v = O. Rewriting (6) as 

f3 _ f3 i aXa _ r vp.(Y) - C ip.wa(x) , xa - xa(y), 
ayv 

we must then have 

Wi (X)(C f1 aXa _ CfJ aXa ) = 0 
a lJJ.a IVa ' 

~v ~p. 

which presents no problem. However, since C/l is antisym
metric in fJ and p, for the above homomorphism tG' r~p' 
must also be an tisym metric infJ andp" which they are defini
tely not in the above case. 

Thus the Reissner-Nordstrom solution cannot serve as 
an example of this simple mapping theorem for the above 
homomorphism. 
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We investigate one-dimensional chaotic configurations of atoms, which are generated by the 
Baker transformation or, equivalently, by the Bernoulli shift. The problem of calculating the 
distribution ofthejth nearest-neighbor distances of these configurations is shown to be equivalent 
to the task of finding the limit distribution of the sum of the strongly dependent random variables 
XI :([0,1 ),pL!-+[0, 1), ~(21 x)mod 1 (/eNo, PL is the Lebesgue measure). We prove the validity of a 
local limit theorem for this sequence of random variables and conclude, therefore, that the 
distribution density Gj ofthejth nearest-neighbor distances is asymptotically (asj-+oo) a 

Gaussian distribution, the width of which grows as,g. With the aid of this result, we prove that the 
pair distribution function G of our configurations, which is the sum of the Gj's, tends to unity in 
the limit of large distances. 

I. INTRODUCTION 

Central-limit and local-limit theorems for sums of inde
pendent random variables are well known in probability the
ory.I,2 There has also been success in proving central limit 
theorems for sums of weakly dependent random variables, 
e.g., see Refs. 3 and 4. In this paper we are interested in the 
sum of the strongly dependent random variables 

X I :( [0,1 ),PL )-+[ 0,1), 

(1.1) 

(/eNo,PL is the Lebesgue measure). For sums offunctions of 
these variables of the form 

j j 

L f((2Ix)mod 1) = L f(XI(x)), (1.2) 
1=0 1=0 

Ibragimov5 proved a central-limit theorem (convergence of 
the distribution function, not the density). For the special 
case off as a characteristic function of an interval, Moskvin 
and Postnikov6 showed the validity of a local-limit theorem. 
This result was generalized to a larger class offunctionsfby 
Rousseau-Egerle/ but our case, f = identity, is excluded. 
We prove here this case in an elementary way in the sense 
that it does not presume knowledge of probability theory. 

This local-limit theorem allows us to determine the 
asymptotic behavior of atomic pair-distribution functions of 
one-dimensional chaotic configurations of atoms, which are 
constructed by fixing the distances between neighboring 
atoms with the aid of the Baker transformation or the Ber
noulli shift. The investigation of such configurations is moti
vated by the question of whether it is possible to interpret 
amorphous structures as a spatial analog to chaotic time evo
lution in dynamical systems. This question and a discussion 
of the physical significance of our results are published else
where8

; here we give a mathematical formulation of the con
nection between the pair-distribution functions of these con
figurations and the random variables XI defined in (1.1), and 
the proofs. 

The paper is organized as follows: In Sec. II we first give 
the definitions of our chaotic configurations. Then we define 
the random variables Dj , which are essentially sums of the 

random variables X/ ,and their distribution densities A -IGj • 

The crucial part of this section, the connection between the 
pair-distribution functions of our configurations and the 
densities of the random variables Dj , i.e., the identification of 
the distribution density ("function") ofjth nearest-neighbor 
distances with Gj is given in Theorem Ob. Section III con
tains the following results: The above-mentioned identifica
tion allows us to apply the local-limit theorem (Theorem la) 
to our configurations (Theorem Ib). With this result it is 
possible to prove the convergence of the pair-distribution 
function G to a constant (which, in our units, is equal to 
unity) in the limit oflarge distances (Theorem 2). Section IV 
contains the proof of the local-limit theorem, and Sec. V 
applies it to demonstrate Theorem 2. Finally, in Sec. VI we 
give a short discussion of the results. 

II. DEFINITIONS 

By a configuration we mean the set of the positions of 
the atoms in a one-dimensional chain. We first specify the 
special configurations we want to look at Ifn denotes 
fOfo ... oj, n times). 

Definition 1 a: Baker configuration: Let (a'p )e[O, 1 )2; 
(A,B )eR + 2, such that B < 2A. Then we define 

Ca,p(A,B) = I uneR\neZ,uo = 0, 

un+ 1 - Un = A + B !(Tn(a.p))1 - !)}, 
(2.1) 

where T:[O, 1)2-+[0, 1)2 is the Baker transformation 

(T(x'Y))1 = {2x, for xe[O,!), . (2.2) 2x - 1, for xe[p), 

(T(x )) _ {!Y , for xe[O,!), 
,y 2 - !(Y + 1), for xe[p). 

Definition 1 b: Bernoulli configuration: Let r = I rl lie Z 

eIO,l}z; (A,B )eR+ 2, such thatB <2A. Then we define 

Cy(A,B) = I uneR\neZ,uo = 0, 

un + 1 -Un =A+B{tp(sn(r))-Hl, 
(2.3) 
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wnere 

and 

s: 10,1 ]Z_IO,1jz, 

I rl ]/EZ~I rl+ I ]/EZ 

is the Bernoulli shift. 

(2.4) 

(2.5) 

Because of the well-known equivalence between Ber
noulli shift S and Baker transfonnation T (see Refs. 9 and 
10), we obtain, with 

00 rl 00 r-I 
aIr) = I~I 21' /3 (r) = I~O 21 + I ' 

(2.6) 

the following identity between the Definitions la and Ib: 

Ca(r).p(rdA,B) = Cr(A,B) . (2.7) 

In the following, therefore, we limit our considerations 
to the more intuitive Definition 1a. 

The construction of our configuration can be described 
as follows: The distances Vn = Un + I - Un between neigh
boring atoms are in the interval [A - B 12, A + B 12) of 
length B around the point A. For vanishing B, A is the lattice 
constant of the corresponding crystalline configuration; B 
limits the variation of the atomic distances around this value. 
It is clear, that the ratio B I A, the relative variation, is the 
important parameter of our model. The arbitrary fixation of 
Uo = ° has no influence to the results. The other parameter 
of the configurations is the initial point of iteration 
(a,/3 )E[O, 1 f The first component of the nth point of iteration 
(nEZ) of the Baker transfonnation T' (a,/3) detennines, ac
cording to (2.1), the distance 

Vn =Un+ 1 -Un =A+B((Tn(a,/3))I-~)' (2.1') 

We now make the following assumptions. 
Assumptions: 

aE[O,I),/3E[O,I) nonnal numbers (see Nivenll
); 

AER+, BER+, B<2A; (2.8) 

Ca,p(A,B) = IUn ]nEZ' un as defined in (2.1). 

The nonnality of a and/3implies, according to its defin
ition, II that the first components of the sequence of iteration 
points (T' (a,/3))1 are unifonnly distributed in the unit inter
val: 

lim (l/2N)#IlEZI - N<l<N 
N~oo 

and(Tn+/(a,/3))IE[XL,xR)] =XR -XL' 

(2.9) 

for all nEZ and all intervals [XL ,x R) C [0,1). (# means the 
cardinality of the set.) From (2.9) we conclude the following. 

Theorem Oa: Mean atomic distance: Under the assump
tions (2.8) we have 

. 1 N-I . 1 
11m - I Vn+1 = 11m -(Un+ N - un_ N) =A. 
N~oo 2N I~ -N N~oo 2N 

(2.10) 
This theorem states that A is the mean atomic distance of our 
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configuration if(2.8) is satisfied; it expresses the ergodicity of 
the Baker transfonnation T. 

Proof: Let EER +, nEZ. Choose mEN, NoEN such that 

BI2m + I <E, 

I_l_#{ -N<I<Nand(Tn+/(a,/3))IE[..!..., k+ I)} 
2N 2m 2m 

- 2~ 1 <B~m' for all kEIO,l...,2m 
- 1], 

for all N> No. 

Then we obtain 

1

_
1_ N~I v I-A 1 <B_1_+2m_E_!!....<E. 

2N I~~N n+ 2m+ 2 B.2m 2 

Here, the first tenn bounds the effect of incomplete compen
sation of points within the intervals of length 2 - m , and the 
second tenn is the contribution of those points which are not 
in the "right" interval. 

To characterize our configurations, we introduce the 
following functions. 

Definition 2: Distribution/unctions (densities): LetjEN. 
Then we define 

Gj:R-Ro+ 

by 

A -IGj is the probability density of the random 
variable Dj on the probability space ([0,1 ),Jh), (2.11) 

Dj:[O,I)_R+, 

j-I 
x~jA + B I !(2Ix)mod 1 -!], (2.12) 

I~O 

here ILL denotes the Lebesgue measure on the interval [0,1) 
(we have introduced the factor A - I in order to make Gj di
mensionless ). 

Finally, we introduce 
00 

G = I Gj • (2.13) 
j~1 

[As we will see later, for each R only a finite number oftenns 
contribute to G (R ).] 

By definition we then have 

A -I fR

2 

Gj(R )dR = ILdD j-I([R I,R2 ))), 'v'[R I,R2)CR. 
JR, 

(2.14) 

Note that these functions Dj are essentially sums of the ran
dom variables XI defined in (1.1), 

.( B) j-I 
Dj=jA-- +B I XI' 

2 I~O 
(2.15) 

andA -IGj is therefore the probability density of such a sum. 
On the other hand, the functions Dj are related to the dis
tances of jth nearest neighbors of our configurations 
Ca,p(A,B) in the following way [see (2.1) and (2.12)]: 

Dj((Tn(a,/3))d = un+j - un' 'v'jEN, nEZ. (2.16) 
This connection allows us to give the following physical in
terpretation of the functions Gj and G. 

Theorem Ob: Physical interpretation of Gj and G: Un
der the assumption (2.8) we have 

P. Reichert and R. Schilling 1166 



                                                                                                                                    

= lim (l/2N)#[IEZI-N<.l<N 
N~co 

andRI<,un+ l + j - Un+1 <R21, 

for alljEN, nEZ 

and alIRIER, R2ER withR I <R 2; 12.17) 

and 

i
R2 

A -I G(R)dR 
R, 

= lim (l/2N)#[(I,m)EZXNI-N<.l<N 
N~co 

for all nEZ 

and all RIER, R2ER withR I <R 2• (2.18) 

The right-hand sides of these two equations are the relative 
frequencies of finding two jth nearest neighbors, or any two 
atoms, at a distance within the interval [RI' R2) respectively. 
Therefore, we have the following physical interpretation of 
the functions Gj and G: 

A -IGj(R) is the distribution density of finding 

the jth nearest neighbor of an atom 

at distance R, 

A -IG (R ) is the distribution of finding any 

two atoms at distance R. 

Or, in other words, 

(2.19) 

(2.20) 

G is the pair-distribution function of our configuration. 
(2.21) 

Proof: D j- 1 ([R I ,R2)) can be written asa unionofa finite 
number of disjoint intervals [x~ ,xk), becauseDj is piecewise 
continuous: 

D j-l([R I,R2)) = u [x~,xk). 
I 

By the aid of (2.14) we then find 

A -I L~2 Gj(R)dR =IlL(~[xLxk)) = ~ (xk -x~). 
(2.22) 

On the other hand [from (2.16) and (2.9)], 

(l/2N)#[ lEZI - N<.l <N 

1167 

andRI<,un+ l + j - Un+1 <R21 

= (l/2N)#[lEZI-N<.1 <N 

and Dj((Tn + l(a"B )).)E[R I,R2ll 
= (l/2N)#[lEZI - N<.l<N 

and (Tn + l(a"B ))IED j- I([R I,R2)) 1 (2.23) 

1 
= ~ 2N # [lEZ I - N<.l<N 

and (Tn+l(a"B))IE[x~,xkll 

~L (xk -xa asN~oo. 
i 
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Then (2.17) follows immediately from (2.22) and (2.23), and 
(2.18) is now obvious. 

The identification of the probability density A - I Gj of a 
sum of the random variables XI defined by (1.1) and (2.15) 
with the distribution density ofthejth nearest-neighbor dis
tances of our configurations, which is given formally in (2.17) 
and intuitively in (2.19), allows us in the following section to 
apply the local-limit theorem (Theorem la) to our chaotic 
configurations. 

III. RESULTS 
In this section we state the local limit theorem (3.1), we 

give an obvious conclusion about the jth nearest· neighbor 
distances distributions (3.2), and, finally, we present a more 
indirect consequence about the pair-distribution function G 
(3.3). The proofs are given in Secs. IV and V. 

A. Local limit theorem 

We first give the formulation of the local limit theorem. 
The proof can be found in Sec. IV. 

Theorem la: Local limit theorem: Let ~,jEN be the 
random variables on the probability space ([0,1), ILL) defined 
by 

~(x) = (2ix)mod 1 (3.1) 

[notice that~ =/0/0 ... 0/ (jtimes), with/Ix) = (2x)mod 1]. 
We define further 

j-I j-l . 
lj(x) = L (XI(X) - n = L (2Ix)mod 1 - L, (3.2) 

1=0 1=0 2 
2 2 j-l 

Z(x) = - Y.(x) = - L (XI (x) - ~), (3.3) 
J >I} } >I} 1=0 

and let Pj be the probability density of Zj. Then 

limpj(z) = (1/,[iii exp( - z2/2), 
~co 

(3.4) 

for all zER, uniformly in every bounded Z interval. 
This theorem states, as do the limit theorems for inde

pendent and weakly dependent random variables mentioned 
in the Introduction, that the limit distribution of a sum of 
random variables XI -!, with mean value zero and scaled 
by j-1/2, is a Gaussian distribution. 

B.jth nearest-neighbor distribution function Gj 

From the connection 

Zj = (2/(B .JJl)(Dj - jA ) (3.5) 

between the random variables Zj (3.3) andDj (2.12) we con
clude the following relation between their probability densi
ties Pj and A -IGj : 

(3.6) 

Therefore Theorem la is equivalent to the following 
theorem. 

Theore~ lb: Asymptotic form of Gj : 

lim B/} GljA + B/} Z) = _1_ exp( _ r), (3.7) 
j--+co 2A J ~ 2 ,[iii 2 

for all zER, uniformly in every bounded Z interval. 
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Because of the physical interpretation ofGj of Theorem 
Ob [(2.17) and (2.19)], this is an interesting result concerning 
our chaotic configurations. It states, that the distribution 
function (density) ofjth nearest-neighbor distan~ behaves 
asymptotically as a Gaussian distribution, centered at jA 

with a width which grows as J). 
Furthermore, from the proof in Sec. IV we get the fol

lowing explicit formula for Gj : 

Gj(R) =ANj(R )lB(2i - 1), (3.8) 

with 

Nj(R) = #{xe[O,I)IDj (x) = R J, (3.9) 

and with Dj according to (2.12). 
Hence, Gj is a piecewise constant function, which is 

zero outside the interval UtA - B /2),j(A + B /2)]. For small 
j, Gj can easily be calculated according to the above formula, 
but for large values of j this calculation becomes trouble
some, because the number of steps of Gj grows exponentially 
withj. It is therefore useful that we can give the asymptotic 
form in (3.7). 

c. Pair distribution function G 

Because Gj (R) is zero for R outside the interval 
[j(A - B /2),j(A + B /2)], for each R only a finite number of 
terms (which depends on R ) contribute to the sum (2.13), and 
therefore (3.8) allows us to calculate G. Nevertheless, it is 
very useful to have an analytic expression for its asymptotic 
behavior. 

Theorem 2: Asymptotic behavior of G: 

lim G(R) = 1. (3.10) 
R~co 

Theorem 2 states that the oscillations of G go to zero, if 
R goes to infinity. This behavior is true for all allowed values 
of A and B (B < 2A ), which influence only the speed of con
vergence, and it agrees very well with that expected for 
amorphous solids, as is discussed in Ref. 8. The proof of 
Theorem 2 is given in Sec. V. 

IV. PROOF OF THEOREM 1 

We establish here first the validity of formula (3.8) and 
then we prove the local-limit theorem (Theorem la). 

Because the slope of lj (3.2) is constant 

Y; = 2i - 1 a.e., (4.1) 

and the probability density of the identity is P = 1, we get for 
the probability density qj of lj 

qj(Y) = M;(y)/(2i - 1), (4.2) 

where 

M;(y) = #{xe[O,I)llj(x) =yJ. (4.3) 

To get the corresponding expression for Gj we denote the 
probability densities of 

identity, lj, Zj, and Dj by 

P, qj' Pj' and A -lGj , (4.4) 

respectively [in accordance with the definitions of Pj 
(Theorem la) and Gj (2.11)]. From (3.3), (3.2), and (2.12) we 
obtain then 
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G.(R) =~ .(R -jA) = 2A .(2(R -jA I). (4.5) 
j B qj B B...[j Pj B ...[j 

Together with (4.2) and (4.3) this now leads to the formulas 
(3.8) and (3.9). 

The proof of Theorem la is now given in three parts: 
First, we show that the probability density qj (4.2) can be 
represented in a natural way by a binomial distribution plus 
a rest term [formula (4.2) together with Lemma 1], then we 
give an estimate of this rest term (Lemma 5), and finally, we 
use the local-limit theorem of de Moivre-Laplace (local-lim
it theorem for binomial distributions) to get a Gaussian dis
tribution. 

A. Part 1: Representation of Mj 

To formulate the first statement, we need the following 
functions: ForjeN,me{O,I, .. jJ,xelR we define 

ffm(X) = #{ke{O,I, ... ,2i -11 (i
1 

O'v(k) = m 
v=o 

and ~ >x}, (4.6) 

where O'v(k )e{O,1 J are the coefficients ofthe binary expan
sion of k: 

co 

k= L O'v(k)r. 
v=o 

Furthermore, we need for jeZ, yelR, 

m(j,y) = [y + j/2] 

(4.7) 

(4.8) 

where [z] denotes the integer part of z. (~) is the binomial 
coefficient, which we define to be zero for meZ\ {O,I, ... jJ. 
We can give now the first step of the proof. 

Lemma 1: 

fOrye[ _LL] 
2' 2 ' 

for ,,<I: [ _ L L] ,,'<- 2' 2 ' 

(4.9) 

with 

xo(y) = ~ - y + [y + !], IQ (i,y) I <2. 
Proof We obtain this result in writing lj (i> 1) in the 

following form. For 

xe[k/2i-l,(k + 1)12i- 1
] (4.11) 

(ieN\ {1 J, kEf 0, 1, ... ,2i - 1 - 1 J) and with 

.:1x = 2i- 1x - k = 2i- 1x - [2i- 1x]e[0,1), 

we can write 

lj(x) = Y](x) + Y](x), 

Y](x) = - k /2i- 1 
- ~ + (2 - 1I2i- 1j...1x, 

2 j-2 j-l 
Yj(x) = L O'v(k)---. 

v=o 2 

(4.12) 

(4.13) 

This decomposition allows an examination of the structure 
of the function lj: The graph of Y] consists of a set of paral
lei lines of slope 2i - 1, which are arranged in a strip of slope 
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V;(xl 

2 

'1 

'2 

2 

'1 

·2 

FIG. 1. First part of the decomposition of 
Ys' 

- 1 from [ - ~,H at x = ° to [ - M] at x = 1 (compare 
Fig. 1). In Fig. 2 YJ spreads these lines out to j strips B ~ , 
m = 0, 1, ... j - 1 parallel to the original one, B~ from [ - jl 
2 + m, - j/2 + m + 2] at x = ° to [ - jl2 + m - 1, - jl 
2 + m + 1] at x = 1 (see Fig. 3). Each strip B ~ contains still 
(~- I) of the original lines, because this number is determined 
by the condition 

}-2 
L O'v(k)=m, k=[2i- Ix), (4.14) 

v=o 
Le., by the number of l's in the binary decomposition of k. 

The calculation of ~(y) (4.3) consists in counting the 
crossing points of the graph of Yj with that of the constant 
function y. We first remark that only the three strips 
B~u.y) _ I' B~U,Y)' and B~u.y) + I contribute [consider (4.12)]. 

Considering the segments of the graph of y that lie in 
these three different strips, we get Lemma 1. 

Futhermore, we obtain from this proof the following 
rough estimate of GJ , which we will need in the next section 
to prove Theorem 2. 

Lemma 2: 

<B(2iA_l){(m~;)~ J 
+ (~v.~)) + (m~;) ~ J}, (4.15) 

for ReU(A -BI2)j(A +BI2)], 
= 0, for R~U(A - B 12)j(A + B 12)], 

with 

m{j,R) = [R IB - ((2A - B )/2B Ii]. (4.16) 

B. Part 2: Estimation of R(j,y) 

According to (3.11) we are interested in an estimation of 

R (joY) fory = (~/2)zwithfixedzandforlargevaluesofj. We 
get this estimate in three steps. First, we show in Lemma 3 

I 

2 

- -- 1 
FIG. 2. Second part of the decomposition of 
Ys' 

·1 -- - ·1 

·2 ·2 

that the lines within the strips B~u.y) of Yj (see the proof of 
Lemma 1) are asymptotically equidistributed in [0,1) for 

largej andy = (J}12)z. This result allows easily to conclude 
in Lemma 4 that nimU,(.[J12)z) (x) is proportional to (1 - x) (for 

j---+oo). From this we get the final upper bound of R (j,(~/2)z) 
in Lemma 5. 

To formulate Lemma 3 we need the following notation: 
ForjeN, meNo, leNo, I<.m<j, ke{0,1, ... ,21 -lj, we define 

(
j )-1 { PW,m)= m 4* ne{O,I, ... ,2i-l}1 

}-I n [k k+l)} L O'v(n)=mand~e 1'-- . 
v=o 'l! 2 21 

(4.17) 

Here, P ~ (j,m) gives the relative frequency of the numbers nl 
2i, ne{O,I, ... ,2i- I

}, n with m l's in its binary decomposi
tion, to be in the interval [k 121, (k + 1)12/ ). This is equal to 
the relative frequency of the lines within the strip B ~+ I to be 
in this interval, as is seen from the proof of Lemma 1. We 
define further 

m{j,n l,n2,z) = [(j + nd/2 +z~ + n1/2] + n2• (4.18) 

Now we can state equidistribution. 
Lemma 3: Let leNo, zoeR+, E1eR+. Then there exists 

jleN such that 

IPW,m{j,n l ,n2,z)) - 1/2/1 <EI, (4.19) 

for all (j,k,n l,n2, z)e{ (j,k,n l ,n2' z)eN X {O, 1, ... ,2/- I} 
X { - 1,0,1 }2XRV>jl,lzl <zo}. 

Proof: If 

m;;.l, j- m;;.l, (4.20) 

Le., if the integers n we count in (4.17) have at least I zeros 
and II's in their binary decomposition, we can give an ex
plicit formula for P ~: 

PW,m) = Ii (0'1_ I_p(k){ m + 1 -l:~=o 0'1_1_ v(k)} + (1 ~ 0'1_ l-p(k))U - m + 1 -l:~=o(1 - O'I_I_v(k ))J ). 
p=o )-It 

This formula is obtained in the following way: For nl21 to be 
in the interval [k 121 ,(k + 1 )12/), I binary digits of n have to 
be equal to those of k. The factor with index It of (4.21) gives 
the relative frequency of the binary digit (p + 1) of n to be 
equal to that of k if already It digits are equal. The first term 
in each factor gives this quantity if the considered digit of k is 
1, the second ifit is zero. Ifwe choose m according to (4.18), 
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(4.21) 

I 
condition (4.20) is satisfied for sufficiently largej, and in in-
serting minto (4.21) we see that each factor converges to ! for 
j---+ 00 and Lemma 3 is proved. 

As mentioned before, Lemma 3 can be used to draw 
conclusions concerning nim • 

Lemma 4: Let zoeR +, E2eR +. Then there exists j2eN 
such that 
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Y,(r) 

3 +<= ___ =-j. ! 
2 

·1 

'2 

FIG. 3. Combinations of both parts Y~ and 
Y; to Y,. 

·3 

By the aid of Lemma 3 we obtain 

1 nimv.n ,.n2 .z) (x{m(j,:,n
2
,z)) - 1 - (1 - x) 1 

2 <1'+ (21 + I)E1, 
2 

(4.24) 

for sufficiently largej.lfwe now choose I as big as 2/21 < E21 
2 and then El as small as (21 + I)EI <E2/2, Lemma 4 is 
proved withj2 equal to the value ofjl in Lemma 3 for this 
choice of E I' 

Finally, we get the estimate of R (j,(.J}/2)z). 
Lemma 5: Let zoER +, E3ER +. Then there exists j3EN 

such that 

(4.25) 

for all (j,z)E[(j,z)ENXRV>j3' Izi <zoJ. 
Proof Ifweapply the preceding Lemma toj - 1, nl = 1 

and n2 = ± 1 with 

m(j,z) = U12 + (.J}/2)z] , (4.26) 

we get 

I ni ,,;u.!) + dx) - nimu.!) _ 1 (x) I 

I( j-l ) (j-l )1 
< m(j,z) + 1 - m(j,z) - 1 

{( j - 1 ) (j - 1 )} 
+ E2 m(j,z) + 1 + m(j,z) - 1 

(4.27) 

or (for sufficiently largej, Izi <zo) 

I nimu.!) + 1 (x) - nimu.!) - 1 (x) I < (m~,z))E2(3 + 2E2)' (4.28) 

With this estimate and the definition (4.10) of R (j,y), Lemma 
5 follows. 

c. Part 3: End of the proof 

From (4.5), (4.2), Lemma 1, and Lemma 5 we conclude 
the following. 
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Lemma 6: Let zoER +, E4ER +. Then there exists j4EN 
such that 

! (z) - ..f7 ( j )2- j ! 
Pj 2 [j/2 + (..f7/2)z] 

..f7 ( j )2-j <- E 
2 [j/2 + (..f7/2)z] 4' 

(4.29) 

for all (j,z)E[(j,z)ENXRV>j4' Izi <zoJ· 
The approximation of the Gaussian distribution by the 

binomial distribution is described by the local-limit theorem 
of de Moivre-Laplace, which can be found in standard 
books on probability theory (e.g., Fisz,2 p. 252). 

Theorem (de Moivre-Laplaee): 

lim \..f7 ~(j) __ 1 exp (_ zJk ) \ = 0 
j~oo 2 '}! k fiii 2 

(4.30) 

uniformly for all kEZ where 

Zjk = (2k - j)/..f7. (4.31) 

We can reformulate this theorem in the following way. 
Corollary: Let EsER +. Then there existsjsEN such that 

\
..f7 1 ( j ) 1 (r) \ 2" ')j [j/2 + (..f7/2)z] - fiii exp - 2' < Es, 

(4.32) 

for all (j,Z)E{ (j,z)ENX RI j> jsJ. 
Lemma 6 and this corollary prove immediately 

Theorem Ib and therefore Theorem la. 

v. PROOF OF THEOREM 2 

BecauseGj iszerooutside[j(A - B 12),j(A + B 12)], for 
each R, the sum (2.13) has only a finite number of terms, and 
we can write 

[2R/(2A-BlJ 

G(R)= L Gj(R). (5.1) 
j= [2R/(2A + B)j 

We now want to use the asymptotic form of Gj accord
ing to Theorem 1 b to obtain the behavior of G for large val
ues of R. To clarify the range of validity of the asymptotic 
approximation, we first write Theorem 1 b in another form. 

Theorem Ie: Let zoER +, EER +. Then there exists 
RoER + such that 

G.(R)-----exp - . <--E, 
! 

1 2A (2(R - jA )2) I 2A 
J fiii B..f7 B] B..f7 

(5.2) 

for all (j,R )E[(j,R )ENXR+I R >Ro and RIA - (BzolA) 

~ (R I A ) <j < RIA + (BzoI A )~ (R I A ) J. 
Theorem 1c is easily deduced from Theorem 1b (3.7). 
We see from Theorem 1c that an estimate of the sum 

(5.1) by the Gaussian approximations of Gj is only possible in 
a range ofj values, which differ by not more than an amount 

or the order of ~ RIA from the central value j = [R I A ]. 
Therefore, it is natural to split the sum (5.1) into three parts 
in the following way: 
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[RIA] - [IBzoI2A )~RIA 1-' 
SI(R,zo) = L Gj(R), 

j~ [2R/I2A + B)] 
[RIA] + [IBzol2A )~RIA I 

S2(R,zo) = L Gj(R ), (5.3) 
j~ [RIA] - [IBzol2A )~RIA I 

[2R/12A+B)] 
S3(R,zo) = L Gj(R), 

j~ [RIA] + [IBzoI2A )~RIA 1+ 1 

G (R ) = SI(R,zo) + S2(R,zo) + S3(R,zo)' (5.4) 

In Lemma 7, we determine the limit of the central part 
S2 in the way described above. The other two parts are esti
mated in Lemma 8 by the aid of Lemma 2. 

Lemma 7: Let EER + , zoER +. Then there exists R IER + 
such that 

IS2(R,zo) - _1_J
Z

O exp( - r)dzi <~, (5.5) 
{iii -Zo 2 6 

for all R >R 1• 

Proof: We denote the ~m S2 (5.3) with the asymptotic 
form (5.2) instead of Gj by S2' With 

x=RIA, l=j- [x], (5.6) 
we then obtain 

A 1 [IBzoI2A),}XI {2A 
S2(Ax,zo) = - L --

{iii I ~ - [IBzoI2A )v'XI B,[X 

xexp( - ((2A 1~,[X)/f)h (X,I)} (5.7) 

with 

h(x,l)= ,[X exp(- 2A2 x(x- [xlf-2xl(x- [x])+12(x- [X])_/ 3). 
~[x]+l B2 x([x] +1) 

(5.8) 

It is clear that h (x,I)--+1 for X--+oo uniformly for f in the 
allowed range: 

L (x) = {/EZ I - [(BzoI2A ),[X] <1< [(Bzol2A ),[X lJ , 
(5.9) 

Ih (x,/) - 11 <El25, (5.10) 

for sufficiently large x and fEL (x). Therefore, with 

_ 1 [IBzoI2A )v'XI 2A 
S2(Ax,zo) = - L --

{iii I~ - [IBzoI2A)v'XI B,[X 

( 
((2A IB ,[X)l)2) Xexp - , 

2 
(5.11) 

we have 
A _ _ 

IS2(Ax,zo) -S2(Ax,zo)1 <S2(Ax,zo)(El25), (5.12) 

for sufficiently large x. But 82 (Ax,zo) is the Riemannian sum 

of (lI{iii)exp( -r/2) [..:jz = 2A IB,[X, ZI = (2A IB,[X)/] 
and converges to the integral of this function: 

IS2(Ax,zo) - _1_J
Z

O exp( - r)dzl <~, (5.13) 
{iii -Zo 2 25 

for sufficiently large x. From (5.12) and (5.13), we conclude 

1

82(Ax,zo) - _1_ JZo exp( _ Z2)dZ I 
{iii -%0 2 

< 1+--+-<-. ( 
E)E E E 

25 25 25 12 
(5.14) 

We have yet to estimate IS2 - 821 with the aid of Theorem 1 c 
(5.2). Ifwe apply this theorem with EI30zo instead of E, we get 

A 

IS2(Ax,zo) - S2(Ax,zo) I 

< 2A 2 [(Bzol2A ),[X] + 1 _E_<~, (5.15) 

B ~ [x] _ [(Bzol2A ),[X] 30zo 12 

for sufficiently large x. Lemma 7 is now a consequence of 
(5.14) and (5.15). 

Finally, we estimate SI and S3' 
Lemma 8: Let zoER+. Then there exists R 2ER+ such 

that 
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SI(R,zo) < (clzo)exp( - ~/2), 

S3(R,zo) < (clzo)exp( - ro/2), 

for all R > R2 with c = exp(A I B + 6). 

(5.16) 

The proof of this lemma makes use only of Lemma 2 
(4.19) and of Stirling's formula to estimate the binomial coef
ficients. It is troublesome but not interesting, and it is there
fore omitted here. Theorem 2 now follows from Lemmas 7 
and 8: To each E> 0 we can choose Zo such that 

1
_1 JZo exp( _ Z2)dZ - 11 <~ 
{iii -Zo 2 6 

and 

~exp(~+6- ~)<~. 
Zo B 2 3 

We then conclude from (5.5) and (5.16) 

ISI(R,zo)1 < E13, 

IS2(R,zo) - 11 < E13, 

IS3(R,zo) I <EI3, 

(5.17) 

(5.18) 

(5.19) 

for sufficiently large R, and Theorem 2 follows from (5.4). 

VI. CONCLUSIONS 

We have proved a local-limit theorem for the sum of the 
strongly dependent random variables 

X I :( [0, I ),JlL)--+ [0,1) 

(6.1) 

(Theorem la). 
With the aid of this theorem, we have demonstrated two 

important properties of the chaotic configurations accord
ing to Definition 1: First, the distribution function Gj of the 
jth nearest-neighbor distances becomes asymptotically a 
Gaussian distribution, centered atjA (A is the mean atomic 
distance) and with standard deviation 

U j = (B 12).Jj , (6.2) 

which grows as,j) (Theorem Ib). This statement reflects the 
absence of long-range order of our configurations, which is 
also confirmed by the second property, the convergence of 
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the pair-distribution function G to unity in the limit oflarge 
distances (Theorem 2). 

Therefore, our configurations exhibit qualitatively the 
most characteristic feature of the structure of amorphous 
solids and our results fortify further efforts in the investiga
tion of less simplified but more realistic chaotic configura
tions, which are stationary solutions ofinteraction potentials 
between the atoms and which have been the motivation to 
study the simplified configurations according to Definition 1 
(see Ref. 8). The results concerning these configurations will 
be published later. 
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Generalization of the diffusion equation by using the maximum entropy 
principle 
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By using the so-called maximum entropy principle in information theory, one derives a 
generalization of the Fokker-Planck-Kolmogorov equation which applies when the n first 
transition moments of the process are proportional to A t, while the other ones can be neglected. 

I. INTRODUCTION 

Consider a scalar valued Markovian stochastic process 
x(t )eR, te(to, + 00) whose state probability density function 
p(x,t) is given by the well-known so-called Fokker-Planck
Kolmogorov partial differential equation (FPK equation) 

P(x,t) = - (ap)x + !(f3p)xx' (3>O (1) 

where a and{3 denote two functions a(x,t) and{3 (x,t) which 
are differentiable enough in order that Eq. (1) makes sense. 
The most standard ways to derive the FPK equation are the 
following. 

(i) First, one may consider the Markovian process as 
being represented by the Ito stochastic differential equation 

x(t) = a(x,t) + ~(3(x,t )w(t), 

where wIt ) is a white noise with zero mean and unit variance, 
and then one determines p(x,t ) on using the Chapman-Kol
mogorov equation. 

(ii) Second, one may also assume that the Markovian 
process is defined by its conditional transition moments 

E {Ax/x,t J = a(x,t)At, (2) 

E {(Ax - Ax)2/x ,t J ={3(x,t)At, 

E {(Ax- Ax)"/x,t J = a(At 2), n>3, 

(3) 

(4) 

and then, by once more using the Chapman-Kolmogorov 
equation, one can get Eq. (1). 

Another viewpoint, the information theoretic one, is as 
follows.! 

Proposition 1: Assume that all the information we have 
at hand about the Markovian process is summarized in the 
knowledge of its transition moments (2) and (3); then, in the 
information theoretic framework, according to the maxi
mum entropy principle,2,3 all we can assume is that the prob
ability density p(x,t ) is given by the FPK equation (1). 0 

Our main purpose, in the following, is to show that, by 
only using this maximum entropy principle, it is possible to 
derive a generalization of the FPK equation which applies 
when all the transition moments are proportional to At; a 
case which occurs, for instance, with some fluctuating den
sity fields. 

a'Home address for correspondence: 365 Rue de Chiiteauguay (#252), 
Longueuil, Quebec J4H 3X5, Canada. 

II. A GENERALIZED DIFFUSION EQUATION 

We state the following result. 
Proposition 2: Consider a one-dimensional stochastic 

processx(t) with the unknown probability density p(x,t) and 
the transition probability density 

p(x',t + r/x,t) = : q(z,r/x,t), z: = x' - x. (5) 

Assumption AI: Assume that for small r, the value of 
the state x at t + r, say x(t + r), depends upon x(t ) only. 

Assumption A2: Assume that all the information we 
have at hand about this process is summarized in the knowl
edge of its first n transition moments 

E {zj,r/x,t J = aj(x,t )r, j = 1,2, ... ,n (6) 

where aj(x,t) is continuous in t and differentiable w.r.t. x up 
to the jth order for every xeR. 

Then, in the framework of the maximum entropy prin
ciple, p(x,t) is given by the equation 

• n (_ 1)i aj 

p(x,t) = L -.-, - --. [aj(x,t )P(x,t )]. (7) 
j=! J. ax' 

o 
Proof: We decompose the proof in the following steps. 
Step 1: The probability density q(z,r/x,t) is unknown; 

and according to the maximum entropy principle, we shall 
define q as being that density which maximizes the condi
tional entropy 

H (Z /x,t ) = - L+oo 00 q(z,r/x,t )In q(z,r/x,t )dz, (8) 

given the constraints (7) on the moments. A standard calcu
lation yields 

q(z,r/x,t) = exp(to Qj(r)zj). (9) 

The oj(r) functions should be determined by means of the 
conditions (6); but this is unnecessary since we need only 
their limiting values lim OJ (r), r~. So we shall restrict our
selves to the calculation of the approximation 

q(z,r)~q(z,O) + r(!!L) . (10) az T=O 

Step 2: First of all, one has necessarily 

q(z,O) = 8(z), (11) 

where 8 (z) denotes the Dirac distribution. 
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Step 3: This being so, Eq. (9) yields 

~q(z,r/x,t) = [ - ±a;(r)zj]q(Z,r/X,t), ar 0 
(12) 

where the prime denotes the derivative w.r.t. r; and on inte
grating w.r.t. z, we obtain 

f
+oo aq n 

- dz = - a~(r) - r La; (r)aj (x,t ). 
-00 ar ! 

(13) 

As a result, there exist functions or generalized functions (in 
which case the derivatives are considered in the sense of dis
tributions) bo(z,r), bj(z,r), 1 <J<.n, such that 

a n 

~(z,r/x,t) = bo(z,r) + Laj(x,t )bj(z,r). (14) ar ! 

Now, on substituting (11) and (14) into (10) we get 
n 

q(z,r)~I5(z) + rco(z) + rLaj(x,t)cj(z); (15) 
! 

and the task is then to determine Co(z) and cj(z). 
Step 4: We remark that, according to Eq. (11), the range 

of variation of z is small for small h, so that cj (z) is necessarily 
a distribution concentrated in 0, namely, according to Eq. 
(15), we should have 

cj(z) = kj l5lmjl(z), 

where the constant kj and the derivative order mj is to be 
determined. 

Step 5: Next, we use the moment conditions (6), 
j = 1,2, ... , n to finally obtain 

n ( W 
q(z,r/x,t ) ~15(z) + L ~ a(x,t )I5V)(z). 

j=! J. 
(16) 

Step 6: Assumption A 1 provides the Chapman-Kolmo-
gorov equation 

p(x',t + r) = f-+ 0000 q(x' - x,t + r/x,t )p(x,t )dx, 

and substituting (16) into (17) directly yields 

(17) 

n ( W a 
p(x',t + r) = p(x',t) = rL ~ - [a(x',t )P(x',t)] 

! J! ax' 
(18) 
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as a direct consequence of the relation 

f + oof(x)I5V)(y -x)dx = [d~] . 
-00 dx x=y 

By letting r tend to zero in Eq. (18), we get Eq. (7). 0 

III. A FEW COMMENTS 

(i) A generalization of the FPK equation has been pro
posed by Srinivasan and Vadusedan4 in the form 

• 00 1 aj 

p = .L -:-;- J'_i (ajp) 
J= IJ. x 

to deal with the case where all the transition moments are 
proportional to Lit. This result certainly involves a mistake, 
because if we put a 1 # 0, a 2 # 0 and aj = 0, I~ 3, we do not 
obtain the usual FPK equation. 

(ii) The milestone of our result is Assumption Al which 
allows us to use the Chapman-Kolmogorov equation. This 
could be, of course, questionable; but our claim is that, for 
infinitely small r, x(t + r) should depend upon x(t) only, 
which is physically very realistic. This assumption may be 
thought of as related to the characterization of the physical 
system itself, or merely as defining the framework in which 
we want to derive a modeling for the system. Equation (7) 
can be considered at least as a Markovian representation of 
the system under consideration. 

(iii) In addition, we think that this result may add to the 
genuine meaning of the maximum informational entropy in 
physics. 
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The Gibbs phenomenon in generalized Pade approximation 
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The Gibbs phenomenon in generalized Pade approximation is discussed, and with the aid of some 
rational approximants the Gibbs constants are determined. In addition, the steepest of the 
rational approximants is calculated. 

I. INTRODUCTION 

If one approximates a discontinuous function by poly
nomials (or by Fourier series) it leads to an unusual proper
ty-the Gibbs phenomenon. The polynomials do not con
verge to the function near the discontinuity. The maximal 
value of the error is called the Gibbs constant. For example, 
it is well known that when we approximate the function 
sgn (x) in ( - 1, + 1) by Fourier series the Gibbs constant is 

2 i1T sin t G = - - dt - 1 = 0.178 979 7 .... 
1T 0 t 

Another important property of the approximation is the 
steepness. We call the value of the derivative of the approxi
mant at the discontinuity the steepness. For the function 
sgn (x) the steepness is (411T)(n + 1), for an n-term Fourier 
approximation. It is noted that both properties in a multidi
mensional generalization can appear in more difficult analy
tical features (rapid behavior of the trajectory in nonlinear 
system, strange attractors, etc.). It is desirable to obtain an 
approximation for which the Gibbs constant is as small as 
possible and the steepness is as high as possible. 

Zygmund I proved that one can decrease the Gibbs con
stant by Cesaro's method of summing series, but as experi
mentally shown by Arfken2 this method halves the steep
ness. 

In this paper we consider some rational functions and 
we show that in our case the generalized Pade approximants 
have Gibbs constants smaller than G and their steepness is 
higher than Cn. 

The paper is arranged as follows. In Sec. II we consider 
the generalized Pade approximation in the sense ofCheney3; 
in Sec. III we treat the same problem using the method of 
Clenshaw and Lord.4 We provide proofs of the results of the 
previous sections in Sec. IV, and in Sec. V we present some 
calculations of the steepness following Cesaro's method of 
summing series. 

II. APPROXIMANTS FOR sgn (x) BY CHENEY'S METHOD 

Here and further we apply to a series representation for 
the function sgn (x) in the form 

{
-I, -1~X<O} 00 

sgn(x)= +1, O<x~1 =n~oCnT2n+dx), 

(1) 

where T2n + I (x) is the Chebyshev polynomial and 
Cn = (411T)( - 1)"/(2n + 1). The rationals 

R () = ~~o Pi T2i+ I (x) 
nm X , 
, ~7=oqiT2i(X) 

n,m = 0,1,2, ... , (2) 

which satisfy the relation 

ttoqiT2i(X)}Sgn(x) - i~OPiT2i+ I (x) 

= O(T2n+2m+3(X)), (3) 

are called the generalized Pade approximants.3 The 0 term 
in (3) means a function for which the series in Ti(x) begins 
with the term T 2n + 2m + 3 (X). 

Next we shall list our main results. The solution of 
problem (3) in explicit form is 

3F2( - m, - n + !,n + m + 2;M;x2) 
Rnm(x) =Anmx , 

, '3F2( - n, - m - !,n + m + ~;P;X2) 
(4) 

where the steepness A is 

4 n! r (m + ~) r (n + m + 2) 
A =-.-. (5) 

n,m ..[ii m! r(n + 1) r(n + m +~) 

For n = 0 we can get the classic result. In this case the ap
proximating polynomial is 

(6) 

Its error function takes the highest maximum at the point 
x = aim, m-oo. This value is the Gibbs constant 

G = (411T)a IF2(!;M; - a 2) - 1. 

Differentiating by a we get an equation for a: 

oFI(;~; - a 2) = sin 2al2a = O. 

Its first zero is a = 1T 12. The previous series considered in 
integral form gives the classical result 

G =..±. t sin 2au du _ 1 = ~ {1T sin t dt _ 1. 
1T Jo 2u 1T Jo t 

The steepness is 

Ao,m = (411T) (m + 1). (7) 

Second, we consider the case m = 0, the reciprocal polyno
mial case. In this case the approximants are 

Rn,o(x) = An,ox/3F2( - n,n +~, - !;P;X2). (8) 

Its error function takes its maximum at the point x = Pin 
n-oo. By elementary calculations one can prove that Pis 
the root of the equation 

Jo(2{3) = 0, 
where Jo(x) is the Bessel function. From its first root we get 

P = 1.202412 778 8 ... , 

therefore the Gibbs constant is 

_ ({2P JI(u) )-1 
Go, I - Vo -u- du - 1 = 0.051 356067 .... (9) 
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That is, in this case the Gibbs constantis approximately 5 %. 
The steepness is 

An.o = 2n!(n + 1)!/F(n + !)F(n +~) = 2(n + l)an, 

where an ;:::; 1 for moderate and large values of n. The most 
interesting case is n = m. The approximants are 

~2( - n, - n + pn + 2;~,~;X2) 
Rn.n(x) =An.n x 3 2' (10) 

3F2( - n, - n - pn + };;p;X ) 

where 

A = 2(2n + 1) F(2n + 2). 
n.n .[iT F (2n + ~) 

The error function takes its maximal value at the point 
x = rln3/2, n-oo. The constant ris the root of the equation 

00 (_ 2r)k L =0, 
k=O kl2Hlk 

and its value r = 0.951020874 .... The Gibbs constant is 
given by the formula 

GI,I = ~ oF2(;~,Pr) _ 1 = 0.008 148 902 .... 
/iii oF2(;!,1;2r) 

(11) 

Semerdjiev and Nedelchev5 performed a numerical experi
ment for determining G 1,1 enabling them to state that G 1,1 

does not exceed 2 %, 
The steepest is 

An.n = (4..j21.[iT) n312bn, 

where bn ;:::; 1 for moderate (n > 10) and large values of n. 

III. APPROXIMATIONS FOR sgn(x) BY THE CLENSHAW
LORD METHOD 

Again, from series representation (1) we determine the 
rationals Sn.m (x) by the method of Clenshaw and Lord4

: 

S () 
= I.~oriT2i+ 1 (x) 

nm X • 
. I.~ = OSi T2i (x) 

(12) 

The coefficients ri and Si can be determined from the equa
lity 

sgn(x) -Sn.m(x) = o (T2n+ 2m + 3 (X)). (13) 

Our result is 
4 

Sn.m(x) = - (m + 1)(2n + 1)x 
1T' 

4F3( - m,m + 2, - n + !,n + ~;M~;X2) 
X 2' 

4F3( - n,n + 1, - m - !,m + ~;!,I,I;X ) 
(14) 

First we consider the reciprocal polynomial approximants 
(m=O) 

S () = (4hr)(2n + 1)x 
n,O X 2 

4F3( - n,n + 1, - M;p,l;x ) 
(15) 

Its error function takes the maximal value at the point 
x = lJln, n-oo, where lJ is the root ofthe equation, 

Jo(lJ) = WdlJ), 

and lJ = 0.940 770 564 .... Its Gibbs constant is 
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G1•0 = 0.082 417 272 .... (16) 

The steepness is 411r(2n + 1). 
The case n = m presents powerful approximants. Here 

4 
Sn.n(x) = - (n + 1)(2n + 1)x 

11' 

The error function takes its maximal value at the point 
x = TJln2, n-oo. The value ofTJ is the root of the equation 

ber(2&) =0, 

its first root is TJ = 1.014541 594 .... The Gibbs constant is 

G1•I = ~ oF3(;~'~'~;TJ; _ 1 = 0.049325286.... (18) 
11' oF3(;P,I;TJ) 

The steepness is (4111')(n + 1 )(2n + 1). This is the highest val
ue in all cases. 

IV. PROOFS 

First we will prove formula (4). Let us consider a more 
generalized series expansion for sgn (x) like (1): 

2k () 2k I() ~ T2J+ dx) 
x sgnx = '!k i=-oF(k+j+~)F(k-j+!)' 

k = 0,1,2, .... 

Next, multiplying it by numbers qk (k = O,I, ... ,n), then 
summing these equations, we get 

CtoqkX2k )Sgn (x) 

4 00 (-IY n klHlk 
=- L -. -T2j + l (x) L qk . 

11' j = 0 21 + 1 k = 0 (~ + A (! -A 
We want to determine the coefficients in such a manner that 
the following equations are satisfied: 

n k!Hlk L qk =0, 
k=O (~+AH-A 

j= m + I,m + 2, ... ,m +n. 
In this case the numerator polynomial will be 

.i. ~ (- IY T. (x) ~ k!Hlk 
~2' 1 2}+1 ~qk(3 ')(1 .) 11'j=0;'+ k=O '1+1 k'l-1 k 

To solve the previous equations let us suppose for a moment 
that 

qk = (- n)d - m - !)k(n + m + ~)klkfHlk' 
Consider now the sum 

S= ± (-n)k(-m-!)k(n+m+~)k 
k=O k!(~ +A(!-A 

= 3F2( - n, - m - !,n + m + ~;~ + j,! - j; I). 
S is a Saalschiitz-type hypergeometric sum and therefore it is 
summable by factorial functions. Really,6 

S = (1 + m - 11n ( - 1 - m - n - 11n 

X [I! - 11n( -! - j - n)n] -I. 
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It is not difficult to see that all products differ from zero 
except the first one. Further, when j runs from m + 1 to 
m + n then 1 + m - j runs from 0 to - n + 1 by - 1. 
Therefore, S = 0 for all j (j = m + 1, ... ,m + n). We have 
thus proved the form of the denominator polynomial. To get 
the explicit form of the numerator polynomial we apply the 
value of S forj = O,I, ... ,m: 

Z=.! i (:-IY T2j+dx) 
1rj=oq+l 

X (1 + m -lIn ( - 1 - m - n -lIn . 

H - lIn ( - ! - n - lIn 
Taking the power form of the Chebyshev polynomial 

(l/X)T2H 1 (x) = (2j + 1)( - IY zPI( - jJ + q;X2), 

we get 

Z= (n + m)!r(n + m + 2).!x 

!!lnmnm!r(m + 2) 1r 

m 

XL (2j + 1) 2FI (-jJ + q;X2) 
j=O 

( - m)j(n + m + 2)j(! - n)j 
X . 

( - n - m)j(m + 2)j(1 + n)j 

Let us transform Z to the power form in x 2
: 

Z=.!x (n+m)!(n+m+ I)! 
1r !!lnmnm!(m + I)! 

m 2" ( - m);(n + m + 2);(! - n)/ XL (-4x)' w, 
/=0 (- n - m)/(m + 2);(1 + n)/ 

where 

W= mi; (2i + l)j 
j=O j! 

X ( - m + i )j(n + m + i + 2)A - n + i )jH + i)j . 
( - n - m + i )j(m + 2 + i )j(1 + n + i)A + i)j 

The sum Wis an sF4 hypergeometric function which one can 
sum by theorem of Dougall7

: 

W=( _1)m 

r(i +m + 2)r( -! -i)rH + n +i)n!( - n -m); 
X . 

r(2i + 2)r( -! - m)r(1 + n + m)(n + m)! 

By elementary calculations we get the required result: 

Z=--±"'~ rim +1) r(n +m +2) x 

Iii m! r (n +!) r (n + m + 1) 

~ (- m);( - n + !);(n + m + 2); 2" 

X~ x~ 
/=0 z1(1);(1); 

TABLE I. Gibbs constant and the steepness. 

Cheney'S method 

Fourier Reciprocal 
series polynomial Rational 

18% 5.1% 0.8% 
(4/lT)n 2n (40j2/,fii) n3 / 2 
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Proof of the form of Gibbs constants for the cases m = 0 
and m = n can be obtained by elementary analysis. Here we 
omit the details. The proof of the results of Sec. III is analo
gous with the previous one. 

v. CESARO'S METHOD OF SUMMING SERIES FOR 
sgn (x) AND THE STEEPNESS 

It is well known that if we have a series 

"" L av , 
1'=0 

its Cesaro's sum is defined by the formula 

C a __ ~ (-n)v 
n ~ av • 

1'=0 (-n-a)v 

Here a is a positive parameter. It is well known that if a = 1, 
C~ is Fejer's arithmetic mean and in this case the Gibbs 
phenomenon does not occur. (The case a = 0 gives the origi
nal series.) 

Next we will prove that if a > ao = 0.439 551 2893 ... , 
then, again, the Gibbs phenomenon does not occur. 

Consider again the series (1), thus 
av = (4/1T)[( - It/(2v + 1)] T2v+ dx). 

By short, elementary calculation we get 

C
al ) =.! n + 1 + a n (- n)j(n + a + 2)j(!)j 2j 
nX xL x. 

1r 1 + a j=O (~)j(I + aI2)j(~ + al2)j 

Its error function has the maximum at the point x = sin, 
n- 00. The maximum is 

Ga(s)=.!_s- f _1_ (_S2)k -1 
1r 1 + a k=O 2k + 1 (1 + a12)d1 + al2)k 

= 2. t (1 _ t )a sin 2st dt - 1. 
1r Jo t 

By determining the value s we get the equation 

f (_r)k =0, 
k=O (1 + a12)d1 + al2)k 

or in integral form 

f (1 - t)a cos 2st dt = 0, 

The solutions a and s of the equation G a (s) and of the pre
vious equation are 

a = 0.439 551 2893 ... , 

s = 2.025 782 092 ... . 

Note: Gronwall8 also determined the values a and s, but 
the stated precision of his results is incorrect. The steepness 
in Cesaro's method is (4/1r)(n + 1 + a)/(I + a). For a = 1, 
the steepness is (4/1r)(n + 2)/2. It is halved corresponding to 

Method of Clenshaw and Lord 

Reciprocal 
polynomial 

8.2% 
(8/1r)n 

Rational 

4.9% 
(8/lT) n2 

Cesaro's 
sum 

18%s;Gs;0% 
(4/lT)n/(1 + a) 
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a = o. Thus, we have proved that Cesaro's method of sum
ming series decreases the Gibbs constant, but it also de
creases the steepness. 

VI. CONCLUSIONS 

As a means of summarizing our results, we have listed 
in Table I the Gibbs constants and their steepness corre
sponding to the methods used. 
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The eigenlevels of a two-dimensional quartic anharmonic oscillator are identified as the zeros of a 
"characteristic function" derived from the resolvent. Numerical values are obtained by means of 
Pade approximants. 

I. INTRODUCTION 

In this work we report on an approximation algorithm 
for obtaining the eigenvalues of Schrodinger operators. The 
eigenvalues of the system Ht/J = Et/J are approximated by the 
zeros of Pade approximants of a "characteristic function" 

A (E) = (t/J,t/J )I(t/J,(H - E) -It/J ) , (1.1) 

where t/J is a suitable trial function inL 2. The approach has its 
roots in the resolvent operator techniques of Weinstein, I 
Lowdin,2 and Masson,3 and A (E) is closely related to the 
well-known Weinstein function. 

As an illustration of the method we will investigate the 
energy levels of a two-dimensional anharmonic oscillator 
with a positive quartic anharmonicity.1t is characterized by 
the Hamiltonian 

H=Ho+kVA 

l( a2 a2 
2222) =- ----+liJ1X +liJ2Y 

2 ax2 ay2 

+ k (a llX4 + 2a 12X2y2 + a27Y4) (1.2) 

whereliJ7,aij (i,j = 1,2), and k describe the interaction poten
tial and are given as system parameters (k> 0, alla22 - ai2 
>0). 

The anharmonic eigenvalue problem provides a con
venient testing ground for the present approach. It is a 
prominent example of a class of singular perturbation prob
lems. The energy levels of H in (1.2) are not analytic in the 
coupling parameter k. The Rayleigh-Schrodinger (RS) per
turbation series in k, near the known energy levels of Ho, 
have a zero radius of convergence and the regular perturba
tion approach becomes inadequate. Interest in the physics of 
anharmonic oscillators per se and studies of the analytic 
properties of the divergent perturbative series and of their 
resummation techniques helped to create an extensive litera
ture on anharmonic eigenvalues. Thus a wide spectrum of 
approximate methods and data exist for comparison pur
poses. 

We have already obtained encouraging results for the 
one-dimensional problem.4 The characteristic function 
method yielded a higher number of accurate digits for eigen
values than the resummation techniques directly applied to 
RS series. It did compete well also with other nonperturba
tive approximation schemes, in particular for low to moder
ate quantum numbers. 

The abundance of the studies of one-dimensional an
harmonic eigenvalue problems does not carry over to multi-

dimensional problems and there are few reported results. On 
the other hand, an important asset of the characteristic func
tion approach is that it generalizes to multidimensional 
problems in a straightforward manner due to the scalar form 
of (1.1). Thus we choose the two-dimensional anharmonic 
oscillator as a critical test problem. 

In Sec. II we briefly describe the characteristic function 
method. On the example of the anharmonic oscillator, we 
discuss its relation to other approximation methods and con
sequently the motivation for it. In Sec. III we construct a 
characteristic function for the anharmonic oscillator. The 
values for the energy levels are given in Sec. IV. In that sec
tion we also discuss how to obtain approximation error 
bounds directly from the information on the zeros and poles 
of the relevant Pade approximants. We close the section with 
a numerical example. Section V concludes the paper with a 
discussion of the results. There we compare our results with 
those of Hioe et al.5 We observe that the characteristic func
tion approach offers a robust and efficient approximation 
scheme for low to moderate eigenlevels of complicated po
tentials. 

II. ANHARMONIC OSCILLATOR 

A review of anharmonic oscillator problems is outside 
the scope of this work. However we may outline the main 
approaches in three groups: perturbative methods which 
emphasize the resummation of the divergent RS series; non
perturbative methods which try to obtain "best" approxi
mate wave functions by variational, recursive, or iterative 
techniques; and asymptotic WKB methods. 

In order to apply the summability methods one has to 
determine the analytic behavior of the perturbation series. 
This might prove to be difficult for multidimensional and 
complicated potentials. Nevertheless, Pade and Borel sum
mation methods have been used effectively to extract eigen
value information from these divergent series.6

,7 These 
methods have been very useful in illuminating the analytic 
properties of the RS series. However their convergence rate 
is relatively slow. Due to the asymptotic character of these 
series, summability methods are confined to the small values 
of the perturbation parameter [e.g., k small in (1.2)] and to 
the lowest quantum numbers. 

For high quantum numbers WKB methods yield in one 
dimension rather good numerical results. Their extension to 
multidimensional problems is, however, quite laborious. It is 
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also known that the WKB methods yield low accuracy at 
small quantum numbers. 8.9 

In the one-dimensional problem, Hill determinant 
methods have been effective for the full range of quantum 
numbers and coupling constants k (see Ref. 10). First one 
represents the eigenfunctions by 

(2.1) 

Then by substituting (2.1) into the original equation one ob
tains infinite Hill determinants for the determination of the 
CN'S. In the one-dimensional case, by exploiting special re
cursive relations among the CN'S various determinant trun
cation schemes have been devised. Looking for the zeros of 
increasingly larger determinants, one obtains better esti
mates on the eigenvalues in an iterative way. The extension 
of these special techniques to multidimensional problems, 
however, requires the handling of very large determinants. 

The work of Hioe et al.5
•
9 on anharmonic oscillators is 

most extensive. They have been able to combine various 
methods suited for different regimes of the coupling param
eter k and quantum numbers. Thus they obtain approximate 
analytical expressions for various eigenvalue regimes. They 
extended their approach also to a pair of anharmonic oscilla
tors which are essentially equivalent to a two-dimensional 
anharmonic oscillator. Their analysis of energy-level cross
ing and their extensive numerical tables provide useful com
parison data. To obtain high accuracy by this method, how
ever, still involves dealing with large determinants or 
high-order WKB expansions. 

The characteristic function method is a hybrid algo
rithm. It utilizes resummation techniques (Pade), not, how
ever, on eigenvalue perturbation series but on a properly 
chosen convergent series derived from the resolvent opera
tor. The eigenvalue problem of a linear operator H, 

H,p = E,p, (2.2) 

is transformed by operator projection techniques into find
ing the zeros of 

..1 (E) = (t/J,t/J )I(t/J,(H - E )-It/J ) , (2.3) 

where t/J is one of the normalized basis functions which span 
the Hilbert space under consideration. fA more detailed ac
count of (2.3) is given in Ref. 11.] 

For the present problem, noting that H is positive defi
nite, we modify (2.2) and (2.3) and identify the eigenvalues of 
H as the poles of the following reciprocal characteristic func
tion: 

/(E) = (t/J,(I - EH -I)-It/J )l(t/J,t/J ) = L.d NE N , (2.4) 

where 

(2.5) 

The positive anharmonic oscillator has a purely discrete 
spectrum. Thus an equivalent representation of (2.4) is 

/(E)=~ d; ~d2=1 (2.6) 
~ 1 - E IE;' ~ I , 

where the E/ denote the eigenvalues and the d/ are defined by 
the projection relation 
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(2.7) 

Utilizing the representation in (2.7) and (2.5) we deduce 

.d N = E 1- N L d; ( !: ) -N (2.8) 

and consequently we observe that 

.dN + I/.d N < lIEI · (2.9) 

The algorithm consists now of approximating (2.4) by 
Pade approximants using only a finite number of the "spec
tral coefficients," .dN's. In some cases it might be difficult to 
work with H - N in the evaluation of .dN's in (2.5). To avoid 
this difficulty we introduce the transformation 

t/J = H 2Mrp , (2.10) 

where rp is a closed family of functions under H. Now (2.5) 
becomes 

(2.11) 

Thus for sufficiently high M in the computation of the.d N 's, 
we will have to deal only with positive powers of H. 

With the general outline of the method in perspective, 
now we can discuss the motivation for and the relative ad
vantages of the present approach. In the first place, we are 
approximating a function with a known analytic structure. 
The mereomorphic character of/(E) in (2.4) is particularly 
suited for rational Pade approximants. By (2.4) and (2.9) we 
also observe that/(E) is a convergent Stieltjes series. Pade 
approximation theory for such a series is well developed and 
there exist strong theorems on their convergence properties 
(see Ref. 12, Chap. 17). The Pade summability of/(E) is guar
anteed. Second, the poles of/(E) are relatively insensitive to 
the details of trial functions as long as they are closed under 
H and the trial functions are included in symmetry sub
spaces of the relevant eigenfunctions. Thus be focusing on 
the eigenvalues, the characteristic function approach offers 
larger flexibility in the choice of trial functions. Of course the 
more information one includes on the asymptotics of eigen
functions in the formation of rp, the better the convergence 
rate one obtains. Finally we note that the scalar form of/(E) 
lends itself to an easy generalization to multidimensional 
problems. 

The relative insensitivity of the characteristic function 
approach to the choice of the trial function provides ground 
for a robust approximation scheme. Further it is a controlled 
approximation method, one can extract information about 
error bounds directly from the Pade table utilizing the prop
erties of Stieltjes series. A restriction of the method is, how
ever, that it is confined to moderately low quantum 
numbers. This is due to the fact that/(E) is a series expansion 
around the origin. 

For interacting many-body systems it is the lower ener
gy levels that are of the most interest. For such states and for 
complicated potentials the simple form of the resolvent oper
ator presents the characteristic function approach as an effi
cient eigenvalue approximation scheme where the imple
mentation of other methods may prove to be quite laborious. 
In the following section we construct the function/(E) for the 
anharmonic oscillator. 
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III. CHARACTERISTIC FUNCTION 

In order to build/(E) for the anharmonic oscillator first 
we have to choose a suitable trial function and then evaluate 
the spectral coefficients as defined by (2.11). To this end we 
utilize the normalized wave functions of one-dimensional 
harmonic oscillators 

rP" = 1T- 1/42 -,,/2(n!)-1/2H,,(x)e-x'12, 

whose pairwise products 

um ... (x,y) = rPm (x)rP"(y) 

(3.1) 

(3.2) 

span the relevant Hilbert space. Within this basis set, 
HMum." (M = 0,1, ... ) has a particularly simple representa
tion. For the H given by (1.2), by repeated use of standard 
recurrence relations among the Hermite polynomials, one 
can show that it is given by (we assume henceforth the sum
mation convention on repeated indices) 

HMum." = Cj1f:'um+ 2j.,,+2k, Ijl,lk I <2M. (3.3) 
Further by noting that H M + I U .... " = H (H MUm.,,) and that 
the um.,,'s in (3.2) are closed under H we obtain a convenient 
recursive relation for the determination of the Cj.k's in the 
form 

CIMI,- CIM, j.k -gr .• j+2,.k+2s' Irl,lsl <2, (3.4) 

with 

C~b = 1 

Cj1f:'=O, Ijl + Ikl>2M+ 1. (3.5) 

By this choice of trial functions the evaluation of the spectral 
coefficients becomes an algebraic routine. The inner pro
ducts in (2.11) are easily calculated by (3.3) and by the orth
onormality of rP" 's, e.g., 

(um.",HMum.,,) = C~'. (3.6) 

In the present problem before we embark on the calcu
lation of the spectral coefficients we introduce the transfor
mation (x, y,tP)---.(aX, f3y,¢t), to incorporate some asympto
tic scaling for large values of the coupling parameter k and 
(1.2) becomes 

H¢t= {[2(_a-2~_f3-2~ ax2 ay2 

+ mra-4f3 -2X 2 + m~a-2f3 _4 Y 2)]-1 

+ k (a lla-6f3 -2X4 + 2a12a-4f3 -4X 2y2 

+ an a-2f3 -6y 4)}¢t 

= (E la2f32)¢t = E¢t. (3.7) 

The next step is to establish the recursive relation among the 
Cj1f:"s. Here we introduce the scaling 

B j1f:' = Cj1f:'/[(m + 2JJ!(n + 2k )W /2 (3.8) 

to avoid very large numbers in (3.4). For the particular Ha
miltonian H we then obtain a recursive relation among the 
B IM"S' j.k . 

BIM+I'-G BIM, j.k - '.' j + 2,.k + 2. , 

where 

Irl,lsl <2, 
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(3.9) 

G -2.0 =A ll , G2.0 = MJ(4)All' 

G_ I._ I =A I2 , GI .I =MJ(2)NK(2)A12' 

Go. _ 2 = A22 , GO•2 = NK (4)A22 , 
G I._ I =MJ(2)A12, G_I,I =NK(2)A12' 

G -1.0 = WI + 4A l1 (m -!) + 2A 12(n +!), 

GO._ I = W2 + 4A22(n -!) + 2Adm +!), 
GI•O = (WI + 4A l1(m +~) + 2Adn + !))MJ(2), 

GO•I = (W2 + 4A22(n +~) + 2Adm + !))NK(2), 

(3.10) 

Go.o = (m + !)W3 + (n + !)W4 + 4[~11(! + mj + m/) 

+ (m + !)(n + !)A12 + ~22H + nk + nk2)] , 

with 

All = ka ll /4a6f32, mj = m + 2j, 

AI2 = kaI2/4a4f34, nk = n + 2k, 

A22 = ka22/4a2f36, MJ(r) = (mj + r)!/mJl, 

NK (r) = (nk + r)!/nk ! , 

WI = (1 - a4)14a4f32 , W3 = (1 - a4)/4a2f34 , 

W2 = (1 + a4)/2a4f3 2 , W4 = (1 + a4)/2a2f3 4 • 

For the trial function now we set 

(3.11) 

whose form yields different symmetry subspaces depending 
on whether m and n have the same or different parity. Consi
deration of these subgroups provides valuable insight into 
energy level crossings and degeneracies. 

By (2.11) and (3.11) the relevant spectral coefficients are 
given as 

.::i J = O{M _ Nloli.t , (3.12) 

where 

o ± = 1!4[CIM'(m n) + CIM'(n m) N 0.0' 0.0' 
±(C_q.q(m,n) + Cq._q(n,m))] , (3.13) 

with q = (m - n)/2 and Cq• _ q = 0 if q is not an integer. 
The next step after obtaining the spectral coefficients is 

the formation of Pade approximants to /(E). The Pade ap
proximant [L IM]g to the formal power series g = l: a"x" 
is defined as the ratio of two polynomials P L (x) and QM(X) of 
orders Land M, 

[L IM]g = PL(X)lQM(X), (3.14) 

which satisfy the condition 

I ~:(~) - LiM aNxN I = O(XL+ M+ I), (3.15) 

with 

QM(O) = 1. 

In the present problem/(E) is a convergent Stieltjes se
ries. The poles ofPade approximants will converge uniquely 
to its poles, hence to the eigenvalues of H (see Ref. 3). With 
increasing M the poles of [M 1M] will provide tighter upper 
bounds for the energy levels. There are no explicit error 
bounds on the location of the poles. However one can derive 
a posteriori bound estimates as will be shown in the next 
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section. There we also tabulate the energy levels for some 
critical parameter values and compare our results with those 
of Hioe et al. 

IV. NUMERICAL RESULTS AND ERROR BOUNDS 

In the numerical implementation of the steps as sum
marized in Sec. III, the scaling parameters a and f3 could be 
utilized as optimization parameters. However, since we were 
not interested in fine tuning the trial function we took a = f3 
for simplicity and initially we set a 2 -4k 1/3. We altered a 
when necessary so as only to avoid any over- or underflows 
in the spectral coefficients of (2.11). In forming the Pade 
approximants we used the NAG (Mark 9) double precision 
routine, E02RAF. 

In extracting information from the Pade table one has 
to be cautious about the accumulated round-off errors and 
the "defects" -the unstable pole· zero pairs of the approxi
mants (see Ref. 13, p. 58). Here too, the structure of the 
Stieltjes series provides convenient checkpoints, i.e., we have 
that (i) the poles of the [M + JIM], J> - 1 Pade approxi
mants are on the negative real axis; (ii) the poles of successive 
approximants interlace; (iii) the roots of the numerator also 
interlace those of the denominator; etc. (see Ref. 12, Chap. 
16). Hence, if the general positioning of the zeros and poles of 
the approximants are not compatible with the Stieltjes char
acter of the series we can easily discard information from 
these Pade sequences. 

With respect to the "defects" we have to be more care
ful. Since we were not aiming at the close approximation of 
the eigenfunctions by the trial functions the residues of the 
poles of/(li) [i.e., d; in (2.6)] were in general very small. This 
particular structure ofthe/(E) will yield then the close pole-

TABLE I. Energy eigenstates for tVI = tV2 = I, 0 11 = 0 22 = 1. 

~ 5 

zero pairs. These are, however, genuine singularities, they 
are stable and thus easily distinguished from the unstable 
"defects. " 

In order to obtain the eigenvalues we utilized either 33 
or 43 spectral coefficients. We could form Pade approxi
mants up to the order [16/16] or [21121]. To monitor the 
convergence rates we also obtained lower-order Pade ap
proximants. 

We looked for the poles of the [I,m] and [/,m]* approxi
mants(1 + m + 1 =p<2M + 1) which are formed by utiliz
ing either the first p or the latter p spectral coefficients of/(li) 
(i.e., .d 2M + l-p, ••• ,.d2M+ d. We observed that the sequence 
[M - nlM - n]*, n =M, M - 1, ... provided a smoother 
converging sequence in comparison with the [M - nl 
M - n] n = M,M - 1, ... sequence (compare BM •I and B t.1 
in Table IV later). Hence after the initial screening of the 
Pade table against numerical pitfalls, we recorded the con
forming digits of two consecutive diagonal approximants 
(i.e., [M IM]*, [M - 1, M - 1]*) as significant digits for the 
energy levels. They are given in Tables I-III along with the 
results of Hioe, et al.5 

Additional checks on the reliability are provided by the 
stability of the results with respect to the small variations of 
a at a given order of[M 1M] Pade approximants. It is how
ever also possible to derive error bounds by utilizing the two
sided Pade inequalities for Stieltjes series. Below we give a 
numerical example on how to obtain error bounds for the 
ground level. The example lends credence to our rule of 
thumb of picking the conforming digits of consecutive diag
onal approximants as significant digits. 

The Stieltjes inequalities given in Ref. 12, p. 243, when 
adopted to our notation, yield 

50 500 5000 

Eo.o: 1. 724 184 069 2603 2.674676409 703 5.511 798964 39 11.75669459 25.27402247405 
1.7242 2.6747 5.511 8 11. 757 25.274 

1.607541310 2.4491741 4.9994176 10.639789 22.861609 
0 1.690 75 2.4492 4.9995 10.640 22.862 

1.443775 2.105880 4.18419 8.84339 18.972 5 
-1 1.4438 2.1059 4.1843 8.8437 18.973 

Eo.l : 3.830 323 856 2968 6.069 112 369 4 12.6399257167 27.0274278 58.1336904841 
3.8304 6.0692 12.640 27.028 58.134 

3.54166 5.52409 11.41481 24.3633 52.3825 
0 3.5417 5.5242 11.41481 24.364 52.383 

3.066591 4.513 5 8.983 18.93394 40.72 
-1 3.0666 4.513 6 8.9830 18.984 40.724 

E I •I : 6.213 815 078 277 9.968450186999 20.884372 17199 44.716717018 96.210 280 600 9 
6.2140 9.9687 20.885 44.718 96.213 

5.4757845 8.599003 17.830192 38.08683 81.903317 
0 5.4759 8.5991 17.830 38.087 81.904 

4.210 52 5.9847 11.632 24.4414 52.344 
-1 4.2106 5.9848 11.637 24.438 52.350 
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TABLE II. Ground levels for w, = W 2 = I, 022 = 1. 

k 

all 0'2 5 50 500 5000 

0.8 2 1.691 301 58 2.6116768 5.369253 11.446272 23.73376 
1.691 3 2.611 7 5.3693 11.446 24.604 

0 1.568914 2.373376 4.82598 10.261 15 22.0434 
1.5689 2.3734 4.8260 10.261 22.044 

0.4 2 1.6122965 2.455659 5.011169 10.6637 22.91254 
1.6123 2.4457 5.011 1 10.664 22.913 

0 1.472543 2.17615 4.36540 9.25091 19.88830 
1.472 5 2.1762 4.3654 9.2509 19.859 

[M/M] <f(E) < [M/M] 

1 - (E/R )PM l(E)Q~(E)/Q M l(M)P~(R) 
x--~--~~~~~~~-----------

1 - (E /R )Q M l(E )Q~(R )lQ M l(R )Q~(E) 

=SM(E) , O<E<R, (4.1) 

p(J) l;L p(J) En 
[L/M]=[M+J/M]=_L_= n=O L,n 

Qlf) l;~=oqlf),nEn 

_ n~=dl-E/Att,~) 
- n~=l (I-E/Blf),n) , 

(4.2) 

where where A L,n and B M,n correspond to the zeros and poles of the 

TABLE III. Energy eigenstates for k = I, w, = W2 = 0, 0 12 = 0, all = 0 12 = 1. 

0 
2n+l+l E O;2 Eo;, 

1,447 14975378 
1.477 

2 3.398 150 176027 
3.398 

3 6.003 386085 78 
6.007 

4 8.704 538 139 
8.70 

5 11.802433 630 1 
12.5 

6 14.97780837 
14.9 

7 18.45881947 
19.2 

8 21.999601 
21.9 

9 25.79180803 
26.5 

10 29.6348 
29.4 

11 33.694556 
34.4 

12 37.798 
37.5 

13 42.09748 
42.7 
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5.624 339 349 
5.625 

11.534749 
11.5 

18.245419 
18.2 

25.611 50 
25.5 

33.536 
33.4 

41.95 
41.6 

8.696861 
8.11 

14.626328 
14.5 

21.7748 
21.6 

29.4466317 
29.2 

37.666 
37.3 

10.758265 165 
10.8 

17.616153 
17.6 

25.07618 
25.0 

33.0669 
33.0 

41.532 
41.3 
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function/IE ) and P L,n and q M,n are various coefficients in the 
polynomials which form the Pade approximants. In (4.1) and 
(4.2), R is the radius of convergence for the series which is 
equal to the ground level E I' Since both/IE ) and S M(E) do 
have poles at R the inequality does not provide tight bounds 
near R. WithincreasingM, however,SM and [M 1M] define 
consecutive inclusion regions which become smaller (see 
Ref. 12, Chap. 17), hence we note that 

SM+dE)<SM(E), O<E<R. (4.3) 

Now if we define 

from (4.3) we derive 

ZM+ dR ) <ZM(R ), 

where 

(4.4) 

(4.5) 

(4.12) 

In the sequel we will conjecture that such a critical order of 
approximation is reached when a sufficient uniformity in the 
upper bounds for the eigenlevels is reached. Rigorous checks 
of (4.12) can be accomplished by substituting moderately 
tight lower bound estimates in (4.11). 

When (4.12) holds, (4.8) can be simplified into a con
tracting sequence of error bounds, i.e., 

(bM+I,1 -R)(BM+I,I -R)<EM(bM,1 -R)(BM,I -R), 

(4.13) 

with 

EM = (bM,1 -BM,d/(bM+I,1 -BM+I,d< 1. (4.14) 

In the following we present a numerical example for the pa
rameter values of all = 1, a l2 = 0, a22 = 0, k = 5 in (1.2), a 
case for which we can compare our error estimates with ac
tual errors (we utilize the 16-digit results given in Ref. 10). In 
Table IV we list some information relevant to the evaluation 

with 

ZM(R) = ([M IM](R) - [M - lIM](R))1 

(1 + WI,M(R)), 

M b-B 
WK,M(R ) = R L M,n M,n 

(4.6) of (4.8) and (4.14), i.e., bM,I,BM,I' Bft", N2,M,PM' EM' DM, 
where B %t,1 are the upper bounds obtained from [M 1M]· 
approximants. Utilizing the conjecture (4.12) and Table IV 

n=K (bM,n - R )(BM,n - R) 
(4.7) we first obtain a rough estimate (i.e., assuming DM = 1, 

YM<O,R> 1) 
and 

(bM-R)(BM-R) 

(bM+ I -BM+dR 
<--------~----~--------

(bM+ I -R)(BM+ I -R)DM+I(R) 

+YM(R), 

where 

with 

YM(R) = [1 + W2,M+I(R) -DM(R) 

X(1 + W2,M(R ))]IDM(R), 

DM(E) = ([M + 11M + I](E) - [M IM](E))I 

(4.8) 

(4.9) 

([MIM](E)- [M-lIM](E)) (4.10) 

PME2 n~= d1-EbM,n)(1 -EIBM,n) 
= 

n~,;/ (I-ElbM+
"
n)(l-EIBM+"n) 

(4.11) 

and 

PM = q!v~)I,M+ I P~+ I,M+ ,/q'M,ii PM,M . 

DM(E) is a positive, monotone increasing function of (E) 
(bM,n >bM+I,n' BM,n >BM+I,n' PM >0). In the interval 
o <E <BM + 1,1 it increases from zero to infinity. On the oth
erhand asM-oo, BM,I-R, hence for some criticalM = Me 
we will have 

(BI6,1 _R)2<EI4EIS(bI4,1 -1)2_14X1O- '2 . (4.15) 

Now we can assert that at least five digits of B 16,1 are correct. 
We can revise our estimates on (b,S" - R ) and (b I4,1 - R ) 
and obtain 

(BI6,1 -R)2<6X1O- '4 . (4.16) 

By (4.16) we get a new round of estimates for D 14, DIs, 
and (BI6,1 - R ). Finally, we obtain, by repeated use of (4.8), 

(BI6, I -R)<1O- 13
• (4.17) 

In the present example R = 1.2245587036659195 and 
hence 

(BI6,1 -R)-0.55X1O- '3 • 

From Table IV we read 

(4.18) 

B,S" -BI6,1 = 0.16X 10- 13 (4.19) 

and observe that (4.17) and (4.18) are consistent and they are 
also in tune with our rule of thumb of taking the conforming 
digits of consecutive upper bounds as significant digits. 
Further we note that the true values of D I4(R) and Dls(R) 
(Table IV) are rather large, conforming in this case with our 
conjecture of (4.12). 

v. CONCLUSIONS 

In Tables I and II we observe that the characteristic 
function method yields a high number of accurate digits for 

TABLE IV. Auxiliary quantities for determining the error bounds from (4.8H4.14). 

M 

14 
15 
16 

1184 

1.31 
1.2245885 
1.224 587 036 073 

1.2252 
1.224 587 044 
1.224 587 036 059 25 
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Bt.., 

1.224 587 036 060 0 
1.224 587 036 059 4 
1.224 587 036 059 25 

2.5x 10-3 

4.5X 10-3 

5.9X 10-3 

1.2X 10-' 
6x 10-6 

1.5 X 10-' 
10-6 

1.2XlO' 
1.8x lW 
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the eigenvalues. Moreover these results have been obtained 
by means of very simple trial functions. The results are par
ticularly good for al2 = 1 and they become less precise as 
a Ir~ - 1. That is related to the fact that our circularly sym
metric trial functions fail to reflect the symmetries of the 
anharmonic interaction potential as a 12- - 1. In our exam
ple we have VA -k (x2 - r)2 for a l2 = - 1 and 
VA -k (x2 + y2f for a 12 = 1. As we mentioned earlier the 
results are not sensitive to the details of the trial functions, 
however the choice of proper symmetry subgroups is crucial 
for good convergence rates in operator projection tech
niques. 

In Table III for the circularly symmetric case we tabu
late our results in a form compatible with the notation of 
Hioe et al.5 We do not duplicate here their excellent analysis 
of energy level crossings. However by selecting different m, 
n, and signs in (3.11) we could order our eigenvalues accord
ing to the quantum numbers. For example, the higher-order 
poles, i.e., the excited states of E 0;2' correspond to I = 0 and 
2n + 1 quantum numbers. Here we observe that the charac
teristic function provides good estimates for quite a number 
of excited states. In addition we note that the form of the 
spectral coefficients in (3.13) guides us in interpreting the 
energy degeneracies, e.g., we can tell directly that E 0-;-2 and 
E t3 energy levels will be identical (Table III). 

Finally in Sec. III we gave an example of how to obtain 
error bounds. The information is directly acquired from the 
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already calculated Pade approximants. 
In the present work we wanted to present the character

istic function method as a simple, self-contained eigenvalue 
approximation scheme. We expect it to be useful in obtaining 
the low quantum number excited states of complicated po
tentials. The results on the two-dimensional anharmonic os
cillator encourage us in applying the algorithm to more com
plex systems. 
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lon-acoustic dispersion relation with direct fractional approximation for Z(s) 
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A direct fractional approximation for the derivative Z' of the plasma dispersion function Z (s) has 
been obtained by using the modified asymptotic Pade method. The dispersion relation for the ion
acoustic wave and for the ion-beam instability has been solved by the use of that fractional 
approximation yielding satisfactory results. A comparison is given between the dispersion 
relations calculated with (a) our approximation, (b) other approximations to Z', and (c) the exact 
function. 

I. INTRODUCTION 

Lately, new methods l
-

3 to find fractional approxima
tions have been published which lead to accurate approxi
mations for the plasma dispersion function Z (s) defined as a 
Hilbert transform of the Gaussian4

,5 

Z(s) =.,fiT J: '" dt e-t'(t - S)-I, 

for 1m s > 0 and analytic continuation of this for 1m s < O. 
This function is commonly found in dispersion equa

tions of plasma waves.4,6,7 Thus, it seems advantageous to 
analyze the goodness of any approximation within the dis
persion equation rather than in the plasma dispersion func
tion Z (s). However, the dispersion relation is originally writ
ten as a function of Z 'Is); Z 'Is) can be obtained in a simple way 
by means of the differential equation or alternatively by de
riving the function Z (s). The latter is a cumbersome method 
if a fractional approximation is used to obtain Z (s). On the 
other hand, the former method yields undesirably large er
rors for Z 'Is). 

These considerations led us to seek direct approxima
tions to Z 'Is) and to analyze the accuracy ofthese approxima
tions in the dispersion relation. Direct approximation for 
Z 'Is) denotes here that the parameters of the fractional ap
proximations are determined by the expansions for Z 'Is) in
stead of those for Z (s). Using in both cases the same number 
of terms of the expansions, the accuracy for Z 'Is) is much 
better with the direct approximation method. Furthermore, 
the solution of the ion-acoustic dispersion relation with our 
approximation is simple and sufficiently accurate for most of 
the experimental and theoretical needs. When the approxi-

A 

mation Z 'Is) found here is used, the dispersion equation re-
duces to a simple equation instead of the integrotranscen
dental equation which is usually obtained when the exact 
Z 'Is) is used. If the previous approximations are used the 
corresponding dispersion equation is more cumbersome and 
the result would be of much lower accuracy. 

The analysis has also been extended to the dispersion 
equation for the ion-beam instability, with satisfactory re
sults. 

The material is arranged in the following way. The di
rect approximation to Z 'Is) is obtained in the next section 
and compared with the previous ones. In Sec. III the ion
acoustic dispersion relation is solved using the exact and ap
proximated functions and the results are compared. The 

analysis ofthe ion beam-plasma system is also included. The 
last section is devoted to the conclusions. 

II. DIRECT FRACTIONAL APPROXIMATION FOR Z(s) 

Let us consider fractional approximations to Z 'Is) of the 
type 

A, - 2~ 
Z (s) =Pn(s)/Qn+z(s) =Pn(1/s)/s Qn+z(lIs), (1) 

where Pn (s), Pn (lis), Qn + Z (s), Qn + z (lis) are polynomials of 
the nth and (n + 2)th degree, respectively. In order to ensure 
the right asymptotic behavior the degree of the denominator 
must exceed the numerator's degree in two units. 

For n = 4 the explicit expressions for Pn(s), Pn(lIs), 
Qn + zs), and Qn + z (lis) are 

P4(s) = Po + PIS + p~2 + P3S3, (2) 

P4(lIs) = P3 + P2(lIs) + pdlls2) + Po(1/S3), (3) 

Q6(S) = 1 + qls + q2s2 + Q3s3 + Q4s4 + Q5~' (4) 

Q6( ~) = q5 + q4 ~ + Q3 ~ + Q2 ~ 
S S S s 

1 1 
+ql4' + s· (5) 

s s 
Here the p's and q's are parameters to be determined. 

The data we require to perform our calculations is con
tained in the following potential and asymptotic expansions: 

Z 'Is) = - 2i.,fiTse - i' - 2 + 4s2 - ~S4 ± ''', (6) 

0.015 

R etd Z~3)d. •. 
0.010 \/~ "-

'\ 
Rell.( Z53)' '\ 

0.005 \r. "-/ \ / 

. \ / 

a '" \ \ ? \ / 
\ . / / -0. 005 

\ ) / ~ 
'-- "- .. / Rell.Z' 

-0.010 
a 2 3 4 

Re s 

FIG. 1. Real parts of..:lZ '(s)=,z ;ppwx - Z' for real s . ..:12-' (direct approxi· 
mation), ..:I (Z53)' (derivative of Z53)' and..:l (Z' 53)do [calculated by using the 
differential equation Z' 53 = - 2( 1 + SZ53)]. Z53 and Z' 53 are taken from 
Ref. 1. Z ' is the exact function. 
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0.010..-------,----,--
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'V 
/ 0 . \ /7 0 
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I 

o ~--~~/~~-r-~--_/~-~~~~~ 
, / I / 

-0.005 

-0.010 

'"j \ ./ 

"'----I/o 
/ 

" / 

ImilZ' 

-0.015'------'..0.-- ---------'---- _ o ___ ...l_ 

o 2 

Re 5 

3 4 

FIG. 2. Imaginary parts of .1Z'(s) for .1Z',.1 (ZS3)" and.1 (Z''')de· 

- 1 3 1 
Z'(s) = - + -- +"', (7) 

S2 2 S4 

where we have taken the same number of terms in the power 
series and asymptotic expansions as that used in the calcula
tion of Zds) (Ref. 1). 

The coefficients Pi and qi are calculated by equating the 
coefficients of the rationalized expansions 

Z '(s)Qn + 2 (s) = Pn (S), 

~Z'(1/S)Qn +2(1/S) = Pn(1/S). 

(8) 

(9) 

From (8) six linear equations are obtained, which to
gether with the three equations from (9) form a system of 
nine linear equations in nine unknowns which leads to the 
following approximation: 

Z 'Is) = ( - 2 + l.5869is + 0.5957s2 
- 0.0978i~) 

X (1 - 2.5659is - 2.8458s2 + 1. 7336is3 

+ 0.5957s4 
- 0.0978i~)-1. (10) 

The difference between this approximation and the ex
act function is shown in Figs. 1 and 2 (real and imaginary 
part, respectively). The approximation (Z53)' and (Z' 53)de 
calculated from derivation of Z53(S) and from the differential 
equation, respectively, are included. The first method of cal
culation of Z' is cumbersome for it involves the derivative of 
a polynomial fraction, but it is more accurate than using the 
differential equation. In any case, the method presented here 
of direct approximation to Z 'Is) yields an error 2.5 times less 
than the previous one; in addition, calculation is easier. 

III. THE ION-ACOUSTIC DISPERSION RELATION 

The normalized dispersion relation for the ion-acoustic 
wave is 

Z'(s) - 2(1/8 + k 2
) = 0, (11) 

where s=v~/ai = wl(k {i) is the phase velocity normalized 
to the thermal speed of the ions ap w is measured in units of 
wpi (ion plasma frequency), and k is measured in units of kDi 
(ion Debye length). Here we have normalized as in Ref. 4. 
Here, 8 is the electron-to-ion temperature in the plasma. 

By using the fractional approximation (1) the integro
transcendental equation (11) for the damping wave reduces 
to 

[P(s*)]* - [4i.[iise-s' + 218 + 2k2] [Q(s*)]* = 0, (12) 
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where we have used the extension of the approximation from 
the upper to the lower complex half-plane (see Ref. 1, p. 281, 
second column, second paragraph). 

This equation in w has been solved by means of the 
approximation (10) for a plasma having 8 = 20. The results 
(thin solid line) are shown in Fig. 3(a) together with the val
ues of w obtained by the exact function (thick solid line) for 
comparison. In ordinary size plots both curves differ very 
slightly. From the experimental point of view the accuracy 
seems to be sufficient. 

In this figure we also include the solution of the disper
sion relation, which is obtained by using (Zd' -as a deriva
tive of Z53-and by using (Z' 53)de -from the differential 
equation using Z53 of Ref. 1 (dot-segmented and segmented 
lines, respectively). With these approximations the results 
are not as satisfactory as in the case in which Z' is used. 
Discrepancies happen to be noticeable in certain regions. 
The approximations to Z 'Is) obtained from the differential 
equation (Z ' 53)de == - 2( 1 + SZ53) show a large discrepancy 
for small values of k (0 < k S; 0.4) resulting in a Landau 
damping much larger than the true one (the normalized 

damping is ylwpi={ik 1m s). This is due mainly to the fact 
that the function (Z ' 53)de does not correctly approximate the 
imaginary part of Z ' for real s ;;;: 2.7. In Fig. 2 it can be seen 
that Im(Z I dde is positive and the relative error is large 
[1m Z' for the exact Z' is negative and very small so that 
(LlZ ' 53)de ~ (Z ' 53)de ]. For this reason 1m s has to take larger 
negative values to reduce to zero 1m Z' in Eq. (11). 

We have also calculated with the three approximations 
toZ '[viz.,Z', (Z53)" and (Z '53)de] the dispersion relation for 
the beam-plasma instability for a beam with the following 

0.5 

0 .4 

0.3 

0.2 

0.1 
III 

E 0 

-0.1 

-0.2 

-0.3 

-0.4 

-0.5 

(b) ion-beam 

k= .8 

0 2 
Res 

k=O 

(a) ion
acoustic 

3 4 

FIG. 3. (a) Dispersion relation for the ion-acoustic wave calculated by using 
the exact Z' function (--), the approximation Z ' (--), the deriva
tive (ZS3)' of ZS3 (- • -), and (Z' S3)de (- -). Temperature ratio Te/T, = 20. 
Inset: Differences.1 1m s between the approximated and the exact damping 
rate. (b) Dispersion relation for the ion-beam instability. [Beam parameters: 
Tb/T, = I, nb/nO = 0.20, Vb/Oj = 2.0. 0, is the ion thermal velocity 
(2TJM)II2.] Here the curves are indistinguishable from the exact disper
sion relation. 
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parameters: ion density ratio nblnO = 0.2, normalized drift 
velocity = 2.0, and ion temperature ratio TblTi = 1.0. The 
approximating curves cannot be distinguished from the ex
act curve (thick solid line) in Fig. 3(b) since in this case 
1.5 < Re s < 2.5, so that 1m Z' is much larger than the differ
ence between the approximations and the exact function. 

IV. CONCLUSIONS 

We have demonstrated that in order to obtain an accep
table solution of the ion-acoustic wave dispersion equation it 
is more advantageous using direct approximations to the 
function Z 'Is) instead of approximating Z (s) and then calcu
lating Z 'Is). In addition we have presented an approximation 
to Z 'Is) which allows the resolution of the dispersion equa
tion in a way which is both simple and sufficiently accurate 
for most of the experimental and theoretical needs. The dis
persion equation for the ion-acoustic wave becomes in this 
case a simple equation which can be easily solved even with a 
desk calculator. The maximum error for the real part of the 
phase velocity is .::1 Re s = 0.02 (for k = 0, which means 
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Re s = 3.42). The maximum error in the imaginary part is 
.::1 1m s = 0.012 (fork = 0.23, which means 1m s = - 0.035). 
In the resolution of the dispersion equation for a beam-plas
ma system the accuracy obtained is better. 
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A generalization of the Lie-Backlund (LB) theory for coupled evolution equations is discussed. 
As a consequence, the direct connection between the LB symmetries and constants of motion of 
these systems is also established. Furthermore, as an application of this theory we investigate the 
existence of infinitely many commuting LB symmetries of certain nonlinear evolution equations 
under perturbation around their solutions. Then the corresponding constants of motion are 
derived, which are in agreement with the ~own results. 

I. INTRODUCTION 

It is well known that the geometrical interpretation and 
invariance under various groups of transformations of many 
completely integrable Hamiltonian systems have received 
much attention in recent years. 1-10 Such exactly solvable sys
tems possess various properties in common such as Back
lund transformations, infinitely many conservation laws, N
soliton solutions, etc. l

-4 It has become possible in the past 
few years to establish that the above properties are basically 
due to the existence of the so-called generalized Lie-Back
lund (LB) symmetries possessing certain bi-Hamiltonian 
structures. 9,11-18 In particular, there exists a one-to-one cor
respondence between the LB symmetries and local constants 
of motion for the Hamiltonian systems. 

Apart from the study of single-component evolution 
equations, there has also been a growing interest in under
standing the symmetries of coupled nonlinear evolution 
equations. 19 However, the recent studies on the LB symme
tries of such coupled systems are rather ad hoc in nature and 
no systematic LB symmetry approach seems to have been 
developed to handle these systems conveniently. In the pres
ent paper we develop the theory of LB symmetries for cou
pled nonlinear evolution equations in a natural way. 

It is well known20 that nonlinear evolution equations 
under perturbation around their solution give rise to a set of 
coupled nonlinear evolution equations. As an application of 
our theory we consider this perturbed class of nonlinear evo
lution equations as a specific example. Case and Roos20 
proved that when a completely integrable Hamiltonian sys
tem is perturbed about a particular solution the resulting 
equations to all orders of perturbation are completely inte
grable Hamiltonian systems. It is generally believed that the 
existence of infinitely many constants of motion which are in 
involution is the primary evidence for the complete integra
bility ofthe system and that there exist certain deep connec
tions between the existence of infinitely many constants of 
motion and LB symmetries.21-23 This prompts one to search 
for the existence of infinitely many LB symmetries for the 
Hamiltonian equations under perturbation around their so
lution as well, the analysis of which we carry out in this 
paper. 

The organization of the paper is as follows. Section II of 
the present paper begins with a brief account of the basic 

concepts and facts about the theory of LB invariance and 
Hamiltonian formalism for coupled nonlinear evolution 
equations generalized in a natural way in the following four 
stages: (a) We state necessary and sufficient conditions for 
the existence of a LB symmetry for coupled equations; (b) the 
definitions of a conserved covariant, strong symmetry, and 
hereditary symmetry appropriate for coupled systems are 
given; (c) a direct connection between the conserved covar
iants and LB symmetries through the Hamiltonian formal
ism is shown; and (d) as a consequence of the above facts, we 
give the derivation of a relation connecting the strong sym
metry and its adjoint. 

The method which we present in Sec. II for obtaining 
the LB symmetries is applied in Sec. III for Hamiltonian 
systems under perturbation around their solutions. The 
most general form of the ith perturbed Hamiltonian is given. 
We present further the general structure of the strong sym
metry and the symplectic operator for arbitrary order of the 
perturbed evolution equations. Finally, in Sec. IV we illus
trate our theory with the help of a class of well-known soliton 
equations involving Korteweg-de Vries (KdV), modified 
Korteweg-de Vries (mKdV), sine-Gordon (sG), nonlinear 
Schrodinger (NLS), and derivative nonlinear SchrOdinger 
(DNLS) equations. Furthermore, we show that one can de
rive infinitely many vector-valued LB symmetries for the 
above soliton equations under the perturbation around their 
solutions and that infinitely many vector-valued local con
stants of motion for these systems can be derived in agree
ment with the results of Case and Roos.20 It may be men
tioned that a similar connection also exists for nonlocal 
constants of motion, which we have planned to discuss else
where. 

II. LIE-BACKLUND INVARIANCE AND HAMILTONIAN 
FORMALISM FOR COUPLED SYSTEMS 

In this section, we tersely discuss some basic definitions 
and notations ofLB theory and develop the consequences for 
coupled evolution equations. We consider a Coo manifold M 
with local coordinates (x,t ) and its tangent spaceS and cotan
gent space S·, in which all the Coo functions defined vanish 
at x = ± 00. In a simple geometrical sense the theory of LB 
symmetries mainly deals with the local study of the dllferen
tiable manifold of solutions of the evolution equations and 

1189 J. Math. Phys. 26 (6), June 1985 0022-2488/85/061189-12$02.50 @ 1985 American Institute of PhySics 1189 



                                                                                                                                    

the fact that every typical fiber of the tangent bundle in S 
defines the boundaries of the symmetry mapping in S. Simi
lar study in the cotangent space S * explains the conservation 
laws.9 It is assumed throughout this paper that the various 
functions defined are Coo . We will assume the above facts 
throughout the paper without explicitly stating them 
further. 

We consider now the following vector-valued func
tions: 

(u) = (u(O),u(I), ... ,u(nl) E S, 

(Uk) = (U~I,U~I, ... ,U~I) ES, k = 0,1,2, ... ,00, 

where the partial derivatives are denoted by 

aku(il 
ug, = ull" u~' = --, 

axk 

au ll, 
(I' k S Ukt = --E , 

at 
i = 0,1,2, ... ,n; k = 1,2, ... ,00. 

(2.1a) 

(2.1b) 

(2.1c) 

We define the ring offunctions G (I,(U) and a corresponding 
vector-valued function G (u) in S, in such a way that 

G(u) = (G (O)(u),G (l)(u), ... ,Gln)(u)), (2.1d) 

where 

(2.1e) 

At this stage we consider the vector-valued evolution 
equation 

a = U t +K(u) = 0, 

where 

a = (a (O),a m, ... ,a Inl), 

K(u) = (KIO)(u),K(!)(u), ... ,Klnl(u)). 

(2.2a) 

(2.2b) 

(2.2c) 

We note that the component form ofEq. (2.2a) reads as 

a 11'=u~' + KII,(U) = 0, i = 0,1,2, ... ,n, (2.2d) 

in S. For our further discussions of the LB symmetries, we 
need the following definitions. We define the total derivative 
operators 

{ 

n 00 a 
D - " "ull, --

X - ~ ~ k -'.- I a I', , 
i=O k=O Uk 

D==. 
n 00 a 

D t = L L u~~-a Iii' 
1=0 k=O Uk 

and the Lie-Backlund (LB) operator 

(2.3a) 

(2.3b) 

X(1])= ± (Dt1]II')~ + ± i: (Dk1]II')~, (2.4a) 
1=0 au~" i=O k=O au~1 

where the vector-valued generalized LB symmetries are 

1](u) = (1](O)(u),1](I)(u), ... ,1]ln l(u)) E S. (2.4b) 

We note that with each of the component equations (2.2d), 
U~" + K II,(U) = 0, a 1]11' is associated. We further assume that 
1] does not depend on x and t explicitly for the systems under 
study. The LB operator X (1]) in (2.4a) leaves Eq. (2.2a) invar
iant23 iff 

(2.5) 

where == stands for the restriction to solutions of Eq. (2.2a). 
Equation (2.5) provides an algorithm for finding 1] as the 
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solution of a system of linear overdetermined equations. 
Now the Frechet derivative of the vector-valued func

tion K (u) at u E S in the direction of (v) = (v(O),v(!), ... ,vlnl ) is 
defined by 

K'(u)[vl = ~~ (u + Ev)IE=O' U,V ES. (2.6) 

It is clear that the operator K'(u) is an (n + l)X(n + 1) ma
trix given by 

K'(u) = (Kj"'J. i,j = 0,1,2, ... ,n, 

where 

00 a'VII, 
K w = ,,_n_Dk, .. 012 ) ~ I,j = , , , ... ,n. 

k=O au~' 

(2.7) 

(2.8) 

We further define the Frechet derivative of an 
(n + l)X(n + 1) matrix operator-valued function cP(u) by 

cP '(u)[vlw = ~: (u + EV)wIE=o, (2.9) 

where the operator 

cP '(u) = (cP j'(u)), i,j = 0,1,2, ... ,n (2.10) 

is also an (n + 1) X (n + 1) matrix. In the above definitions v 
and ware arbitrary functions of (u), (ud, (u2 ), .... 

In what follows we define the necessary and sufficient 
condition for the existence of the LB symmetry for Eq. (2.2), 
wherein we have generalized the definitions of the n = 1 
case. 13,14 By assumption (2.2) is analytic in the spaceS and let 
u(t ) be the solution of (2.2a). Then for every initial time to and 
for every initial condition 1](to) = 1]0' 1]0 E S, 1](t ) is unique13 

for the invariant equation (2.5). 
Definition 1: A vector-valued function 1]:S-.S is called 

a LB symmetry of (2.2a) iff it satisfies 

X (1])K =X(K)1]. (2.11) 

This is a necessary and sufficient condition for the existence 
of LB symmetry for the initial value problem (2.2a). In the 
component form, for (2.2d), the condition (2.11) reads as 

X (1])K (il = X(K)1]II" i = 0,1,2, ... ,n. (2.12) 

Definition 2: The vector-valued map {y:S-.S*ly(u) 
= (rO)(u),rl)(u), ... ,rnl (u)) E S * J is a conserved covariant of 

(2.2a) iff the following condition holds: 

y'[Kl + (K')+[Yl =0, (2.13a) 

where (K ')+ denotes the adjoint of K' with respect to the 
inner product ( , ) as defined below. For the given vector
valued conserved covariantsfand vector-valued symmetries 
of g we define 

(f,g) = f: 00 fgT dx = f: 00 Ct/lrlglrl) dx. (2.13b) 

Furthermore, the Frechet derivative of y, 

(2.13c) 

where 

.~lr = " ar" D k, •. ° 1 2 f} ~ I,j= , , , ... ,n, 
k>O au~' 

(2.13d) 

is an (n + 1) X (n + 1) matrix-valued operator. In deriving 
(2.13a) we have used the fact that y' = y'+ (since y is the 
conserved covariant). 
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Definition 3: Let the (n + 1) X (n + 1) matrix operator
valued function ~ be a map of the vector-valued symmetries 
1Jdu) = (1J~O)(u),1J~I)(u), ... ,1J~n)(u))T in such a wayll that 

{~:S-SI1JI+I = ~1JI,1JI ES}, 1= 1,2, ... ,00. (2.14) 

Then the operator ~ is a strong symmetry iff it satisfies the 
condition 

~'[K]v- [K',~]v=O, (2.15) 

where v is an arbitrary vector function of(u), (U I),(U2)"" . It is 
worth noting that the operator ~ plays a fundamental role as 
it generates an infinite number of new vector-valued LB 
symmetries 1JI+ 1 from the known ones 1JI, 1 = 1,2,3, ... ,00. 

Definition 4: The map ~:S-+S is called a hereditary op
erator iff ~ satisfies ll ,J3 

~ , [ ~w] v - ~ , [ ~v] w - ~~ , [w] v + ~~ , [v] w = 0, 

(2.16) 

where v and ware functions of(u),(ud, .... 
Furthermore, the hereditary property (2.16) of ~ allows 

us to associate with (2.2) a hierarchy of matrix-valued evolu
tion equations 11 

u, + ~mUI = 0, m = 0,1,2, ... ,00. (2.17) 

Since the x-translation symmetry (see Sec. IV below) is the 
first of the matrix-valued LB symmetry (1Jd then using 
(2.14),(2.17) can also be written as 

u, + 1Jm+ 1 = 0, m = 0,1,2, ... ,00. (2.18) 

After establishing the existence of infinitely many com
muting LB symmetries of(2.2), it is of immediate importance 
to investigate the associated conserved quantities. Let the 
constants of motion for the system of equations (2.2) be de
fined by the functional 

II = f: 00 pdx,(u),(ul),···)dx, 1 = 1,2, ... ,00. (2.19) 

Then the corresponding vector-valued conserved covariants 

ydu) = ( r?)(u),rl)(u),···,nn)(uW 

can be written as 

YI = grad II ¢} (n") = (tJII ), 
Dull, 

i = 0,1,2, ... ,n, 1 = 1,2,3, ... ,00. 

More explicitly (2.21) can be written as 

(r?)(U),rll)(U),r/)(u), ... ,rt)(u)) 

_ (tJII 8I1 tJII ) 
- DUIO)' Du(J) , ... , DUln) . 

(2.20) 

(2.21) 

(2.22) 

Now the equations of motion (2.2) can always be written 
in the Hamiltonian form8

,24 

i = 0,1,2, ... ,n, (2.23) 

where J is an (n + 1) X (n + 1) skew-symmetric matrix oper
ator. 

Furthermore, it follows from the fact that Eqs. (2.2) 
admit strong and hereditary symmetry and so we have the 
infinite hierarchy of evolution Eqs. (2.17), which gives us 
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that any of the constants of motion of (2.2) can be used as a 
Hamiltonian. Then, by writing the hierarchy (2.17) in the 
Hamiltonian form, 

DIm + 1 
u, +J--- =u, +JYm+1 =0, 

DU 

m = 0,1,2, ... ,00. (2.24) 

Comparing (2.18) and (2.24) we obtain the matrix relation 

JYm+1 =1Jm+I' m=0,1,2, ... ,00, (2.25a) 

connecting the vector-valued conserved covariants and the 
vector-valued LB symmetries. We infer from (2.25a) that the 
operator J maps conserved covariants into symmetries. Us
ing (2.14), Eq. (2.25a) may be rewritten as 

JYm+ 1 = 1Jm+ 1 = ~1Jm = ~JYm' 
and hence 

JYm+1 =LYm' 

where L = ~J is a symplectic operator. 

(2.25b) 

(2.25c) 

In the light of the results obtained above, we derive a 
recursive relation for the conserved covariants through the 
adjoint of the strong symmetry. By definition, the matrix
valued adjoint operator ~ + satisfies the condition 

(j,~g) = (~+j,g). (2.26) 

As we mentioned earlier, II is a constant of motion of(2.2), so 
that it implies that this is true for the whole hierarchy (2.17). 
From this fact we havedIlldt = I ;(u,) = O¢}(YI,K) = O,as 
well as (YI,~m K) = 0, m = 0,1,2, .... From (2.26) we also 
have the relation (YI,~m K) = «(~ +)m YI,K ),andtherefore 

YI+m = (~+rYI, 
m = 0,1,2, ... ,00, 1 = 1,2,3, ... ,00, (2.27) 

are also the conserved covariants of(2.2). Finally, from (2.25) 
and (2.27) we readily establish that 

~I =~JYI =1JI+I = JYI+ 1 =J~+YI' 

so that 

J~+ = ~J, 

(2.28) 

(2.29) 

which connects the strong symmetry and its adjoint through 
the symplectic operator J. 

III. LB SYMMETRIES OF THE HAMILTONIAN SYSTEMS 
UNDER PERTURBATION AROUND THEIR SOLUTIONS 

Now we considor the evolution equations resulting 
from the completely integrable Hamiltonian systems under 
perturbation around their solutions as a set of specific exam
ples of the previous section and discuss the existence of LB 
symmetries and consequences. For this purpose we concen
trate on a one-component, completely integrable nonlinear 
evolution equation of the Hamiltonian type in the form 

w, =K(w), (3.1) 

where K (.) is a nonlinear operator and w is a one-component 
(real or complex) function. For convenience we consider in 
this section only a real w. It is straightforward to extend 
these ideas for complex cases (see Sec. IV below). 

If Jf"'(w) is the appropriate Hamiltonian for (3.1), then 
the corresponding equation of motion is 
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WI = [w,K] =K(w), 

with the Lie bracket defined by 

fao fJFj fJFj 
[Fj,Fj] = dy-JI -, 

- 00 fJw fJw 

(3.2) 

(3.3) 

where J I is a symplectic operator, which is linear and anti
symmetric. Then, given a solution w(O) ofEq. (3.2) (for exam
ple, the soliton solution), we look for a solution close to it in 
the form 

W=w(O)+~w, 

where 
n 

~w = L E'w(r) E S, 
r= I 

(3.4) 

(3.5) 

where E E R is a small parameter and r denotes the order of 
the perturbation. Then by using (3.4) in (3.1) we can write the 
evolution equations to each order in E as20 

W~l = [w(/l,Kj ] i> i = 0,1,2, ... ,n, 
where 

K j = Kj((wo),(w l),···), 

_ ifw (0) (I) (n») Wk - --k = Wk ,Wk ""'Wk , ax 
w = WO' k = 0,1,2, ... ,00, 

(3.6) 

(3.7) 

(3.8) 
and the ith Poisson bracket on the right-hand side of (3.6) is 
defined by 

[F,F] feo d fJF1 J fJF1, 
I I' j = Y7(ij" I 7(ij' 

- 00 uW uW 

i = 0,1,2, ... ,n. (3.9) 

We note further that the explicit analysis of (3.6) is facilitated 
by assigning a weight n to wIn) and its derivatives and requir
ing that each term in the equation derived from it must have 
equal weight. 

The Hamiltonian functional K j in (3.6) may be ob
tained by Taylor-expanding the Hamiltonian functional 
K(W), 

K[w(O)+~w] = f IN([~W,]N fJNK[:(O)]), (3.10) 
N=O N. fJw 

where 

I I (~w fJK) = foo dXI ~w(xd fJK , 
t5w - 00 t5w(x d 

12 ([~WP fJ2K ) 
t5w2 

= I: 00 dx l I: 00 dX2 ~W(XI).JW(X2) 
t52K X , 

fJw(x I )fJW(X2) 
(3.11) 

etc. On substituting (3.5) into (3.10) and equating the ~j coef
ficient in the expansion of the functional K( W) we obtain 20 

K
j 

= f f IN([w(I)]n'[w(2)]n' ••• [w(N)rN(fJNK/fJ~)) , 

nj n= I nl!n2!···nN! 

(3.12) 
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where the first summation over nj denotes the summation 
over all possible combinations of nl>n2, ... ,nn with I,J~ In} 

= N, nj and N are integers, and 2i = n l + 2(n2 ) + 3(n3) 
+· .. +N(nN)· 

In order to associate the evolution equations (3.6) with 
the system of coupled evolution equations (2.2), we identify 

w(/l+-+u(/\ (3,13a) 

[w(/l,Kdj+-+ - K(/l. (3.13b) 

It is then possible to use the results of Sec. II straightaway 
with appropriate modifications. 

We further note that the coupling of the field variables 
in the case of perturbed evolution equations (3.6) is such that 
the equation for w(/l contains all the perturbed variables 
(w(O),w(1), ... ,w(j - I) ,w(/l) but not the later ones, (w(j + I), ... ,w(n»). 
As a consequence, the ith component '1/(1) of the vector-val
ued LB symmetry '1/1 will not involve functions w(i+Jl,j> 1. 
Then it is possible to determine the LB symmetries of the ith 
perturbed equations in conjunction with all the previously 
known LB symmetries. Correspondingly, for perturbed evo
lution equations any conserved functional assumes the vec
tor-valued form II = (I~O), ... ,I~n»), 1= 1,2, ... ,00. Then the as
sociated conserved covariants corresponding to II can be 
written as 

_ 0) I) n) _ I I I 
(

M(n) t5I(n) M(n») 
Yl=(n ,n ,· .. ,n ) - t5w(n) , fJw(n-l) , ... , fJw(O) , (3.14) 

so that the corresponding terms on either side of Eq. (3.14) 
have equal weights. Stated simply (3.14) implies that for the 
nth perturbed equation, the component form of the con
served covariant YI corresponding to w(/l is given by r"t -}) 
= M~n)/t5w(Jl. We can easily check that this vector-valued 
conserved covariant YI satisfies condition (2.13a) with the 
definition of the inner product taking the form 

<f,g) = I:oofgTdX = I:oortof(r)g<n-r)dX, (3.15) 

where f,g are vector-valued conserved covariants and sym
metries, respectively, of the perturbed evolution equation 
(3.6). The symplectic operator J in (2.29) is also a matrix
valued operator with the diagonal elements equal to the sym
plectic operator of the unperturbed system and zero else
where. It may be noted that in the above, the order of the 
matrix-valued operator is equal to the order of the perturba
tion. With the above identifications all the further discussion 
given in Sec. II follows here also. Thus we can discuss the LB 
symmetries for the evolution equation resulting from the co
efficients of nth order of the perturbation En straightaway 
from the LB theory of (2.2) discussed earlier in Sec. II. 

From these LB symmetries it is often possible to con
struct the strong symmetry for the perturbed evolution 
equations of any order such that the strong symmetry takes 
the form of an (n + 1) X (n + 1) matrix operator-valued func
tion <p (n). When this operator operates on the vector-valued 
LB symmetry '1/1 = ('I/~O)(w),'l/Il)(w), ... ,'l/In)(w)), it generates 
further symmetries from the known ones satisfying the rela
tion 

'1/1 + 1 = <p (n)'l/I' 1= 1,2, ... ,00, 

where now 
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l1r!W) = (l1~O)(W),l1~I)(W)""'l1~n)(W)), 
alI 0 0 

cp(n) = 

an + 11 

ajj = cp (O)(w(O)), 

aij =ai+I,j+I' 

and 

o 

a,,+ 12 an + 13 

i = 1,2, ... ,n, 
i,j = 1,2, ... ,n, 

x [(w(l)t'(w(2))m' ... (w(N)tN
]) , 

r= 1,2, ... ,N, N=m l +m2 + .. ·+mN, 

n = ml + 2(m2 ) + ... + N(mN)' 

o 
o 
o 

(3.17) 

(3.18a) 

(3.18b) 

From the results of Sec. II, Eq. (2.27), the conserved 
covariants for the perturbed evolution equations can be di
rectly obtained from the relation 

YI + I = cp (n)+ YI, 1= 1,2,3, ... ,00, 

YI(W) = (Y?)(w),nl)(w), .. ·,Yt)(w)), 

and cp (n)+ can be obtained from the relation 

JCP (n)+ = cp (n)J, 

where the (n + 1) X (n + 1) matrix operator 

J = diag[J1,J1, ... ,Jtl, 

(3.19) 

(3.20) 

(3.21) 

and J 1 is the symplectic operator of the unperturbed case. 
The corresponding constants of motion can be derived from 
the relation grad II = YI [see Sec. II, Eqs. (2.21) and (2.22)]. 

IV. EXAMPLES: SOLITON EQUATIONS 

In this section, we wish to apply our theory developed in 
Secs. II and III to some of the completely integrable Hamil
tonian systems under perturbation around their solution ex
plicitly. We show that these systems admit LB symmetries at 
every order of perturation by solving the appropriate LB 
invariant equations so that we can construct a strong and 
hereditary symmetry operator which satisfies conditions 
(2.15) and (2.16). It is also pointed out how the conserved 
covariants and constants of motion, which are in involution 
with respect to the appropriate Poisson brackets and sym
plectic operators, can be derived. These results are in full 
agreement with Ref. 20. 

A. The Korteweg-cle Vries (KdV) equations 

We consider the KdV equation in the form 

U, = - ax {U 2 + 2U2 l. (4.1) 

It can be written in the Hamiltonian form (3.2) with 

jY = f~ 00 (U3/3 - Ui )dx (4.2) 

1193 J. Math. Phys., Vol. 26, No.6, June 1985 

and the symplectic operator J 1 [in (3.3)] defined by 

J 1 = -ax = -D. 

We now consider the perturbation of (4.1), 
n 

U =u(O) +.au = u(O) + L EkU(k) E S, 
k=1 

(4.3) 

(4.4) 

where E E R is a small real parameter and the given solution 
u(O) in (4.4) is, for example, the soliton solution of (4.1) or 
equivalently of(3.6). Then the perturbed evolution equations 
to order ~ become 

u(i) + 2U(11 + 2 ~ u( J1u(i - Jl = 0 " = 0 1 2 n t 3 £". 1 , , , , ••• , • (4.5) 
O<;j<i 

Here the unperturbed solution u(O) obeys the KdV equation 

U}O) = - ax {U(0)2 + 2u~0)l. (4.6) 

It is then clear that the LB operator X (11) in (2.4a) leaves the 
system (4.5) invariant iff 

D,l1(I1 + 2D 311(11 + 2 L (u~ - Jl11(}l 
O<;j<i 

+ u(}lDl1(i-J1) = 0, i = 0,1,2, ... ,n, 
hold. 

(4.7) 

In order to find the LB symmetries associated with the 
ith perturbed equations (4.5), we have to consider this in 
conjunction with the LB symmetries associated with the 
evolution equations of preceding orders of perturbation. To 
prove the existence of an infinite number of commuting vec
tor-valued symmetries 111' 1= 1,2, ... ,00, as in the case of the 
evolution equation with a single variable, it is generally 
enough to find one vector-valued LB symmetry apart from 
the already known space and time translation LB symme
tries, provided we can construct the strong and hereditary 
operator. 11,13 

1. The first-order perturbation 

a. LB symmetries. Considering now the first-order case 
in (4.5), 

U~I) + 2U~I) + 2U(0)U\I) + 2U(l)U\I) = 0, (4.8) 

we now find its infinitely many commuting LB symmetries 
and obtain the corresponding constants of motion which are 
in involution and then show the possible generalization of 
these results to any order of perturbation. 

In order to find the LB symmetries of (4.8) we have to 
consider this in conjunction with the LB symmetries of (4.6). 
By solving the LB invariant equation [i = 0 in (4.7)] 

D,l1(O) + 2D 311(0) + 2u(O)Dl1(0) + 2u\0)11(0) = 0, (4.9) 

where 

11° = l1°(U(O),u\O),u~O), ... ), (4.10) 

recursively we can obtain the LB symmetries of the unper
turbed equation (4.6). For example, we have the following 
first three LB symmetries of (4.6)11: 

l1r) = u\O), (4.11) 

11&°) = 2u~0) + 2u(0)u\0), (4.12) 

11~0) = 4u~0) + ~u\O)u&O) + zpu(O)u~) + .If(u(O)fu\O). (4.13) 
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Using the above three LB symmetries it is possible to con
struct the strong and hereditary symmetry l/> (0) of(4.6) which 
satisfies conditions (2.15) and (2.16). This operator l/> (0) is 
known II to be given by 

l/> =l/> (0) = 2D 2 + ~u(O) + ~u\O)D -I, 

where 

D -IW(X) = f: 00 w(y)dy, 

(4.14) 

(4.15) 

and it generates an infinite number of commuting LB sym
metries {77~0)1, 1= 1,2, ... ,00 for (4.6). 

The action of the LB operator (2.4a) on the first-order 
perturbation equation (4.8) gives the corresponding LB in
variant equation [i = 1 in (4.7)], 

D
t
77()) + 2D 377(1) + 2u(0)D77(1) + 2u(l)D77IO) 

+ 2U\I)77IO) + 2u\0)77(1) = O. (4.16) 

Obviously the first two LB symmetries corresponding to 
space and time translation invariance are 

77\1) = u\\), (4.17) 

77~I) = 2u~) + 2u(0)U\I) + 2u\0)u l l). (4.18) 

To find a generalized LB symmetry we follow the pro-
cedure as given below. 11.18 Let us denote 77~I) = s. We search 
fora 

with unit weight. Substituting (4.19) in (4.16) and eliminating 
u\?) and u\:), i = 0,1,2,3,4,5 by using (4.6) and (4.8), we'collect 
the coefficients of uV),u~),u~),u~) (noting that the coefficients 
of u~\) and u~O) are canceled away). Then equating each of 
these coefficients to zero, we obtain Ds III = 0, Ds (II = O. 

u~ U4 

Solving these equations we have 

5 = alu~\) + a2u~) 
(4.20) 

I 

where a I and a2 are integration constants. Using (4.20) again 
in (4.16), we obtain 

D' A - 2a (I) 4 (I) + I (I) D' A _ S (0) 
:.'1u~OI- lUI - 3UI 3a2u , :.'1u~ll- 3a l u l • 

Solving (4.21), we get a2 = 0 and 

A = 2aIU(l)U~O) - ~u(l)u~O) 

+ jalu\O)u~\) + a3u~l) 
+ B (UIO),U\O),u~),U(l),U\I),U~I)), 

a3 = const. 

Again substituting (4.22) in (4.16), we obtain 

D ,D - 3 U(I) + 4 (I) D,D - 10 (0) 
Dul,"l - a l 2 3U2' Du~ll- "3"a l u2 , 

and so a l = 4, a3 = 0, and 

B = ~U\I)U~O) + ~u\O)u~\) + a4u~) + C(u(O),u\O),U(I),U\I)), 

where a4 is again an integration constant. 
Repeating the same procedure further, we obtain 

DC - 20u(0)u(l) + 2OU I0)U(1) DC - 20u(O)U10) 
u\OI - "3" 1 "3" 1 , u\'1 - "3" I • 

Solving (4.25), we find a4 = 0 and 

(4.21) 

(4.22) 

(4.23) 

(4.24) 

(4.25) 

C = ~u(O)u\O)u(l) + lfU(0)2U\I) + a
5
u\l) + D (u(O),u(I)), (4.26) 

where a5 is an integration constant. By similar arguments we 
can show tht a4 = a5 = 0 and hence the final form of the 
generalized LB symmetry is 

77~I) = 5 = 4U~I) + ~u~O)u(1) 
+ ~U(O)U~I) + ~U~O)U\I) + ~U\O)Uil) 
+ ~u(O)u\O)u(l) + If(U(0))2U\I). (4.27) 

This symmetry is a solution of (4.16) in conjunction with 
(4.13). 

Now from the above first three LB symmetries of ze
roth- and first-order equations, namely (77\O),77iO)'77~O)) and (77\1), 
77i\),77~I)) we can construct an operator 

o ] [2D 2 + ~UIO) + ju\O)D - I 

l/> (O)(uIO)) = ~Ull) + ~u\I)D -I (4.28) 

which satisfies the strong symmetry condition (2.15) 

l/>(I)'[K] 1[1- [K',l/> (I)] 1[1 = 0, 

K = (K (0) ,K (I)) T, 1[1 = (1[11' 1[12f, 

where 

K (0) = _ 2u~0) _ 2u(O)u\0), 

(4.29a) 

K(I) = - 2U~I) - 2U(0)U\I) - 2u l l)u\0). (4.29b) 

This operator l/> (I) generates an infinite number of LB sym
metries of both Eqs. (4.6) and (4.8) in such a way that 

( 

(0) ) ( (0)) 771 + I (I) 771 
(I) = l/> (I)' 1= 1,2, ... ,00, 

771+ I 771 
(4.30) 

where l/> (I) is given by (4.28) and 77~0) and 77~I) are LB symme
tries of(4.6) and (4.8), respectively. Similarly, we can find the 
values of each term in (2.16) by taking the Frechet deriva-
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I 
tives of l/> (I) along the direction of v, w, l/> (I)v, and l/> (I)w and 
prove that (2.16) is satisfied and hence l/> (I) is a hereditary 
symmetry as well. 

h. Constants of motion. It is known that for Hamiltonian 
systems, the LB symmetries and constants of motion are 
interrelated. 21 ,22 In Sec. IV Ala we found that infinitely 
many commuting LB symmetries exist, and from these sym
metries we can easily deduce the corresponding constants of 
motion. 

We note from (2.29) that the strong symmetry l/> (I) and 
its adjoint satisfy the relation 

Jl/> (1)+ = l/> (l)J = L, 

where 

J= (~ ~) 
M. Lakshmanan and K. M. Tamizhmani 

(4.31) 

(4.32) 
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is symplectic and D is the total derivative operator. Since the 
operator J is also invertible, we can immediately write down 
the adjoint of <p (I) from (4.31) as 

(4.33) 

From (4.28) and (4.32) we find that 

~D2 + ~D -IUIO)D + jD -IU\O)]' 
(4.34) 

Then from the relation (2.27) we can find the infinitely many 
conserved covariants in such a way that 

(~:i :) = <p 10+ (~::), 1= 1,2, ... ,00. (4.35) 

The first few conserved covariants of Eqs. (4.6) and (4.8), 
respectively, may be written as follows: 

.JO) _ UIO) 
(1 - , 

Y20) = 2u~0) + (UIO»)2, 

Y30) = 4u~) + ~uIO)u~O) + 1f(U\0»)2 + .!f(UIO»)3, 

etc., and 
.JI) _ ul!) 
(I - , 

Y21) = 2U~I) + 2u(0)ul!), 

Y31) = 4u~) + ~u(1)u~O) + ~UIO)U~I) 
+ zpU\O)U\I) + 1f(UI0»)2U(1), 

(4.36) 

(4.37) 

(4.38) 

(4.39) 

(4.40) 

(4.41) 

etc. It can also be verified that the YI = (y?,r\l)f, 
1= 1,2, ... ,00 in (4.36)-(4.41) satisfy relation (2.13a) with K 
defined as in (4.29b). The associated constants of motion can 
then be written straightforwardlyl8 using the one-to-one cor
respondence between the conserved covariants and con
stants of motion given in (2.22), which are exactly the same as 
in Ref. 20. 

Finally, these constants of motion are also seen to be in 
involution with respect to the Poisson bracket 

J"" (8F 8F) (8G /8u
l
!)) 

[F,G] = _ "" 8ul!)' 8u(0) J 8G /8u(0) , 
(4.42) 

whereJis as given in (4.32). In fact, using the skew symmetry 
of J, L, and Eqs. (2.25a), (4.31), and the inner-product defini
tion (3.15) we get I 

<p (0)(uI0») 0 0 0 
<p (0)'(ul!)) <p (0)(UI0)) 0 0 
<p (0)'(U I2») <p (0)'(ul!)) <p (0)(uI0») 0 

<p(n) = 

We can easily see that Eq. (4.45) is a particular case of Eq. 
(3.18). Now, using relation (2.27) we can find the conserved 
covariants in such a way 

YI+ I = <p ln
)* YI, 1= 1,2,3, ... ,00, 

YI (u) = (r\°)(u),r\l)(u), ... ,r\n)(u)), 

and <p (n)+ can be obtained from the relation 
J<P (n)+ = <p InlJ, 

where the (n + 1) X (n + 1) matrix is 
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(4.46) 

(4.47) 

(4.48) 

I 
[1 (1) 1(1)] - (.JI) J-)I» - (J_D) .)1» 

I , I' - fl, fl' - - fl ,n' 

= - (Lr\l~ I ,y/» = (y/~ I,Lr\\» 

= (Y/~I,JY/)+I) = ... 

= (rlJ! - 1)/2 ,JrlJ! - 1)12 ), 
if!' - I is even 

= (rlJ! + 1-1)I2,LrlJ! + 1-1)/2)' 

if I' - I is odd. 

(4.43a) 

(4.43b) 

Since both Land J are skew symmetric we conclude that 
[1\1),1\1)] = O. Similarly, we can easily prove that [IIO),II~)] 
= O. Thus we have an infinite number ofLB symmetries and 

constants of motion which are in involution for the first
order perturbed evolution equation as well, and therefore it 
is completely integrable in this sense. 

2. Arbitrary order o/perturbation 

As a generalization of the above results to all orders of 
perturbation, Eq. (4.5), it is possible to extend the results and 
to find an infinite number ofLB symmetries and constants of 
motion straightaway using the various definitions (2.3)
(2.29) we have discussed in Sec. II. 

Considering the arbitrary nth perturbed evolution 
equation, we note that as a generalization of the strong sym
metry <p (1) in (4.28) we have an (n + 1) X (n + 1) matrix oper
ator-valued function <p In) such that it generates new symme
tries from the known ones satisfying the relation 

1]1+1 = <P ln )1]I' 1= 1,2, ... ,00, 
where now 

1]du) = (1])D)(u),1]II)(u),···,1]ln)(u)), 

and 

D 0 0 0 

0 D 0 0 

0 0 D 0 

J= 

o 0 0 D 

(4.44) 

(4.45) 

(4.49) 

From these conserved covariants we can find the corre-
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sponding constants of motion by using the relation 
gradII = rl [see Eq. (2.21)]. Thus we can establish that an 
infinite number of vector-valued LB symmetries exist and 
that the corresponding constants of motion are in involution 
for any order of perturbation as well; thereby establishing 
the complete integrability. 

B. Potential modified KdV equation (PmKdV) 

We consider the potential modified KdV equation in 
the form 

Ur = - U3 - U~ /2. (4.S0) 

The Hamiltonian for this equation is 

K = foo {_ U~ + ut} dx, 
- 00 2 8 

(4.S1) 

and the corresponding symplectic operator J 1 [in Eq. (3.3)] is 
given as J 1 = ax- 1 = D -I. Substituting the perturbation ex
pansion (4.4) in (4.50) and collecting the coefficients of E', 
getting each of them individually equal to zero, the resulting 
ith-order perturbed PmKdV (perturbation around the solu
tion of the PmKdV) equation is of the form 

u~') + u~) + ~ L U\k)U\J)U~-j-k) = 0, 
2 0<J.k<.i. 

i>(j+k) 

i = 0,1,2, ... ,n. (4.S2) 

Equation (4.S2) may also be obtained by using Eqs. (3.6), 
(3.12), and (4.S1). The unperturbed (soliton) solution u(O) sat
isfies the PmKdV equation 

u~O) = - u~O) - u\O)'/2. (4.S3) 

The action of the LB operator (2.4a) on (4.S2) gives rise to the 
following LB invariant equation: 

Dr 1/(1) +D 31/(I) + ~[ L (U\k)U\J)DrJ(i-j-k) 
2 O<J.k<.i 

i>(j + k) 

+ 2U\k)U~-j-k)DrJ(j))] = 0, 

The LB invariant equation for (4.S3) can be written in the 
form [i = 0 in (4.S4)] 

(4.SS) 

We can solve this invariant equation as outlined in the pre
vious example. We have the following first three LB symme
tries l1: 

1/\0) = u\O), 

1/~0) = u~O) + u\O)' /2, 

1"1(0) _ u(O) + 5U(0)' u(O) 
·,3 - 5 2: 1 3 

(4.S6a) 

(4.S6b) 

+ ~u\O)u~O)' + iu\O)'. (4.S6c) 

From this sequence of LB symmetries we can generate infi
nitely many further symmetries by the strong symmetry 1 1 

tP =tP (0) = D 2 + u\O)' - u\O)D -I(U~)), (4.S7) 

which satisfies condition (2.1S) and (4.44) [with n = 0 in 
(4.44)]. In addition, the operator tP (0) is hereditary by condi
tion (2.16). 

The first-order perturbation PmKdV takes the form 

U~I) = { - U~I) -1U\0)' U\I)}. (4.58) 

Then the corresponding LB invariant equation is in the form 
[i = 1 in Eq. (4.S4)] 

Dr 1/(1) + D 31/(1) + 3U\0)U\I)D1/(0) 

+ 1u\0)'D1/(I) = O. (4.S9) 

To find the generalized symmetry 1/(1) of (4.S9) we have fol
lowed the same procedure as in the case of solving the invar
iant equation (4.13). We have obtained the following first 
three LB symmetries of(4.S8): 

1/\1) = U\I), 

1/~I) = U~l) + 1(u\0)fu\I), 

1/~I) = U~I) + Su\O)U~)U\I) + ~U\0)2U~I) 

+ 5U(0)'U(I) + Su(O)u(O)u(1) 
2: 2 1 1 2 2 

(4.60a) 

(4.60b) 

+ -,(u\O)'U\I). (4.6Oc) 

From the sets of LB symmetries in (4.S6) and (4.60) we can 
i = 0,1,2, ... ,n. (4.S4) easily construct the operator 

[

D 2 + u\O)' _ u\O)D -I(U~O)) 

= 2u\0)u?) _ u\I)D -I(U~O)) 

_ u\O)D -I(U~I)) 

(4.61) 

satisfying conditions (2.1S) and (2.16) [for n = 1 in Eq. 
(3.16)]. Hence tP (I) is strong as well as a hereditary symmetry 
operator. Thus we conclude that infinitely many commuting 
LB symmetries exist for the first-order perturbed PmKdV 
equation (4.S8) [in conjunction with Eq. (4.S3)]. 

As before, from the infinitely many commuting LB 
symmetries we can generate the corresponding constants of 
motion. For this purpose we use the relation 

JtP (1)+ = tP (I)J = L, 

where now 
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(4.62) 

(
D- 1 

J= o (4.63) 

and tP(1) is as given in (4.61). By using the relations (4.3S), 
(4.62); and (4.63), we can derive the first few conserved covar
iants as 

.'(0) _ u(O) .,(0) - u(O) 3U(0)'U(0) (4.64) n - - 2' (2 - - 4 - 2: 1 2' 

r~) = - u~) - lOu\O)u~)u~O) - ~u\O)' u!?) 

(4.6S) 

and 
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• ,(1) _ UII) 3UIO)UIO)UI') 3UIO)'UII) 
(2 - - 4 - I 2 I - l I 2' 

yl) = - U~I) -1,[U\O)' U~O)U\I) - lOu~')u\O)U~O) 

_ VU\O)'U~I) - ~U~)U\0)2 -1,[u~I)U~0)2 

- lOu~)u\O)U~) - lOu\')u~)U~) 

(4.66) 

- 5U\')U~)U\0). (4.67) 

Now. again using the conserved covariants in the sets (4.64)
(4.67) and by Eq. (2.21) we can derive the associated involu
tive constants of motion explicitly as in Ref. 20. Finally. the 
generalization of this theory to any order of perturbed evolu
tion equation is analogous to the previous example and so we 
do not present the details here. 

C. Sine-Gordon equation (sG) 

We consider the sG equation in the form 

Ut =D -I sin U. 

The associated Hamiltonian is 

K = J: 00 (1 - cos U)dx. 

(4.68) 

(4.69) 

and the symplectic operator J 1 in (3.3) is given by J I = D -I. 
The zeroth- and first-order perturbed sG equations are 

u~O) = D -I sin uIO). (4.70) 

u~I)=D-I[U(l)COSUIO)], (4.71) 

respectively. Recently Kaliappan and Lakshmanan25 have 
pointed out that the PmKdV and sG equations possess the 
same set of infinitely many local LB symmetries. The LB 
invariant equation for (4.70) is 

DtDx7]IO) _7](0) cos ulO) = O. (4.72) 

Solving this recursively as outlined before we have the fol
lowing first three LB symmetries lO: 

7]\0) = ul~). 

7]~0) = u~O) + !u\O)'. 

(4.73a) 

(4.73b) 

7]~0) = u~O) + ~U\0)2U~0) + ~u\0)U~0)2 + iu\O)'. (4.73c) 

etc. And the strong and hereditary symmetry for (4.70) is 
given bylO 

(4.74) 

We can see that Eqs. (4.73) and (4.74) are identical with Eqs. 
(4.56) and (4.57). From this fact it is clear that for any order 
of perturbation. the corresponding LB symmetries of 
PmKdV and sG are equal. 

Furthermore. we can derive the constants of motion for 
the sG equation using the constants of motion of PmKdV 
(4.66) itself. This can be done explicitly in the following 
way. 20 The sine:-Gordon equation is symmetric in the varia
bles x and t. This property leads to the conclusion that for 
each sine-Gordon conservation law 

atT+axX=O. 

there is a corresponding conservation law 

atT' + axx' = o. 
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where the prime denotes interchanging the x and t deriva
tives and then elimination of the t derivatives using the equa
tion of motion (4.68). For example • 

at(ui/2) = ulu lt = UI sin u = ax(l - cos u). U = u. 

at(l - cos u) = sinuut = UxtUt = ax (u;12). 

Thus from the latter equation we arrive at the constant 
Iso = f~ 00 (1 - cos u)dx of the sG equation from the con
stant I PmKdV = f~ 00 (u~ 12)dx. Similarly we can calculate 
other constants from the constants of PmKdV. Since this is 
also true for the perturbed sine-Gordon equation. we do not 
proceed with our analysis further for this case. 

D. Nonlinear SchrOdlnger equation (NLS) 

We consider the NLS equation in the form 

(4.75) 

where the bar denotes the complex conjugate. as well as the 
complex conjugate form of (4.75). Equation (4.75) can be 
written in the Hamiltonian form (3.2) as 

K = J: 00 [UIUI - (UU)2}dx. 

and the Poisson bracket is defined as 

(4.76) 

f oo {8F. 8F. 8F. 8F.} [Fit}}] =i ~-j - -' ~ dx. 
- 00 8U 8U 8U 8U 

(4.77) 

If we substitute the perturbation (4.4) into (4.75) and collect 
the coefficients of E j

• putting each of them individually 
equal to zero. then the perturbed equations are of the form 

u~jl - i {uV1 + 2 2: Ulk iu(l)u(j - k - /)} = O. 
O<.k,i<j 

j= 0.1.2 ..... n. (4.78) 

and the associated complex conjugate form. Hereafter we 
will omit the latter from further consideration for simplicity. 
as its treatment will be analogous to that of(4. 78). The unper
turbed (soliton) solution ulO) satisfies the equation 

u~Oi- i[ u~O) + 2(uI0)fuI0)} = O. (4.79) 

Before obtaining the LB invariant equations corre
sponding to the evolution equations (4.78). we generalize the 
definitions of total differentials and LB operators given in 
Eqs. (2.3) and (2.4) for complex valued functions: 

AA noo( a a) D =D - uIJ1 -- Ul.n --
- x - .2: 2: m + I a IJl + m + I a-IJ1 • j=Om=O Um Um 

(4.80a) 

(4.80b) 

and 

n A a n 00 A a 
+ j~O (Dt 1jI.n) au~jl + j~om~o (Dm1jIJ1) aul,;,J' 

(4.81) 

With these as our new definitions we can obtain the explicit 
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form of the invariant equations of(4.78) by using Eqs. (4.80), 
(4.81), and (2.5) as 

Dt'TF'-i {D2"'(j) + 2 '} (U(k)U(I)",(j-k-1) 
0"~<J 

+ .U(k)U(J- k_l)~(l)k: 1~I)U(j- k_II",(k l)} = 0, 

J = 0,1,2, ... ,n. (4.82) 

Then the LB invariant equation for the unperturbed case 
(j= 0) is 

D,,,,(oI_ i{D 2",(0) + 4u(0Iu(01",(0) + 2U(0)2~(0)} = O. (4.83) 

It is known9 that Eq. (4.83) has infinitely many solutions, 
which in tum are the LB symmetries of (4. 79). The first three 
of them are 

",\0) = u\O), 

"'~O) = + i(u~O) + 2U(0)2U(0»), 

(4. 84a) 

(4. 84b) 

",~O) = - (u~O) + 6u(O)u\0)u(0»). (4. 84c) 

The strong and hereditary symmetry of (4.79) is9 given by 

41 =41 (0) = D + 2u(0)D -I {u(o)(.) - u(O)A}. (4.85) 

Then 41 (0) generates the sequence in (4.84) into infinitely 
many sequences in such a way that 41 (0) satisfies the relation 

I 

satisfying Eqs. (2.15) and (2.16). Thus we have shown that 
infinitely many commuting LB symmetries exist for the 
first-order perturbed NLS equation (4.87) also (in conjunc
tion) with (4.79). From the definitions (2.19)-(2.21) we define 
the constants of motion and conserved covariant of the first
order perturbed NLS as follows: 

1\1) = f: '" PI (x,u(O),u(O),u(l),u(l), 

(4.91) 

and 

(
81\1) MIl) MIl) MIl)) 

(
,,(1) ;;-,(1) ,,(01 ;;-'(0)) _ 
n ,n ,n,n - 8u(0)' 8u(0) , 8u(I) , 8u(l) . (4.92) 

Using these relations in (2.25) and (2.27) along with the LB 
symmetries (4.84) and (4.89) we can find the corresponding 
conserved covariants with (2 X 2) diagonal matrix J having 
diagonal elements i. We list below the first few of them: 

tlO) = _ iu\O), t20) = (u~O) + 2u(0)'u(0»), 

t301 = i(u~O) + 6u(0)u(0)u\0)), 

etc., and 

til) = - iU\I), 

t21) = (u&11 + 4u(O)u(0)u(1) + 2u(0I'u(1)), 

t31) = i(U~I) + 6u\0)u(0)u(1) + 6u(0)u\0)u(1) 

+ 6u(O)U(0)U\I)), 

(4.93) 

(4.94) 

(4.95) 

(4.96) 

etc., and their complex conjugates. Furthermore, conserved 
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",Io~ I = 41 (O)(i",IO)), 1= 1,2, ... ,00. (4.86) 

By the hereditary property of the strong symmetry these 
symmetries are mutually commuting. 

Next, we consider the first-order perturbation equation 
of (4.75) (j = 1) in Eq. (4.78). This reads 

U~I) - i{ u~) + 4u(l)u(0)u(0) + 2U(0)2U(l)} = O. (4.87) 

The associated LB invariant equation for (4.87) can be ob
tained from (4.82) (forj = 1) as 

D, ",(I) - i{ D 2",(1) + 4u(0)u(0)",(1) 

+ 4u(0)u(1)",(0) + 4u(1)u(0)",(0) + 2u(0)'~(I) 
+ 4u(O)u(1)~(0)} = O. (4.88) 

By solving this equation and its complex conjugate as out
lined for (4.8) we have the first three LB symmetries 

",\1) = U\I), (4.89a) 

",&1) = + i{ u~) + 4u(0)u(0)u(l) + 2U(0)2U(I)}, (4. 89b) 

"'~) = _ {U~I) + 6u(0)u\0)u(l) 

+ 6u(0)u\0)u(l) + 6u(0)U(0)U\I)}, (4.89c) 

and the complex conjugates. Using the LB symmetries in 
Eqs. (4.84) and (4.89) we are able to find the strong and here
ditary symmetry operator 

(4.90) 

r 
covariants can be generated by using (2.27), (2.29), and(4.90). 
The associated infinitely many commuting constants of mo
tion can then be obtained from (4.91)-(4.96) and thereby the 
complete integrability of the system can be proved. 

Generalizing the above results straightforwardly it is 
possible to find the infinitely many LB symmetries and con
stants of motion for all orders of the perturbed NLS equation 
(4.82) also. Now the strong symmetry operator, as before, is 
an (n + l)X(n + 1) matrix operator defined by (3.16) with 
41 (0) as given in (4.85). The recursive relations for LB symme
tries and the conserved covariants are as in (3.14) and (3.17). 
But the conserved covariants YI now read as 

d I - - (,,(01 ,,(1) ,,(n)) gra I - YI - n ,n ,···,n , (4.97) 

or 

(
8nn) 81\n) MIn)) 

radl = -- --- ... --g I 8u(n) , 8u(n - I)' , 8u(0) (4.98) 

and its complex conjugate. In addition, we note that the op
erator J in (2.29) now takes the form 

J = diag[i,i, ... ,l1. (4.99) 

E. Derivative NLS equation (Kaup and Newell)2' 

We take the DNLS equation in the form 

iU, + U2 + i(UI U
2

) + 2iUUUI = 0 (4.100) 

and its complex conjugate. This equation can be written in 
the Hamiltonian form (3.2), by choosing 
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K= -i J:oo (UU1 + ~ U2U2)dX (4.101) 
For j = 0 in (4.105) we obtain the LB invariant equation for 
the unperturbed case, Eq. (4.104), 

and the symplectic operator J 1 as 

J 1 =ax =D. (4.102) 

As in the previous examples, substituting the perturba
tion form (4.4) into the DNLS equation (4.100) and equating 
each coefficient of Ei equal to zero, we have 

iu~J) + uY) + i L (U(k lu{llu\i - k-I) 
O<.k,i<;J 
k+l>i 

+ 2iu(k luVlu(j- k -I)) = 0, j = 0,1,2, ... ,n. (4.103) 

In the above, U(OI then satisfies the DNLS equation 

iDt 1/(01 + D 21/(01 + 2iu(0)u(O)D1/(0) + 2i1/(0) 

X (u\Olu(O) + u(O)u\OI) + iU(0)2iJ1j(0) 

+ 2iu(O)u\011j(0) = O. 

The first few LB symmetries9 are 

1/\°1 = u\OI, 

1/~01 = - u~OI - 3iu(O)u(0)u~1 

_ 3iu(0IU\0Iu\01 + 3u(013U(0)u\01 

_ 3iu\01'u(0) + ~U(012U(012 u\OI. 

(4.106) 

(4.107a) 

(4.107b) 

(4.107c) 

iu~OI + u~1 + i(u\0Iu(012) + 2iu(0IU(0IU\01 = O. (4.104) 

From the invariant condition (2.5) and using the defini
tions (4.80) and(4.81), we get the LB invariant equation cor
responding to Eqs. (4.103) in the form 

iDtr/J) +D21/(j) + i L (U(k lu(I)D1jU- k - /1 
O<.k,l<j 

The associated strong symmetry9 satisfying (2.15), which 
generates the above sequence (4.107) into infinitely many 
sequences is given by 

+ 2U(k lu\i - k - 1)1/(1) + 2uV lu(j - k - 1)1/(k I 

+ 2U(k lu(j - k - I)D1/(/1 + 2U(k luV 11j(j - k - II) = 0, 
f/>(O)=D (i - u(OID -I{U(O)(.) + u(0)8J], (4.108) 

j = 0,1,2, ... ,n. (4.105) 
which also satisfies the hereditary condition (2.16). Thus Eq. 
(4.104) has infinitely many commuting LB symmetries. 

Next, we consider the first-order perturbed DNLS equation from (4.103) [for the valuej = 1 in (4.103)] 

iU~I) + u~11 + 2iu(0)u\0Iu(l) + iu(012U\11 + 2iu(0Iu(0)U\11 + 2iu(O)u\0Iu(l) + 2iu\0Iu(0)u(l) = O. 

The corresponding LB invariant equation can be obtained from (4.105) (forj = 1) as 

iDt 1/(1) + D 21/(11 + 2i(u(O)u(I)iJ1j(0) + u(O)u(I)D1/(O) + u(O)u(l)~(O) + !U(012iJ1j(1) + u(Olu(OID1/(l1 + U(O)U\II1/(OI + U(O)U\II1/(OI 

+ u(Olu\II1j(OI + u\Olu(I)1/(OI + u\Olu(l)1/(O) + u\Olu(I)1j(OI + u(O)u\OI1/(1) + u(O)u\OI1/(1) + u(O)u\O)1j(I)) = O. 

Proceeding as in the previous cases, we get the first three LB symmetries as 

1/\11 = u\ll, 

1/~1 = iU~11 - 2u\0Iu(0)u(l) - U(012U\11 - 2u(0)u(0Iu\11 - 2u\0Iu(0)u(1) - 2u(0)u\0Iu(l), 

1/~11 = - u~1) - 3i[ u\OI'u(l) + 2u(0)u\0Iu\11 + u(Olu~Olu(l) + u(O)U(O)U~11 + u(O)u~Olu(1) + u(Olu\Olu\11 

+ u\Olu\Olu(1) + U(O)U\llu\OI] + H U(012U(012U\11 + 2u(0)u(012U\0Iu(1) + 2u(012U(0Iu\0Iu(l)] 

+ 3 [ U(0)3 U(O)U\II + U(013U\0Iu(1) + 3u(012 u\Olu(O)u(l)] . 

Using the LB symmetries in (4.107) and (4.111) we can construct the operator f/> (I) satisfying the relation (2.14) 

[

D [i - u(O)D -I {u(O)H + u(018 J ] 0 1 
f/> (II = - D [u(l)D .:1 [u(O)(.) + U(OI(.)j D (i - u(O)D -I . 

+ ulOID -I [u(l)H + u(l)8] ] X [u(OIH + u(OIH J ] 

It might be noted that the operator f/> (II satisfies [in conjunc
tion with (4.104)] the appropriate conditions (2.15) and (2.16) 
and therefore it is the strong and hereditary symmetry of 
(4.109). Thus we have infinitely many commuting LB sym
metries for the first-order perturbed DNLS equation (4.109). 

The conserved covariants corresponding to the LB 
symmetries in (4.107) and (4.111) follow straightforwardly 
from the relation (2.25) with J = diag (D,D ) 

1199 

.;01 _ u(OI '1 - , 
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(4.113a) 

(4.113b) 

r301 = - u~1 - 3iu(O)u\0Iu(0) + ~U(013U(012, 
etc., and 

.m - u(l) fI - , 

r311 = - U~II- 3i[u(0IU\0Iu(1) + u(O)u\Olu(l) 

+ U\llu(O)U(OI] + ~U(012U(012 u(1) 

+ 3U(0)3U(O)U(l), 
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(4.110) 

(4.111a) 

(4.111b) 

(4.111c) 

(4.112) 

(4. 113c) 

(4. 114a) 

(4. 114b) 

(4.114c) 
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etc., and their complex conju&.a~. As before, using Eqs. 
(4.42) and (4.43) with J = diag(D,D), we can obtain the con
stants of motion which are in involution. Thus infinitely 
many constants of motion and LB symmetries exist for the 
first-order perturbed DNLS equation (4.109) [in conjunction 
with (4.104)]. 

For any order of the perturbed DNLS equation (4.103), 
as before, we can find the strong symmetry operator, which 
is an (n + 1) X (n + 1) matrix operator-valued function 
which generates further new symmetries, and its adjoint 
which generates further new conserved covariants with the 
(n + 1) X ~ :t 1) A skew-symmetric matrix operator 
J = diag[D,D, ... ,D]. Finally, the corresponding commuting 
constants of motion can be obtained by using the relation 
(4.97). Hence we conclude that it is possible to find infinitely 
many LB symmetries and constants of motion for any order 
of perturbation of the DNLS equation. 

v. CONCLUSIONS 

In this paper we have developed an applicable tech
nique for establishing the existence of infinitely many LB 
symmetries and constants of motion for coupled evolution 
equations. We have pointed out that there exists a one-to-one 
correspondence between LB symmetries and conserved co
variants, where the symplectic operator J plays an important 
role. We have also shown that the conserved covariants can 
be obtained by considering the adjoint of the strong symme
try operator. We have presented important relations 
between the strong symmetry and its adjoint [see Eq. (2.29)] 
and further consequences have been discussed. 

As examples, we considered the completely integrable 
systems under perturbation around their solutions. The Ha
miltonian structure of these perturbed systems has been pre
sented explicitly. Then we have shown the possible form of 
the strong and hereditary symmetry operator for any order 
of perturbation. 

Finally, we have applied our technique to the specific 
examples of equations like the KdV, PmKdV, sG, NLS, and 
DNLS equations. We showed explicitly that infinitely many 
commuting LB symmetries and constants of motion exist for 
these completely integrable Hamiltonian systems under per
turbation around their solution. Thus we conclude from the 
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theory ofLB symmetries that if the original system is a com
pletely integrable Hamiltonian system, then the perturbed 
systems are also completely integrable. 
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Theorem on linearized Hamiltonian systems 
K. M. Case 
The Rockefeller University. 1230 York Avenue. New York, New York 10021 

(Received 1 October 1984; accepted for publication 15 February 1985) 

Many nonlinear field equations can be written in Hamiltonian form. Thus the equation 
atu = K(u)canbewrittenatu = [u, H], where His an appropriate functional and [ ,]isaPoisson 
bracket. Frequently one is interested in the solution of the equation linearized about a given 
solution, i.e., the equation at 1" = K'(1"), whereK'(1") = (d IdE) K(u + E1")I.-=o.ltisknown that if a 
functional lis a constant of motion then 1" = [u, I] is a solution. Recently, more general solutions 
ofthis form have been found. To prove these results, it is very useful to have the answer to the 
following question: If Ii' ~ are two functionals, and Ki = [u, Ii ], what is K :(Kj )? The answer is 
K :(Kj ) = [[u, Ii], I j ]. Previously, this was proved assuming that canonical coordinates can be 
introduced. Here a proof is given without any such assumption. 

I. INTRODUCTION 

There is considerable current interest in Hamiltonian 
formulations of nonlinear evolution equations. t By this we 
mean systems of the form 

atu=K(u)=[u,H). (1) 

Here u(x)==(ut(x), U2(X)"", u,,(x)), x=(x t, . .. , x m ), His a 
suitable functional, and [ , ] is a Poisson bracket satisfying 
the antisymmetry and Jacobi conditions. 

Frequently one is interested in the solution of Eq. (1) 
linearized around a particular solution, 

at 1" = K'1", (2) 

where K '1" is the Gateaux derivative 

K'1"= :EK(U +E1")I.-=o' (3) 

It is known2 that if[H, I] = 0, then 1" = [u, I] is a solution of 
Eq. (2). More general solutions of the linearized equation 
have been found which are of this form but for which I is not 
a constant of motion. This leads us to the following question: 
Consider two functionals II' 12 with "symmetries,,3,4 Ki 
= [u, Ii]' what is K; K2? The answer is given by the follow

ing. 
Theorem: 

(4) 

Recently,5 we have proved this assuming that canonical 
coordinates can be introduced. This certainly suffices for 
most (if not all) of the known completely integrable Hamil
tonian systems. (Examples are the KdV equation, the sine
Gordon equation, and the nonlinear Schrooinger equation.) 

Here we want to give two new proofs which do not 
invoke canonical coordinates. There are two reasons. 

(a) It seems inelegant to invoke canonical coordinates. 
(b) There are some Hamiltonian systems I for which it is 

not known if global canonical coordinates can be construct
ed. 

The first new proof involves a particular assumption 
which mayor may not be equivalent to the canonical coordi
nate assumption. The proof is, however, very perspicuous 
and particularly short. 

The second new proof does not make any extra assump
tions. It does require more technical details. 

After giving the proofs some simple applications of the 
theorem are indicated. 

II. SOME DEFINITIONS 

All known Hamiltonian systems appear to be special
izations ofthe following general form: We introduce a bilin
ear form (v, w) = S(v, w)dx. The Poisson bracket of two 
functionals Fi[u], lj[u] is taken to be 

f(8F. 8F.) [Folj] = -',Lu-J dx. 
8u 8u 

(5) 

Here Lu is to be antisymmetric so that 

[Folj] = - [lj,Fd (6) 

and Lu is to be such that the Jacobi condition 

[[Fit lj], Fk] + Hlj, Fd, F;1 + [[Fk' Fi], lj] = 0 (7) 

is satisfied. 

(Note: If L is independent of u this is automatically ful
filled in virtue of the antisymmetry. The general condition 
on Lu is given in Ref. 3.) The functional derivatives are de
fined by 

~F [u + E8u) 1.-=0 = f(~' 8U(X))dX. (8) 
dE 8u(x) 

III. A SIMPLE PROOF 

Assume L independent of u. (It seems likely that in this 
case we can always introduce canonical coordinates-by in
troducing the Fourier transform of u. However, we will 
make no use of this here.) 

We have KI(u) = [u, II(u)]. Since L is independent of u 
we haveKI(u + E1") = [u + E1", II(u + E1")] and then 

K; 1"= :fl (u+E1")IT=o 

= [1",II(u)) + [u, f(~~ '1")dxl 

If we choose 1" = [u, 12], then 1" = L u (8I2/8u), and 

K; [u, I 2 )=K ;K2 = [[u, 12], II] 

+ [u, f(~~,Lu ~~)dX]. 

(9) 
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But from the definition ofEq. (5), 

I(
MI , Lu M 2)dX = [11,12], 
8u 8u 

... K i K2 = [[u, 12], Ia + [u, [I» 12]]. (10) 

The Jacobi identity [Eq. (7)] then yields the theorem 

K i K2 = [[u, II], 12], (4) 

IV. THE GENERAL PROOF 

Let Lu be arbitrary (except, of course, that antisym
metry and Jacobi be satisfied). 

We directly compute the right-hand side ofEq. (4). To 
do this, we need (8 /8u(x'))[u(x), II]' First [u(x), II] is ex
pressed as a functional by 

[u(x), Id =KI(u(x)) = I 8 (x - x')KI(u(x'))dx'. (11) 

Then 

~KI(u(x) + E8u(x)) = I8 (x - x')K i 8u(x')dx' (12) 
dE 

= I(K i 8(x - x'), 8u(x'))dx' (13) 

(where - denotes adjoint). 
From the definition ofEq. (S) it is then seen that 

(8/8u(x'))[u(x),Id =Ki8(x-x') (14) 

.'. [[u, II], 12] = I ( K i 8 (x - x'), Lu ~~~ )dX' 

= I((8(X-X')),KiLu ~:)dX' 
=KiLu(M2/8u)-KiK2' (15) 

V. SIMPLE APPLICATIONS 

(1) Suppose II = H, and [H,I2] = O. From Eq. (10) we 
read 

1202 J. Math. Phys., Vol. 26, No.6, June 1985 

(16) 

but [[u, 12], H]==J,[u, 12]' We conclude that r = [u, 12] satis
fies Eq. (2) (the known result). 

(2) What is the relation between K i [u, 12] and 
K 2 [u, Id? We have 

K i [u, 12 ] = [[u, II]' 12], (17) 

and similarly 

K 2 [u, II] = [[u, 12], II]' 

Substracting and using the Jacobi identity yields 

K i [u, 12 ] - K 2 [u, Ia = [u,[II' 12]]. 

(a) If [11,12] = 0 we see 

Ki [U,I2] =K 2 [u,II]' 

(IS) 

(19) 

(20) 

(b) In Refs. 3 and 4, Lie algebras of symmetries are in
troduced using as Lie product 

{Kj Kj ] =K;Kj -KjKj. (21) 

From Eq. (19) it is seen that 

{Kj Kj ] = [u, [Ij,~]]. (22) 

Thus this Lie algebra is isomorphic to the algebra of the 
associated functionals with the Poisson bracket as the Lie 
product. 
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Exact solution for the spatially inhomogeneous nonlinear Kac model of the 
Boltzmann equation 

Henri Cornille 
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(Received 7 September 1984; accepted for publication 26 October 1984) 

We study the spatially inhomogeneous Kac model of the nonlinear Boltzmann equation in 
1 + 1 + 1 dimensions (velocity v, time t, position x). We obtain an exact solution which is the 
product of a Maxwellian with a time-dependent width by a second-order polynomial in the 
velocity variable. The solution satisfies a specular reflection condition at the boundary x = Xo' 

The positionxo - x appears linearly and only in the odd part of the velocity distribution, the range 
of Xo - x being arbitrarily large but finite in order to maintain the positivity of the distribution. 
The local density is spatially homogeneous. Further, a particular linear relation between the 
moments of the cross section must be satisfied. The most general Maxwellian width has two 
relaxation times and their ratio is a function of the moments of the cross sections. Depending on 
whether this ratio is larger than or smaller than 1 we find contraction or expansion. The solution 
relaxes towards a Maxwellian equilibrium solution. Studying the Tjon overpopulation effect of 
high velocity particles, we find that it depends weakly on the initial condition, and strongly on 
both the microscopic model of cross section and on the ratio of the two relaxation times. We give a 
simple criterion (linked to the distinction between contraction and expansion) for the existence of 
the effect. Theoretically and numerically we test its validity and its failure. 

I. INTRODUCTION 

It is a common belief that the discovery of exact solu
tions can help towards a better understanding of the Boltz
mann equation. 

For the homogeneous distributions, with Maxwell in
teraction, first Bobylev, I then Krook and Wu2 have found an 
exact solution (hereafter called the BKW even velocity 
mode) relaxing towards a Maxwellian equilibrium solution. 
Previously Nikol'skie had defined a transformation generat
ing exact inhomogeneous solutions from homogeneous ones. 
Applying this method to the BKW even mode, first Bobylevl 
and then Tenti and Hui4 have discussed the associate inho
mogeneous solution. Unfortunately this solution is going to 
zero when the time increases up to infinity. In fact, in the 
homogeneous case with Maxwell interaction, there exists an 
infinite number of closed solutions3

-
s (only the BKW even 

mode satisfies the physical requirements of homogeneous 
distributions), for which one can apply the Nikol'skii trans
form. Unfortunately, for Maxwell interactions, the inhomo
geneous solutions constructed with the Nikol'skii method 
cannot relax towards a Maxwellian equilibrium state. 3

,4 A 
first question arises: Is there any exact inhomogeneous solu
tion relaxing towards a Maxwellian? 

Another useful property of these exact solutions is that 
one can easily study the Tjon6 overpopulation effect of high 
velocity particles. In the homogeneous Maxwell interaction 
case, with even velocity distribution alone, Hauge and 
Praestgaard7 have defined a criterion explaining that the ex
istence of the effect depends uniquely on the initial distribu· 
tions. For more general distributions (inhomogeneous and 
including odd velocity parts) is it always true that the effect 
depends only on the initial distributions? 

In order to answer partially these questions we investi
gate the simplest model: the Kac8 model which, due to its 

simplicity, must be considered more as a mathematical 
frame than a physical one. 

The Kac model in I + I + I dimensions depends on the 
three variables v,t,x (velocity v, time t, position x), and the 
distribution function, when no external force is present, sat
isfies the equation 

(a, + vax )f(v) 

= v f_+,,"O" (0 )f-+,.,'" (f(v')f(w') - f(v)(w))dw dO, 

(1.1) 
v' = v cos 0 - w sin 0, w' = v sin 0 + w cos 0, 

0"(0)=0"(-0), 

where/Iv) meansf(v,t,x), 0" (0) is the scattering cross section, 
and v is a constant. When the gradient term vax is absent, 
f = f(v,t) is the spatially homogeneous solution. Ernst9 re
cognizes that the even velocity partf+ off = f+ + f- (f± 
even and odd in v) has a BKW even mode solution, but he 
associates trivial odd partsf- to form complete closed solu
tions. In fact there exists lO a nontrivial oddf-(v,t) closed 
solution, partner to the BKW even mode, and also a whole 
class of nontrivial and nonexplicitf-(v,t) associated odd so
lutions. 

On the other hand, while the BKW even mode alone 
forbids the existence of the Tjon effect, the addition of non
trivial odd partsf-(v,t) gives the possibility to recover the 
effect (with or without a force term present lO

). We find out 
that the effect depends on both the microscopic 0" (0) model 
and the initial conditionf(v,O). 

The aim of this paper is to try to obtain, in the inhomo
geneous case, an explicit solutionf(v,x,t) and to study the 
possible associated Tjon effect. We require that f relaxes 
towards the Maxwellian distribution exp( - v2/2) when 
t-+ 00 and define a reduced distribution function 
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F(v,t,x) = f(v,t,x)lf(v, 00 ,x). Our main result is that there ex
ists such a solution: 

F= e-(.r12)(.d -'-I).J -3/2[( 1 - Y).J +..l....a .J 
l+y U y 

+v2C (xo-x)y - v
2
ya log.JJ (1.2a) 

2 (1 + y)2 2 y , 

Y = Cle- e", .J =.J (y), 

with CI ,C2 arbitrary constants, C2 > 0, the moments 
T m = S ~;O" (O)(cos 0 t dO", 0"2" = S =;0" (0 )(cos 0 sin 0)2" 
X dO > 0 of 0" (0 ) being such that they satisfy the relations 

0"2 - TI + T3 = 0, A (To - TI ) = 0"2' AE ]0,2[, 

C2 = V(To - TI ), 
(1.2b) 

and the time-dependent Maxwellian width.J -Ity) satisfies a 
second-order linear differential equation 

(4A + (1 + y)(A - 1 - y(A + 1))ay 

- y( 1 + y)2 a;,).J (y) = O. (1.2c) 

Werequire.J (y)~1 inorderthatF~1 (orfrelaxestowards. 
y----..O 1 __ 00 

a Maxwellian). In the one spatial dimensional Kac model we 
have the energy conservation v2 + w2 = V,2 + W,2 but not the 
momentum conservation v + w =1= v' + w'. It is interesting 
for the solution (1.2) to discuss the hydrodynamical equa
tions (aN;lat) + div Ji = 0, Ni = Sfvi dv, Ji = Sfvi + I dv, 
n = 0 and 2. The local density No = (1 - y)/( 1 + y) = No(t ) 
being independent of x, is uniform in the space while the 
current Jo is linear in x. For the solution (1.2) we find 
a,No = y(2C2)1(1 + y)2 having the same sign asy or CI, and 
we have contraction or dilatation depending on whether y is 
positive or negative. Similar properties hold both for N 2(t) 
such that a,N2 = 3.J a,No and for J2. 

In Sec. II, from (1.1) we deduce the exact solution (1.2). 
Let us put d = (xo - X)C2 fixed, the solution can be written 
F(v,t,x)=F+(v,t)+dF-(v,t) with F+(F-) even (odd) 
velocity functions. From transformations of both the rela
tive position Xo - x and time t variables, we obtain invar
iance properties for the solutions F. 

Letusdefinex~, x', ci >O,t',keepCdiny)andd fixed, 
then with an obvious notation for F we find 

d = C2(XO - x) = ci (x~ - x'), 

F(v,t,x;Xo - X,C2;c l,d) = F(v,t,x;X~ - x',ci ;cl,d); 

d=c2(xO-x) = -ci(x~ -x'), 

c2t = cit', (xo - x)(x~ - x') <0, 

(1.3a) 

(1.3b) 

This means that it is sufficient to study F for a chosen finite 
interval Xo - x and, using the scaling properties (1.3a) and 
(1.3b), obtain results for arbitrarily large but finite other in
tervals x~ - x'. Of course, due to the positivity constraint 
F> 0, these intervals cannot go up to ± 00. We remark that 
the specular reflection condition F - (v,t,xo) = 0 is satisfied at 
the boundary x = Xo andF(v,t,xo) = F( - v,t,xo)' We notice 
also that the F solutions for (xo - x,v) and (x - xo, - v) are 
the same. Using all these invariances we can study the solu
tions for x~xo and deduce the corresponding ones for x;>xo. 
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In Sec. II we also check that (1.2) is a solution of the 
Laguerre moments system associated with (1.1). At the end 
we construct 0" (0) models which satisfy the linear moment 
relations (1.2b). 

In Sec. III we determine the time-dependent Maxwel
lian width .J (y), solutions of (1.2c), and study the positivity 
property of F. Here, a(0) > 0 requires AE ]O,2[ and first we 
study A =1= 1, where the general solution has no log y term. If 
we adopt the language of potential theory, the most general 
solution is .J =.Js + C~R' where .Js = 1 + :Ia"yn and 
.JR = I yl-I(1 + :Id"y"), I yl < 1 are the two independent 
"singular" and "regular" solutions of(1.2c) when~. For 
C3 = 0, we find that the positivity ofF at t = 0 requires A < 1 
in the expansion case (y < 0 or C I < 0) and A > 1 in the con
traction case ( y > 0 or CI > 0). If we add a .J R component, 
then C3 is restricted by the condition F> 0 at t = O. For the 
positivity of F at t =1=0, we show in the contraction case 
(y> 0), that it is sufficient to have F> 0 at t = 0, whereas in 
the expansion case (y < 0) the positivity is violated if C3 > O. 
For A = 1, where a logy term is present, a similar study can 
be done. 

In Sec. IV, for all these different Maxwellian widths.J, 
in order to study the Tjon effect, we seek the asymptotic 
behaviors when t~oo (or y~) of the reduced distribution 
F(v,t,x) and investigate both the sign and the size ofF - 1. If 
the F - 1 > 0 values are appreciable then we conclude that 
the Tjon effect exists. 

First, we study the simplestcase.J ==.ods having only one 
relaxation time c2- I = Ts and establish a criterion 

(1.4) 

saying that F - 1 >0 if crit. >0 (or A < 1) and F - 1 <0 if 
crit. <O(orA > 1). On the other hand, forA < 1, theF - 1 >0 
values decrease when A increases. Combining these two re
sults, we find appreciable Tjon effect in the contraction case 
for A <~. 

Second, we introduce .J R, and for the general 
.J =.Js + C~R'.J - 1 has two different relaxation times: 
Ts = C2 coming from.J s - 1 and TR = (AC2)-1 coming from 
.J R • In the expansion case A > 1 we still have no effect while 
in the contraction A < 1, the effect disappears for important 
C3 < 0 contributions. The effect depends weakly on the ini
tial distributions but strongly on a(0) and on the existence of 
two relaxation times. 

Third, we compare the exact solution with the one ob
tained from the linearized formalism. 

II. DETERMINATION OF AN EXACT INHOMOGENEOUS 
SOLUTION 

Different methods can be used for the search of closed 
solutions. We can either try the direct substitution of an ap
propriate ansatz into (1.1) or investigate the differential sys
tem for the Laguerre moments off(v,t,x). Writing/as a sum 
of even and odd velocity partsf = f+(v,t,x) + f-(v,t,x), Eq. 
(1.1) becomes 

aJ+ +vaJ-

= f_+
1T

1T

dO0" (O)f_+",'" dw(f+(w')f+(v') - f+(v)f+(w)), 

(2.1a) 
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aJ- +vaJ+ 

= J_+1T
1T 
dO 0' (0 )J-+ 0000 dw(f+(w'lf-(v') - f+(wlf-(v)). 

(2.lb) 

We start with an ansatz solution product of a Maxwellian, 
with b (x,t ) width, by an arbitrary polynomial 

n+ ( V )2n .fiiif+ = e-b(t'X)v2/2~a2n(t,x)..{i , 

(2.2) 

A. Restrictions on both the polynomials and the width 
of Eq. (2.2) 

We substitute (2.2) into (2.la) and (2.lb) and integrate 
over w,O. Then (2.la) and (2.lb) become, respectively, an 
even and odd v polynomial. The coefficients of the polynomi
als depend on both b,a2n ,a2n + I , and their derivatives, and 
on the moments 

of the cross section 0' (0). The coefficient of the highest v 
power vln+ is proportional to a~n O'2n > 0 on the rhs of (2.la) 
and the corresponding one of v2n+ + 2n_ + I in (2.1 b) is 
a 2n+ a 2n_ + I S ~;O' (0 )(sin 0 )2n+(cos 0 )2n_ + I, which can 
vanish. 

Comparing the highest degrees of both polynomials on 
the lhs and the rhs, we find the constraints 

sup(n+ + I, n_ + 2) = 2n+, 

sup(2n_ + 3, 2n+ + 3)<2n+ + 2n_ + 1. 

(2.3a) 

(2.3b) 

First,J> 0 for I v I large requires n _ < n +. Second, if the sup is 
n+ + I in (2.3a) then n+ = 1, n_ = 0, if it is n_ + 2 then 
2 - n+ = n+ - n_ >0, still n+ = 1, n_ = O. Third, these 
values lead to an impossibility: sup(3,5)<3 into (2.3b) unless 
ab lax=O, orb =b (t ) with sup(3,3)<3. The only possible an
satz (2.2) is 

.fiiif+ = e - b(t)v2/2(ao(t,x) + a 2(t,x)(v2/2)), 
(2.2') 

.fiiif- = e- b(t)v2/2(vl..{i)aI(x,t). 

Let us notice that if we have allowed n_>n+ (orfviolating 
positivity when v~ ± (0) then the discussion would be dif
ferent (see, for instance, a similar discussion for the station
ary case 11 ). 

B. The system of nonlinear partial differential equations 

We have five unknown functions b,aO,a2,al,O' and five 
relations (three coming from the vanishing of the coefficients 
of[v2/2]2, [v2/2], [va] in (2.1a) and two from [vlv'2], [vlv'2]3 in 
(2.1b)). 

The first relation coming from [V]4 is 

a 2 = - (b 1/2 IVO'2)b'~2=a2(t), a 2x = O. (2.4a) 
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If, for a t value b, > 0, then a 2 < O,J+ < 0 for large v, (2.2') 
violates positivity. The second, deduced from [v]O, is 
ao, = ~vO'2a~b -S/2, leading to ao(t,x) = £lo(t) + ao(x). We 
see that ao is a sum of two terms depending either on x or t. 
Instead of writing separately the coefficients of [va] and [v2] 
we choose the sums of (b 12)[v2/2] + b 2[VOJ and 
~b [v2 12] + b 2 [VO], because, as we shall see, they have a 
physical interpretation: 

a,No + aJo = 0, No = Jf dv, Jo = Jfv dv, 

No = rao(t) + ao(x))b -1/2 + (a2(t )/2)b -3/2, (2.4b) 

Jo = alb - 3121..{i; 

a,N2 + aJ2 = 0, N2 = Jfo2 dv, J2 = Jfo3 dv, 

N2 = rao(t ) + ao(x))b -3/2 + ~2(t )b -S12, (2.4c) 

J2 = a l3b -S/2..{i = (31b ).10' 
NO,N2 are, respectively, the local density and energy while 
JO.J2 are the corresponding components of the current. 
These relations represent conservation laws. If in (2.1a) we 
multiply by the invariants 1, v2 and integrate over v, then as is 
well known, the collision term contributions vanish. We find 
a,sf+ dv + axsvf- = 0, a,ff+v2 dv + axsv3j- = 0, 
which are, respectively, (2.4a) and (2.4b). 

It remains to study the odd v polynomial obtained after 
substitution of(2.2') into (2.lb) and integration. Taking into 
account (2.4a) and the relations between a O,al,a2 and NaJo, 
the coefficients of [vlv'2], [vlv'2]3 give the two last equations 

a,Jo + b -I axNo + v(7o - 7 1).1oNo = 0, (2.4d) 

0'2 - 71 + 73 = O. (2.4e) 

Relation (2.4e) for the moments of 0' (0 ) is the same relation 
as in the homogeneous case. 10 Similarly in (2.4d), if aox = 0, 
No = 1, we find again the homogeneous relation. Here [see 
the conservation law (2.4b)], No(x,t) is not a constant. We 
have four relations (2.4a)-(2.4d) for the determination offour 
quantities b (t ), a2(t ), £lo(t ) + ao(x) or No(x,t ), and a tlx,t ) or 
Jo(x,t). We want to simplify the formalism and try to reduce 
the number of independent relations which apply to inde
pendent quantities. From (2.4b) and (2.4c) we find 3b- 1 

Xa,No = a,N2, N2 = Nob -I + a 2b -S12, eliminate a 2 with 
(2.4a), and obtain a first equation [equivalent to (2.4c)] in 
which only No and b are present: 

2b -I a,No - No a,b -I - (1/ O'2V )a;2 b -I = O. (2.4c') 

Noticing from (2.4b) that No can be written 
No(x,t) = No(t) + ao(x)b -1/2andsubstitutinginto(2.4c'), we 
find that the two terms proportional to ao(x) cancel each 
other and consequently (2.4c') is an x-independent equation. 
For the determination of the possible x dependences of Jo 
and No we look at the two equations (2.4b) and (2.4d) and 
eliminateJo. A compatibility condition (a;, - a;x ).Io(x,t )=0 
can be deduced from the two equations (see Appendix A). 
Taking advantage of the decomposition No = No 
+ ao(x)b -112, we can write a sum ofterms which are func-

tionals of ao(x) only with time-dependent coefficients. We 
find that the only possibility is ao==O and No==No(t) must 
satisfy a differential equation 
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at log atNo(t) = (1"1 - 1"o)vNo(t), axao=axNo=O. 
(2.4d') 

In conclusion, we first obtain No(t) in (2.4d') and second, 
substituting into (2.4c'), we determine the class of b (t) solu
tions. The two remaining equations (2.4a) and (2.4b) give 
both a 2,aO = b 1/2[No + bt(20'2Vb )-1] and Jo(x,t) = (xo 
- x)atNo + Jo(xo,t), a l = v'2loh 3/2. WechooseJo(xo,t)=O 

in order thatfsatisfies a specular reflection boundary condi
tion at an arbitrary xo value. The solutionf can be written 

(2.5) 

In this way, Eqs. (2.4c'), (2.4d'), and (2.5) give the only exact 
solution of Kac's model corresponding to the general ansatz 
family written down in (2.2a). Let us emphasize the very 
important fact that the solution (2.5) cannot represent an 
extension of the complete BKW homogeneous solution. Al
though in (2.4c') if No==const = 1, we find the same Maxwel
lian width b (t) = (1 - cle- vc,t)-I as in the KWB solution; 
No = const is not a solution of (2.4d'). Here (2.4d') represents 
the compatibility condition between (2.4b) and (2.4d) when 
we eliminate Jo (or al)' In the homogeneous case, due to the 
mass conservation law, axJo = 0 and Jo (or ad does not ap
pear in (2.4b). In that case (2.4b) and (2.4d) represent two 
decoupled equations which determine separately No and Jo 
(oral)' 

c. Some general considerations for the possible 
No(t)b- 1(t) 

The general solution of(2.4c') depends on two arbitrary 
constants c I,C2 and can be written 

No(t) = C2 (1 -Y), 
v(1"o - 1"1) 1 + y 

y=cle- C
", c2>0, y-o. (2.6) 

t-oo 
A solution corresponds to a fixed sign (y):y~O if CI ~O. Let us 
define..::l (y) = b -I, substitute (2.6) into (2.4c') and obtain, in 
the y variable, a second-order differential equation depend
ing on a parameter A linked to the moments of 0' (0), 

( 4..1 +(A(l- y ) _ yl)ay-a;,)..::l(Y)=O, 
y(l + y)2 y(l + y) 

(2.4c") 

..1(1"0 - 1"d - 0'2 = O. 

ThedefinitionofA[f~;O'(O)(l- Z)(Z2(l +z) -A )dO= 0], 
Z = cos 0, and the positivity of 0' (0) lead to the restriction 
0<..1 < 2. The solution f written down in (2.5) can be ex
pressed in terms of..::l (y), y alone. Requiring at equilibrium a 

Maxwellian behavior f..[iii ~ e - V'/2, we obtain a relation 
t-oo 

between the relaxation time c2- I, the constant v of the colli-
sion term, and the moment 1"0 - 1"1 of 0' (0): 
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f( vtx) = e-
V
</2A-'..::l -3/2[(1- y )..::l +L..a..::l 

, , y21T 1 + y U y 

2c2 dy v2 y ay..::l] e - v'/2 
+v--=-~ - ---- ~ ---, 

(1 + y)2 2 A ..::l t_oo y21T 

..::l (y)~l, yay..::l-o, I 
1 = v(1"o - 1"dc2- , 

y~O y-o 

d = c2(XO - x), A = 0'2/(1"0 - 1"d. (2.5') 

The reduced distribution function F = f / f(t~ 00 ) is just the 
solution (1.2a) and (1.2b) written down in the Introduction. 
In Sec. III we study both the solutions..::l (y) of(2.4c") and the 
corresponding properties of f(v,t,x) given by (2.5'). As ex
plained in the Introduction, for a given solution with c and d 
fixed,Jin (2.5') leads to a family of solutions with C2,XO - x,t 
varying in such a way that C2(X - xo) = ci (x' - x~), 

C2t = cit'. 
Can we only have solutions with time dependence pro

vided by the variabley = cle -c,t? There exist also solutions 
with another time dependence, but they do not lead to Max
wellian asymptotic distributions. From the general solution 
(2.6), putting CI = - e - c,to and taking the limit c2-o, we 
find a power-type solution No(t) = [2/v(1"0 - 1"1)][1/(t + to)] 
of (2.4d'). Substituting it into (2.4c'),..::l = b -I is the solution 
of the equation (4..1 + U. (t + to)at + (t + to)2a;2)..::l = 0 and 

..::l-·M. We find ..::l=c+(to+tjP++c-(to+tjP-, 

p ± =! - A ± ~~ 1 + 4..1 2 - 20..1 and substituting into 
(2.5) we have not found solutions which do not violate either 
f>OorO'(O»O. 

D. Laguerre moments 

In order to check the validity of the formalism leading 
to (2.5'), (2.4c"), we can determine the Laguerre moments of 
F and verify that they are also solutions of the differential 
system satisfied by the Laguerre moments. Let us define for 
the reduced distribution F (v,t,x) of (2.5') the moments D n± 

F(v,t,x) = ~[( - l)nD / (t)L ~ - 112{~2) 

+' ~( - ltD n- (x,t)L !/2(~)]. (2.7) 

With the help of the generating functionals ofthe L n± 112 we 
can (see Appendix B) find the Laguerre moments of the solu
tion (2.5'): 

Dn+ =C~~}..::l-l)n- ~n(..::l-l)n-Iay..::l, 

D n- = ~(xo - x)[2c2y(..::l - l)n/(l + y)2]. (2.8) 

In the spatially homogeneous case, Kac8 and Emst9 (using 
the Fourier transform) have given the equations for the Her
mite moments. In the inhomogeneous case, when the gradi
ent term vax is present, one can directly obtain lO the equa
tions for the Laguerre moments. Let us assume 

f+ ..[iiiev'/2 = IL n-1I2(~} - ltD n+, 

f- ..[iiiev'!2 = ~ IL ~/2(~} - ltD n-' (2.9) 
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substitute into (1.1), and find for the D n± , 

n 

atD n+ Ii ax((n +!)D n- + D n--I) = 2P q+ D n+_qC~Bqn' 
o 

n 

atD n- +liax(Dn+ +Dn++d=LDtDn-_qC~Eqn' 
o 

Eon = T2n + I - To, 
q 

Eqn = L( -ltC :;'T2(n_m+q)+I' 
o 

(2.11) 

By direct substitution of the D n± written down in (2.8), if ..1 
satisfies (2.4c") and if the relations C2 = VITo - Td, (J2 = TI 
- T3 = A (To - TI) hold, then the reader can verify that the 

D n± are solutions of the system (2.10) and (2.11). 

E. (J (0) models 

We want to construct explicit cross sections (J (0) such 
that both the moment relations 

(J2 - TI + T3 = 0, (J2 - A (To - Td = 0, AE ]0,2[ 
(2.12) 

are satisfied. We remark that the first relation in (2.12) can
not hold if the (J (0) satisfy the special symmetry 
(J (0) = (J (1T - 0). We choose a very simple family where(Jis 
a sum of l> distribution functions, 

1 2 
(J(O) = - L,ui(l>(O - 0i) + l>(0 + Oi))' 

2 i =1 

To = ,u I + ,u2, ,ui > O. (2.13a) 

The 0i are arbitrary and lead to the following system: 
I 

L,uiAi = 0,' Ai = (1 - zT)(Zi - zT), cos 0i = Zi' 
I 

(2.13b) 
2 

L,uiCi = 0, Ci = (l-zi)(zi(1 +Zi) -A). 
I 

We fix ,u I > 0 and Z I' 0 < Iz II < 1. The compatibility condi
tion A I C2 - A2C I = 0 determines Z2 with constraint 
0< IZ21 < 1 and we find,u2 = ,u IA I IA 2• A simpler case can be 

obtained for 0 < A < 1 because we can choose Z I = /T and 
Z2 = - ZI leading to the model 

(J (0) = (,u1/2)[l>(0 - 01) + l>(0 + Od 

+ [(1 - /T)!(1 + /T)](l>(0 -1T + 01) 

(2.13c) 

One can also consider smooth (J (0 ) models 
(J = cosIO 12)~r,ui (cos o)m - I, ,u>3. 

In Sec. IV we illustrate the properties of the reduced 
distribution F with many examples. When 0 < A < 1, we al
ways choose the(J (0) model (2.13a) and (2.13c) with,ul = 1, 

,u2 = (1 - /T)(1 + /T)-I, ZI = /T, Z2 = - ZI such that 
the knowledge of A determines entirely (J (0 ). WhenAE [1,2[, 
wechoose(J (0 ) given by (2. 13b),,u1 = 1, and must determine 
numerically the couple (ZI,Z2) satisfying A IC2 - A 2C I = 0 
and then deduce ,u2' 
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F. Equations when a force term A (t,x)aJ is present 

Let us add A (x,t )av/± ,respectively, to the lhs of(2.1a) 
and (2.1b), assume an ansatz of the (2.2) type, verify that (2.2') 
with b = b (t ) is still the only possible one, and, substituting 
(2.2') into (2.1a) and (2.1 b) find the five independent relations 
(2.14a)-(2.14e) which generalize (2.4a)-(2.4e). The first one 
(2. 14a) is identical with (2.4a) leading to a 2 = a 2(t). The sec
ond, atNo + axJo = 0, assuming that No and Jo are partial 
derivatives of the same U(t,x) function, becomes 

No = Ux ' Jo = - Ut· 

The three others are different than the (2.4) ones, 

2b -IUxt - Ux atb -I - ((J2V)-1 a;,b- I 

= 2VJ~(TI - T3 - (J2), 

b-IUxx - Utt +V(TI-To)UxUT 

= V(TI - T3 - (J2)Ux UT , 

((J2 - TI + T3)VJO = A, 

but reduce to them if (J2 - TI + T3 = O. 

(2. 14b) 

(2.14c) 

(2. 14d) 

(2.14e) 

Here we only want to verify that the exact inhomogen
eous solution for A =0 presented before and the exact homo
geneous one with A (t) #0 obtained recentlylO are easily de
duced from the system (2. 14c)-(2. 14e). 

(i) First, we assume A =0, U = xNo(t) + Mo(t ) (No, Mo 
unknown functions) and substitute into the system (2.14). It 
is trivial to verify that (2.4c'), (2.4d), and (2.4e) are satisfied 
with No = No(t) and Mo(t) = const, No(t), which means 
U = (xo - x)No(t) or the solution Eq. (2.5) for/(v,t,x). 

(ii) Second, we assume A A (t )#0, U = x - V(t) and 
substitute into (2.14). We find No = 1, Jo = Vt 
= const e - tYTF, TF = To - (J2 - T3, b -I = 1 + const l 
X e - vu,t + const2 e - 2YTp, which, for v = 1, is the solution 
given in Ref. 10. 

III. SOLUTIONS FOR THE MAXWELLIAN WIDTH 
..1- 1(t) = b(t) AND POSITIVITY PROPERTIES OF F(v,t,x) 

We rewrite (2.4c") as 

[ 4A + (A (1 - y) - (1 + Y))a _ ~ ]..1 (y) = 0, 
y(1 + yf y(1 + y) Y y' 

0<A<2, y=Cle-c,y, (3.1) 

and study both the different classes of..1, when the A param
eter is varying between 0 and 2, and the positivity properties 
ofF. 

A. Solutions of the Maxwellian width ..1- 1 

This second-order differential equation has a singular
ity of the Fuchsian type at y = O. The two roots of the indi
cial equation are 0 and A and, if A # 1, we do not need a log y 
term in the solution. 

1. A~ 1 

Let us define, as in the framework of potential theory, 
the fundamental "singular" solution..1 s and "regular" solu
tion..1 R at y = 0, where the coefficients satisfy a three-term 
recurrence relation 
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4A 
ao= I, al =--, 

I-A 

ann(A + n) +an+ I (2(n + W - 4A) 
an + Z = , n;;;'O, 

(n + 2)(A - n - 2) 

• .A. 00 n U (2 -A) 
.JR =y Idny, do = I, d l = , (3.2) 

o A + I 
dn(U Z + 3An + nZ) + 2dn+ I ((A + n)2 + 2n + I) 

~+2= . 
- (n + 2)(A + n + 2) 

(3.2') 

From the general theory of differential equations, we know 
that these expansions are valid for I y I < I, up to the nearest 
singularity y = - I of the coefficients of Eq. (3.1). If y has 
the sign of CI, and if CI < 0, we replace y< by ( - y)A in the 

definition of.J R' The general "singular" solution .J __ I is 
y-.O 

.J G =.Js + C:v::iR' (3.3) 

with C3 an arbitrary constant. 

2.A= 1 

In this case .J sand .J G contain a logarithmic term 
00 

.Js = Ienyn + 4(logy).JR' eo = I, el = 0, 
o 

I 
en + Z = - (2e I (nZ + 2n - I) 

(n+I)(n+2) n+ 

+n(n+ I)en +4(2n+ l)(dn _ 1 +2dn) 

+ 4(2n + 3)dn+ I + 8dn j, (3.4a) 

where.JR is the solution equation (3.2') for A = I,logybeing 
replaced by log( - y) if y < O. The general "singular" solu
tion--I wheny-o is 

.J G =.Js +C3.JR. (3.4b) 

B. Positivity property 

1. t=O 

We rewrite (1.2a) and study the positivity of the qua
dratic v polynomial which appears at the right: 

F.J 3/Z = e - (v'/Z)(<I-' -I)[ao + val + (v2/2)a2] , 

y = Cle-c,l, .J >0, 

_ I-y y y 
ao = --:.:1 + ~y.J, a2 = - ~y 10g.J, 

I+y U A 
a l = 2(xo - x)Czyl(1 + yf 

(3.5) 

The positivity of the even velocity part of F requires ao> 0 
and a z > O. We note that at t = 0, Cz and (x - xo) enter only 
as a product d = (xo - x)Cz into the odd part. It follows that 
if we choose both C I and A such that ao > 0, az > 0, and d is 
sufficiently small then the rhs of (3.5) remains positive for 
v E [ - 00, + 00]. Let us first consider the fundamental sin
gularsolution.Js = I + :Ianyn withA # 1. A necessary con
dition for az>O is -y.Jy = -Clal[1+:Iin(anl 
adC~ - I] > 0 or Clal < 0 if I is the dominant term in the 
bracket. On the other hand, when y-o or t __ 00 

az= - (a I C II A )e - C,I and still we have that 
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FIG. 1. C"A. domain whenF+ > Oatt = O. Forotherfigures,piotofFlv,t,x) 
vs v. 

- alCI = 4ACI /(A - I) must be positive. Consequently we 
must have CI<O (CI>O) forA<1 (A>I) orA<1 (A>I) 
corresponds to an expansion (contraction). 

In Fig. I, we plot the curve CI(A ) VSA, limiting the posi
tivity domain of the even velocity part of Fat t = O. Adding 
the odd part and a new parameter d = Cz(xo - x) then there 
exists in the three-dimensional space (A,CI,d) a domain 
whereF>O at t = O. 

Second, for the complete singular solution.J s + C:v::i R , 

it is clear that we can choose I C3 1 sufficiently small such that 
F is positive at t = 0 in a domain of the four-dimensional 
space (A,CI,d,C3). 

For A = I, the positivity condition at t = 0 can be satis
fied if we choose sufficient small CI positive or negative val
ues. 

2. t;;60 

We recall that in order to maintain the positivity for F at 
t = 0, d = Cz(xo - x) must remain finite. Consequently 
when Ixl--oo the positivity is violated. We cannot simply 
apply the usual argumentlZ assuring the positivity at t #0. 
We assume x fixed, F> 0 at t = 0 and study t #0. 

(i) However, modifying slightly this argument, one can 
still prove the positivity in the contraction case (y > 0 or 
C1 >OorA > I). Whenonlyf- containsx,fx- is independent 
of x, one can rewrite (1.1) with -vfx-(v) 
= vZe - bv'/2b 3/Z N

O
•
1 
~O if y~O: 

!r(v) = - vf x- (v) + v f f u (0 )(f(v')f(w') - f(v)f(w))dw dO, 

(3.6) 

where x is a fixed parameter. We prove ab absurdo thatf> 0 
at t # 0 if both f> 0 at t = 0 and - vf x- > 0 for 
VE [ - 00, + 00], t> O. Let (vo,to) be the values wheref> 0 is 
violated for the first time. By continuity we have at a slightly 
earlier time to - a;J(vo,to - a) = O,J(v,to - a) > 0, for v#vo. 
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Then in (3.6), the rhs is positive at (v,t) = (vo,to - a) and 
the lhs being at (f(vo,t)), = '0 _ a > 0 contradicts the assump
tion/(vo,to) < O. Of course if - v/ x- < 0, the solution can still 
remain positive because the above condition is not a neces
sary condition. 

(ii) In the expansion case (y<O,CI <O,A. < 1) we still 
have positivity at t #0 if.:i is reduced to.:is. The dominant 
term in the bracket of(3.5) isa2v2. For t large, witha2having 
the positive sign of CI/(A. - 1), we can always manage the 
odd part such that the bracket remains positive for t = o. 

(iii) Always in the expansion case (CI < O,A. < 1), we con
sider now the general.:i =.:is + C~R. We look at b =.:i -I 
and its derivative b, ~C2C:0- ( - y)" when t is large. 

For t very large<, the Maxwellian width b~1 

- C3( - y)" < 1 (or> 1) ifC3 >0(or C3 <0), b-l- ifC3 >0 
I_a> 

(or 1 + if C3 < 0). This means that for t sufficiently large the 
distribution function will decrease less (or more) than the 
Maxwellian if C3 > 0 (or C3 < 0). Consequently in (2.5) the 
derivative b, > 0 and a2 < 0 if C3 > 0 (or b, < 0, a2 > 0 if 
C3 < 0) and t large. It follows that depending on whether 
C3 > 0 or < 0, for t and Ivl sufficiently large we must find a 
violation (or not) of the positivity property of/ or F. 

So with these C3 positive parameter values we can con
struct examples of distributions which are positive at t = 0, 
tend to the Maxwellian for t_ 00, but nevertheless will vio
late positivity above some t critical value. The theoretical 
discussion occurs with the time dependence of the Maxwel
lian width b (t ) which decreases down to a bmin < 1 for t = t I 
and increases afterwards up to b-l -. At this minimum 
b, = 0 for t = t l , a2(tl ) vanishes and changes sign afterwards 
leading to a violation of positivity. At this tl value,/+ is a 
pure Gaussian or a Maxwellian exp - (v2/2)bmin and / a 
Gaussian multiplied by a first-order v polynomial. Conse
quently in Eq. (2.1a) the collision term for the even part van
ishes [or the rhs of(2.1a)] but not the odd one [rhs of(2.1b)]. 
The positivity violation occurs for t values a little bit less 
th~ tl (depending on thexo - XI values). All the above dis
cussion was mainly with the even part/+, when we include 
1- there exists a small shift of the violation. 

I I Fly,',x) I 
\ ) I I 
\ I 2.5 I 
\ 1'=0.75 I 
\ 1 I 
\ 1 1 I ) \ ) I 

\ I ) I 
\ 1 2.0 I I 
\ I I I 
\ I 

I I 
\ I I \ I I I \ \ I I \ \ 

1.S 
/ I 

\ \ , I I \ 
/.=0.5 .=O.S\ \ I 

\ \ I I \ \ I I I \ 1.0 
I II 

I 
1\ 

\ \ II 
II II 

\. II , 
" O.S II If : 0'2/tO-1', = O.S 
I' II f"' (,=-0.' (,,3.8 (,=O.S \ , 1=0 , ' II r:d=lI leo-X.1. 

h=O.2SX"C" ~ II 
(0) // 

- 30 -2S -20 -15 -10 -S 10 1S 20 2S 30 V 

For the numerical study we choose A. = !, CI = - 0.1 
(or y < 0), Xo - X = 1, and for C3 positive varying values. For 
C3 > 1.7, the positivity is violated at t = 0 but if we choose a 
smaller Xo - X value, the positivity would be violated for 
larger C3 value. 

For C3 = 0.5, we plot the relaxation curves in Fig. 2. 
There exist different successive regimes: for 0<t<0.5, the 
positivity F>O is satisfied and F-o for large Ivl; for 
0.51<t<0.86, F is still positive but F-oo; and for 
0.86<t< 00 ,Fviolates positivity and IF 1-00 when Ivl-oo. 
At the critical value t #0.8520 a double zero appears for 
v#68. Let us consider the curve b (t). At t = 0, b (0) = 1.35, 
then b (t ) decreases, crosses b = 1 at t = 0.5, still decreases to 
a minimum bmin = 0.98, a2 = bt = 0 at t = 0.86 and in
creases towards 1 for higher t values. 

We have verified the persistence of the phenomenon 
described here for other A. < 1 and C3 > 0 values. 

(iv) A. = 1. Being as t is large we have .:is ~ 1 
+ 4y log I yl, a2~ - 4y(1 + logl yi), and the Gaussian term 

in (3.5) is exp((v2/2)4y log I yi). 
Ify > 0 (or C I > 0) the Gaussian term andF tend to zero 

when Ivl-oo, t being large but fixed, a2v2 > 0 and the solu
tion remains positive for large t, Ivl. 

On the contrary ify<O (or CI <0), the Gaussian andF 
tend to infinity, a2v

2 becomes negative and Fviolates positi
vity. We find the same phenomenon as in the previous A. < 1, 
C3 >Ocase. 

In conclusion, in order to construct distributions not 
violating positivity, we can choose in the contraction case 
(A.> I,CI >O), either C3 > 0 or C3 < 0, and in the expansion or 
dilatation case (A. < I,CI < 0) we must restrict to C3 < o. 

IV. RELAXATION TOWARDS EQUILIBRIUM AND T JON 
EFFECT 

By construction, the reduced distribution function 
F-l when t-oo or y-o, Ivl being fixed [equivalently 
I-Maxwellian e-v'12(217r I/2]. We study the asymptotic 
behavior y-o (or t-oo) of F corresponding to the different 
classes of.:i solutions: namely A. # 1 and A. = 1,.:i =.:is and 

/-, , Fly,',xI a: 02/1'0-1',=05 
I , 

f": (,=-0.' (,=3.8 (,=O.S I , 
I 

, 
'- r, d =3.6 Xo-X=1. .=3 103 --- - -- ---

IoU - 30,,/-2S I - 20 -'S -,0 -S ,0 'S\ 20 2S',30 V 1=2.5 
/ I I , 

1.=2 /1=1 It=, \~=2 I I I I \ 
I I -S I \ 

I I I I 
I I 1 I , , I \ , I I , I 1 \ 

I I -,0 1 I 
I I 1 I 

\ I I I 
I I \ 

/ 
I ) 1 
I 1 I 

I I -'S 1 \ 
/ I I I 
I I 1 ) 

I / I I I -.. I ) 1 
\ , 

/ -20 1 
Ib) 1 1 I 

FIG, 2. (a) A = 0,5, C, = - 0,1, C2 = 3.8, C3 = 0.5, xo - x = 1 and 1<0.75; (b) like (a) but 1>1. 
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..::S G' and establish the connections with the existence or non
existence of the Tjon effect. 

A. Tjon overpopulation effect 

When we look at the relaxation towards equilibrium, 
either F-+l in a monotonic way from below (no effect) or 
there exist high velocity particles for which, at intermediate 
times, F is substantially larger than 1. Equivalently, when 
the effect exists, it may produce, at intermediate times, a 
population of high velocity particles, larger than the one 
present at initial time or at equilibrium. A necessary (but not 
sufficient) condition for the existence of the effect is the dis
placement of the last positive v+(t) or negative v_(t) zero of 
F(v,x,t) - 1 when t increases. 

B. A = 0"2(TO - 7"1)-1 =1= 1 and ~ = ~s = 1 + ~any" having 
one relaxation time 

This is the most simple case because F is analytic in y at 
y = 0 and we only have to consider the first-order correction 
in y (for Ivl large but fixed). We find ..::SS ~1 + al y, 
F - 1 ""y(aF /ay)(y = 0)""y[(v2/2)a l (1 + 1/A) + 2C2v(x 
-xo)],a l =4A/(I-A)or 

(F-l)(eC2t/2)~Cd -V2+C2V(XO -x)]. (4.1) 

On the one hand, recalling that CI ~O if A~ 1, it follows that 
F - 1 < 0 if A> 1 and F - 1 > 0 if A < 1. Consequently, we 
define a criterion which corresponds to microscopic condi
tions on 0" (8) 

crit. = 7"0 - 7"1 - 0"2' (4.2) 

and we conclude that if crit. > 0 (or A < 1) the relaxation for F 
towards 1 is from above,F> 1, whereasifcrit. <O(or A> 1) it 
is from below, F < 1. On the other hand the rhs of (4.1) is 
proportional to I CII which means that the importance of the 
effect will depend on how large are the CI parameters. If 
although positive, the rhs ofEq. (41.) is too small, then there 
is no effect. Due to the positivity constraint at t = 0 (Fig. 1), 
we see that when A < 1, the maximum - CI parameter value 
decreases when A increases. In conclusion we expect to find 
the Tjon effect for A < 1 but decreasing when A increases and 
it must have disappeared when A-+ 1. With this result in 
mind let us discuss numerical examples obtained with the 

(a) 

1=6.0 

-40 -30 -20 

FIY,I,') 

0' 02/TO-T,=O.1 
f': (,=-0.3 (,=1. (,=0. 
f-: d =1. x,-x=1. 

1:3.0 
.... --, 

/ , 
/ " 1:6.0 II , __ ...... 

/ ' --
10 

-.).., 
__ --- , t=9.0 - -----~-~= 

"---20 30 40V 

simple 0" (8) given by (2.13a) and (2.13b) if A> 1 and (2.13a) 
and (2. 13c) if A < 1. Numerically we observe that the effect 
disappears for A> 0.75. In Fig. 3(a) we present the relaxation 
curves for A = 0.1 where the effect is present and in Fig. 4 
those for A = 1.5 where it is absent. Modifying the initial 
conditions does not change the results concerning the exis
tence of the effect [see Fig. 3(b) with A = 0.5]. 

c. A =1= 1 and ~ = ~s + C:.AR having two relaxation times 

Here the analysis becomes more complex because 
"::s~1 + al Y + C3 1 YIA with two independent decreasing 
terms when t-+ 00. Equivalently we have two relaxation 
times Ts~C 2-

1 for they term and TR = (AC2)-1 for I YIA. If 
A> l,thenTR <Ts and"::s~1 +aly,weexpectthatC~R is 
a small perturbation which does not modify very much the 
above analysis with..::SR ==0. If A < 1, then Ts < TR, the im
portant contribution can come from..::SR'..::Ss - 1 being now 
the perturbation, ..::S R becoming more and more important 
when A decreases. In both cases, F is no longer analytic at 
y=O. 

1.A> 1 

4A 
..::S ~ 1 + a I y, b~ 1 + --;y> 1 for y> 0, 

y-.O A-I 

we still obtain the approximation (4.1) predicting no effect 
and we have numerically checked this result. 

2.A<1 

We consider sufficiently small C3 <0 values such that 
F(v,t,x) > 0 for all t; in view of a possible Tjon effect, we study 
the behavior of F for ( - y) small. In..::S we do not retain only 
the ( - y)A term. We have..::S = 1 + 01 Y + C3( - y)A, y..::Sy/ 
A~al y/ A + C3( - y)A , substitute into (3.5), and obtain for 
the dominant contributions the terms present in (4.1) with a 
supplementary term proportional to (C3)2: 

F - 1~ - !(v2/2)2(C3)2( - y)U + 2y[ - v2 + vC2(XO - x)], 

-y= _Cle- C2t >0. (4.3) 

In (4.3) we have neglected the term proportional to v3
1 yll + A 

both for simplicity in the discussion and the fact that 
I yll +A<I ylU for A < 1 and I yl small. On the one hand, for 

(b) 

-_/ 
hl0.0/ 

/ 
,/ 

-7 -6 

/ 
/ 

/ 

/ 

FIY,I,') 

a : 0'2/TO-T1 :0.5 
f' : (, = -0.1 (,=0.1 
f- : d = 0.1 x,-x=1. 

"~ 
1=20.0 

7 V 

FIG. 3. (a) A =0.1, C. = - 0,3, C2 = 1.0, C3 =O,xo -x = 1; (b) A =0.5, C. = - 0.1, C2 =0.1, C3 =O,xo-x = 1. 
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( - y) close to zero we have two competitive terms (or two 
relaxation times Ts ' TR/2) and the dominant one is coming 
either from ( - y)2A if A <! or y if A >!. For A <! we find 
F - 1 ~ - !(v2 12fC ~ ( - y)u < 0 without Tjon effect. For 
A>!, F - 1~2y[ - v2 + vC2(XO - x)] > 0, as in the above 
C3 = 0 case. So the Tjon effect must decrease when A de
creases. 

On the other hand, the rhs of(4.3) has in factor the sup 
of Iyl, lylU or ICII, ICI1

2
A and we recall that as in the 

C3 = 0 case the ICII available values decrease when A in
creases. So, in an opposite way to the previous argument, the 
Tjon effect must decrease when A increases. 

Further, the magnitude of C3 is another important pa
rameter. If I C3 1 is very small, for t not too large we can expect 
to find results similar to the C3 = 0 case, whereas for impor
tant C3 values the two corresponding relaxation pictures can 
be very different. 

In conclusion, except for IC3 1 small and for intermedi
ate t values, we do not expect to find the Tjon effect when 
C3..:l R is present in ..:l. As an illustration we consider a case 
A = 1 where the effect exists for C3 = 0 and take increa
sing - C3 values. For C3 = - 0.1 and 0..;;t..;;3 we still have 
substantial F> 1 values for not too large I v I intervals, but for 
higher times where the term proportional to ( - y)2A domi
nates, the last v ± (t) zero of F - 1 does not move, we do not 
observe the effect, and the relaxation is from below. For the 
largest - C3 = 0.45 value the Tjon effect disappears (Fig. 5). 

In conclusion, although the criterion (4.2) fails when an 
important C3..:l R term is present, the numerical examples 
agree very well with the theoretical analysis of this subsec
tion. 

D. A = 1 or 70 - 71 - 0"2 = 0 and L1 = L1s given in (3.4a) 
with one relaxation time 

(i) First this is the A value for which the criterion (4.2) 
gives nothing. If CI~O (or y~O), we choose log(y) and 
log( - y); in other words ..:ls = 1 + ~enyn 
+ 4y(logl YI)~dnyn, Y = Cle - e,t. However, we recall that 

the positivity at t ¥= 0 is always satisfied if F > 0 at t = 0 and if 
y > 0 (contraction). 

(ii) Second we restrict to CI andy positive values. From 
(3.5) we find for the dominant terms, when t-oo or y~O+ 
and Ivllarge 

FI.,t,') 

-7 -6 -5 -4 

(J : az/ TO-T1 =1.5 
IL (,=0.04 (,=5. 
1-, d =5. 

FIG. 4. A = 1.5, C, = 0.04, C2 = 5.0, C, = 0, xo - x = 1. 
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FIG. 5. A = 0.25, C, = - 0.2, C2 = 1.0, C, = - 0.45, Xo - x = 1. 

F - 1~ - 2y[v2 - 2C2(xO - xlv + v4y(logy)2], y> 0, 
(4.4) 

and predict that in general F - 1 < 0 or the Tjon effect is 
nonexistent. Of course, if the odd part is sufficiently impor
tant, a moving zero can appear in the bracket, but since the 
F - 1 values are small there is no effect. 

(iii) Finally we consider the (3.4b) general solution 
..:l G =..:l + C~ Rand y> O. In this case ..:l ~ 1 + 4y log y 
+ C3 y and C3 y is a perturbation which must not affect the 
asymptotic behavior found in (ii) very much. Analyzing the 
asymptotic F - 1 behavior we still find the same dominant 
terms as in (4.4), while those proportional to C3 are weaker. 

E. linearized versus nonlinear formalisms 

Comparing in both homogeneous and inhomogeneous 
solutions the nonlinear with the linearized ones we have 
found different properties. 

In the Boltzmann homogeneous case, for Maxwell in
teraction and even velocity distributions, due to the conser
vation laws of mass and energy, the Laguerre moments 
D 0+ = 1, D t = 0 lead to linear equations for D 2+ ,D 3+ • 

Consequently all these four moments are identical with their 
linearized ones. Further, for higher D n+ moments [taking 
into account the positivity of the moments of 0" (8 )], their 
linearized part gives the dominant contribution when t-oo. 
Seeking, for v2 and t varying, significant nonlinear contribu
tions, we recall that they were found only for small t and v2 

large (see the review papers7
-

9
). In the homogeneous Kac 

model, the same situation occurs for 1+. Add now I-(v,t), 
still due to D 0+ = 1, D 1+ = 0, the moments D 0- ,D 1- sa
tisfy linear equations and are identical with their linearized 
partners. [For higher D n-' n>2, a rigorous discussion is 
more delicate because new odd moments 7 m of 0" (8), not 
necessarily positive, are introduced which do not allow, 
without precising 0" (8), an easy estimation of the D n- de
crease when t increases. For simplicity, in general in the fol
lowing we neglect this problem.] In conclusion, the first mo
ments D ~ ,D I± ,D t ,D 3+ which give the dominant 
contributions are identical in both nonlinear and linearized 
formalisms. Further, in both cases we can always construct 
solutions with the same initial conditions (Lc.). 
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In the inhomogeneous nonlinear and linearized forma
lisms, the main differences are that these first Laguerre mo
ments are different, we cannot, in general, define solutions 
with the same i.e. and the linearized solutions have always 
two relaxation times. 

Let us define F = 1 + g, g = g+ + g-, eliminate from 
the collision term the product of the two g ± 's, expand in a 
Laguerre series L ! (1I2)(u

2/2) with moments ( - I r d n± , as
sume axg+ = 0, and find for the d n± the solutions written 
down in Table I. Further we assume that the spatial depen
dence is linear: d n- (x,O) = (xo - x)d n- (0). Although for d n

and d n+ n>2, arbitrary constants are available, this is not 
true for d 0+ ,d t . Consequently the nonlinear and linearized 
solutions cannot coincide at t = 0 (in the homogeneous case 
d 0+ = d 1+ = 0 and this problem does not occur). Now we 
compare our exact solution with its linearized version, be
ginning with the two ratios d 0+ I d 0- and (D 0+ - 1)1 D 0-

that we multiply by v1 c2(x - x o)' The first is a constant 
equal to 1 and the second a function 1 + y different for any t 
values except t = 00. Exactly the same difficulty occurs for 
the relative estimate of d I± I D I± • 

In Table I we estimate the dominant contributions of 
bothD n± ,d n± for the first Laguerre moments (they are iden
tical in the homogeneous case) and seek whether they can 

coincide when t-oo. For n = 0, ± and n = 1, + we find a 
condition on d 0- (0) and a good agreement. For other mo
ments while the exact moments have either pure c2- 1 relaxa
tion time (c3 = 0) or a mixing of c2- 1 and (AC2) -I relaxation 
times (c3 #0), on the contrary the linearized ones never have 
pure C 2- I. Consequently, for the exact solution with C3 = 0, 
there does not exist any connection between the two forma
lisms, the ratios of the two corresponding moments going 
either to zero or infinity (for A = 1, the situation is the same 
because log y factors are present only in the exact solution). 
A similar situation arises for C3 # 0, A > 1. On the contrary 
for C3 = 0, A < 1, these ratios tend to 1 if we fix the arbitrary 
constants d 1- (0) or d / (0) or d 3+ (0). Trying to understand 
these different features between the two formalisms we re
mark that the D n± satisfy coupled first-order equations lead
ing for D n+ ,n> 1, to second-order linear differential equa
tions of the Fuchs type (always with two independent 
fundamental solutions). On the contrary, the linearization 
procedure decouples the equations, leads to first-order equa
tions for d n± , and makes it difficult to reproduce one class of 
solutions (in the homogeneous case both D n± and d n± satisfy 
first-order linear equations). In Table I, for d 2+ ,d 3+ we have 
neglected the contributions coming from d 2- ,d 3- which in
troduce the moments 1"5 and 1"7 not present in the exact solu-

TABLE I. Laguerre moments for the linearized solutions, comparison between nonlinear (D .± ) and linearized (d ! ) moments, and an asymptotic estimate of 
the linearized solution. 

d .-(x, t) =d .-(x, O)evEO." d /(t) = - .j2(~axd.-(X' t) + --n-axd .-_,(x, t)), n = 0, I 
vEo• vEon _, 

d /(t) = i" [d .+(0) -.j2 E e -A." ( (n + ~ )axd.- (x, t')+ n axd .-_ dx, t 'I) dt']. n>2, A.n = v(BOn + B •• ) 

d- d-(O) 
o -d -(0) -e,' d + ___ 0_ -e,' 

--- 0 e , 0 - e, 
Xo -x .j2c2 

d + .j2 d - (0) - e,' + t - e,{1 + AI' , = -- 0 e cons e , 
C2 

d 2+ ~sup(const, e -2e,A.t, cons~ e - e,I' +AI') 

+ ( a? Y (2 - A.) C 2 Y"') D2 ~ -sup , --A.-' 3 

~ - 16y(logy)2, if A. = I 

d t ~e - 3Ae"d 3+ (0) 

Dt~-SUP(a~1'e;A.), 2C~1'A) 
~ - 1281'(logy)3, if A. = 1 

ifCd'O, A. d, d ,-(0) = 2.j2c2c 3Icd' +A 

ifC3=O, A.>I or C3#O, A.>I 
ifC3 = 0, A. d 
if A. = I 

I, ifC3#O, A.d, 

dt(0)+2 
I _(C3)2Iqu 

d+ C2(1-A.) 2 --. 
D+ 

2 
0, 

"", 
0, 

r d
3
+ -. 0, 

D3+ tX>, 

0, 

ifC3 =0, 
ifC3 =0, 
if A. = 1 

ifC3 #O, 

ifC=O, 
ifC3 =0, 
if A. = I 

A.d 
A. > 1 

A.d, 

A.d 
A.>I 

or C3#O, A. > I 

d 3+(0) = 2C~ ICd 3A 

or C3 #0, A. > 1 

iq<A.d 
if A. > I 
ifA.<!, 
if A. <!, 
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tion. If we choose for A < 1 the (2.13c) u (0 ) models we have 
verified that the estimations given are correct for d 2- and for 
d 3- if.further A < 0.3. If A = 1, C3 = 0 or ¥O, we find a 
discrepancy for d 1- ,d t ,d 3+ • In Table I we write down an 
asymptotic estimate of g taking v large but finite and t_ 00 

(we neglect d n- for n> 2). Only the contributions coming 
from d t and d 2+ (if A <!) remain. If A>!, F - 1 has the 
sign of - d 0- (0) (or - Cd and if A < pt has the sign ofthe 
constant of the v4 term. If C3 ¥ 0 this constant is - C ~ 1 C 112A. 
< 0, whereas if C3 = 0 we have no information about it. 

This analysis suggests that we remain careful when 
dealing with linearized formalisms and that we not forget 
that the time-independent constant F - g = 1 represents the 
conservation law of mass in the homogeneous case and only 
an asymptotic constraint in the inhomogeneous one. We 
could think to define new approximations of the nonlinear 
formalism: for instance, eliminate all products of two La
guerre moments except those containing D 0+ or except 
those containing either D 0+ or D 0- • 

v. CONCLUSION 

In this paper we have determined an exact inhomogen
eous solution of Kac's model relaxing towards a Maxwel
lian, and with the following properties. 

(i) The time dependence is of the exponential type and 
defines a new variable y = C I exp - C2t. The Maxwellian 
width is only time dependent and can have two relaxation 
times Ts = C 2- I and TR . 

(ii) The relative position Xo - x enters only in the odd 
velocity part of the distribution and linearly. When Xo - x is 
too large the distribution function violates positivity, and 
scaling variables corresponding to invariance property can 
be defined. The local density is uniform in the space or 
No=No(t), the current is proportional to (xo - x). The deri
vative at No having the same sign asy (or CI ), we have either 
contraction y> 0 or dilatation y < O. [We remark that the 
Nikol'skii solutions have also No = No(t ).) 

(iii) The moments of the cross section must satisfy a 
linear relation, the cross section must be asymmetric 
[u (0 )¥u (1T - 0 )), and it is useful to introduce a parameter 
A = UlTo - 'TI)-I, TR = (AC2)-1 and a criterion 
'To - 'TI - 'T2. The positivity of the solution requires CI <0, 
A < 1 (expansion) or C I > 0, A;;;' 1 (contraction). 

(iv) The asymptotic behavior ofthe reduced distribution 
F explains quite well the existence or nonexistence of the 
Tjon effect. In the more general case we have 

F - 1=1 yl [2 sgn(A - 1)( - v2 + vC2(XO - xlv) 

_ !(v2/2fC~ 1 yl2A. - I], 

with two relaxation times Ts and T R /2' If the Maxwellian 
width has only one relaxation time (C3 = 0), we find 
F - 1> 0 ( < 0) in the expansion casey < 0 or A < 1 or crit. > 0 
(in the contraction case y > 0 or A;;;' 1 or crit . .;;;0). Due to the 
positivity constraint F> 0, for A < 1 we find that the maxi
mum of these F - 1 > 0 values decreases when A increases 
and practically we observe that the effect occurs only for 
A < 0.75. If the Maxwellian width has two relaxation times 
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Ts' TRI2, for important TR contributions we find in the 
whole 0 <A < 2 interval that the effect is not present. 

Is it possible to improve the properties of the present 
one-dimensional spatial solution? Perhaps we can define 
other spatial boundaries at the x values where F(v,x,t = 0) 
begins to violate positivity and require supplementary 
boundary conditions. 13 
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APPENDIX A: COMPATIBILITY Jo.xt - Jo,tx = 0 

We write the equations for Jo,x,Jo.t 

JO.t = - b -INox + JOV('TI - 'To)No, Jo,x = No.t . (AI) 

Define rp = v('T1 - 'To),No(x,t) = No(t) + ao(x)b = 112, write 
the compatibility JO.xt = Jo.tx = 0 or 

No.tt - b -Wo.xx - rpNoNo.t + rpJoNo.x = 0, (A2) 

and eliminateJo by integrating (AI): 

Jo(x,t) = Jo(xo,t) + (xo -x)No.t - (b -1/2)t iXao(X')dX', 
Xo 

Finally the compatibility condition can be written as a sum 
ofao(x) functionals such that the coefficients depend only on 
b (t ),No, Jo(xo,t ): 

0= A (t) - ao.xxb -3/2 + a o rp (b -1/2 )tt(Nob -1/2)t 

+ (m - aof~ao(X')dx}rpb -1/2)(b -1/2)t (A3) 

+ rpao.xb -1/2JO(xo,t) + rpao,x(xo - x)b - 1/2No(t), 

A (t) = No.tt - rpNoNo,t. 

Let us exclude the trivial cases forao. Ifao = const, then we 
redefine No, ifao = constant x then in (A3) on the rhs when 
X-oo we have a term x 2b -1/2rp atb -1/2 which cannot be 
canceled. Otherwise a oxx $0 and all x functions in (A3) are 
nontrivial. First, we must have A (t )=0 and we substitute the 
general solution written down in Sec. II: 

No = C2rp -I( 1 - y)l( 1 + y), limNo,1' N Ott being zero. For 
t-oo 

Maxwellian behavior when t-oo we must have b_l, bt-D 

and from (2.4c'), b-o. In (A4) we take the limit t-oo and 
It 

find 

(A4) 

Still requiring asymptotic Maxwellian behavior for the dis
tribution function, Jo(xo, 00 ) cannot be infinite. If it is zero we 
are back with ao = constl + x const2• Otherwise ao 
= const l + ~const,. Substituting into (A4) we have, when 
x_ 00, a term x eX const2· which cannot be canceled. In conclu
sion the only possibility is aox ==0. 
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APPENDIX B: LAGUERRE EXPANSION FOR THE 
SOLUTION (1.2a) 

We recall 

F=.1- 3
/
2 exp( - ~(.1-I-l))[.1 C ~~) 

Y ( 1 v
2 ay.1) 2C2 y ] +-..:....a.1- --- +v(xo-x) , 

A 2 y 2.1 (1 + y)2 

exp( - ~ (.1 -I - 1)) 

(AS) 

=.1 1 ± 1I2~)1 -.1 tL n± I12( ~). 1.1 - 11 < 1, (A6) 

exp( _ ~(.1 -I _ 1))(J....a .1 _ v
2 ay.1) 

2 2 y 2.1 

=.1 3/2In( 1 -.1 t - lay'.1L ~ - 1I2{ ~) , (A 7) 

and substituting into F we find the Laguerre expansion 

F= IL~-1I2{~)[C ~~}1-.1 t 

+ ~ n(I-.1 t-1ay.1 ] 
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Infinitesimal transformations about n-soliton solutions of sine-Gordon and modified Korteweg
de Vries equations are obtained using respective Backlund transformations. We also obtain the 
eigenfunctions of corresponding generalized Zakharov-Shabat systems. 

I. INTRODUCTION 

Nonlinear evolution equations (NLEE) like the 
Korteweg-de Vries (KdV), modified Korteweg-de Vries 
(MKdV), sine-Gordon (SG), and cubic Schrodinger have 
been extensively studied for the past 15 years or so. Associat
ed with these nonlinear equations are certain eigenvalue 
equations involving linear differential operators. Such a lin
ear eigenvalue system is the Zakharov-Shabat1 (ZS) two 
component equations and their generalizations given by 
Ablowitz et al. (AKNS).2 These linear systems are of pri
mary importance in the solution of the above nonlinear 
equations via the inverse scattering transform method 
wherein one constructs the soliton solutions of the NLEE 
starting with asymptotic forms of solutions of the linear sys
tem of equations. 

We can ask the reverse question: Whether it is possible 
to obtain in a simple way solutions of the linear equations 
knowing the soliton solutions of the NLEE. The answer 
turns out to beyes.3 One of the aims of the present paper is to 
obtain the solutions ofSG and MKdV equations. The above 
search for solutions is intimately tied with the solution of the 
problem of obtaining the infinitesimai transformations (IT's) 
about n-soliton solutions of the SG and MKdV equations. 
These IT's are themselves closely linked with the conserva
tion laws for the above NLEE systems.4 The IT's are given in 
terms of squares of eigenfunctions of the generalized ZS sys
tems.5

•
6 Once the IT's are obtained, we can just read off the 

solutions of the generalized ZS systems. 
The content of the present paper is as follows. In Sec. II 

we restrict ourselves to the SG equation. In Sec. II A, we set 
up a differential equation of the IT's using the Backlund 
transformation. In Sec. II B, this is solved explicitly to get an 
IT about a one-soliton solution. This IT is found to be in the 
form of a sum of squares of the eigenfunctions of the corre
sponding generalized ZS equations. Using this, one con
structs an IT,Yn, about the n-soliton solution Un' In II C, we 
show that the IT's so obtained are eigenfunctions ofthe oper
ators T (u) and that one can also generate an infinite number 
of IT's about a given soliton solution using these operators 
T(u). 

In Sec. III, we obtain analogous results for the MKdV 
equation. 

II. SINE-GORDON EQUATION 
We begin by defining3

•
4 an infinitesimal transformation 

(IT) about any solution u(x,t ) of the equation 

alOn leave from Ramnarain Ruia College, Bombay, India. 

ut =K(u), (2.1) 

as a function y(x,t) such that u(x,t) + f)'(x,t ), € « 1 is also a 
solution ofEq. (2.1). HereK is, in general, a nonlinear opera
tor. 

A. Differential equation for IT 

The SG equation, in light-cone coordinates, is 

U xt = sin u, (2.2) 

where the subscripts denote partial differentiation. Using the 
definition of IT, we find that IT, y(x,t ), about u(x,t ) satisfies 
the differential equation 

Yxt =ycos u. (2.3) 

We now relate the IT's about two different solutions u(x,t) 
and u'(x,t) using the Backlund transformation (BT). The first 
half of the BT for the SG equation is 7 

U~ + U x = 2a sin((u' - u)/2). (2.4) 

Ifz(x,t) is an IT about u'(x,t) andy(x,t) is an IT about u(x,t), 
then using Eq. (2.4) we find thatz(x,t ) andy(x,t ) are related by 
the equation 

Zx + Yx = a cos((u' - u)/2) . (z - y). (2.5) 

The second half of the BT does not yield any new informa
tion and consequently we do not consider it here. 

Equation (2.5) is the basic equation from which the ex
plicit form of the IT's is derived. To carry through this pro
gram we begin with the trivial solution u(x,t ) = a ofEq. (2.2). 
For this solution Eq. (2.3) reduces to 

Yxt =y. (2.6) 

The plane wave solutions of Eq. (2.6) are 

yk = exp[ ± 2i(kx - wt I], (2.7) 

with the dispersion relation wk = i. Denoting an IT about 
u(x,t ) = a by y~, we have 

y~ = exp[ ± 2i(kx - wt)]. (2.8) 

We now use Eq. (2.5) repeatedly starting with u(x,t) = a and 
y~(x,t) given by Eq. (2.8) to obtain an IT about Un (x,t). 

B. IT about an n-soliton solution 

as 
Equation (2.5) may be written for the soliton solutions 

Ynx + Y(n-l)x = an cos((un - Un_ 1 )/2). (Yn - Yn-l)' 
(2.9) 
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Here YI (x,t ) is an IT about an i-soliton solution, O'i (x,t ). From 
Eq. (2.9) is follows thatYI(x,t) satisfies the equation 

y!;" + Yox = a l cos((O'I - O'o}/2) . (YI - Yo)· 

Hence, 

Y~x + e±2ikx = a l cos(O'I/2)(y~ - e±2ikx). (2.10) 

Here and subsequently we drop the term e =F 2iwt in t, since it 
is always present. The one-soliton solution of the SG equa
tion iss 

0'1 (x,t ) = 4 tan-I e=F 28" (}I = - 'T/iX - t 141]1 + (}1O' 

(2.11) 

where 1]1 and (}1O are constants, the upper (lower) sign in Eq. 
(2.11) and in subsequent equations refers to soliton (antisoli
ton) solutions. Using Eq. (2.11), we solve Eq. (2.10) to get 

y~ = [l/(k 2 + 1]i)] [(1/'; (1W + (1/'~ (1))2], (2.12a) 

or 

y~ = [l/(k 2 + 1]i)] [(¢ ;(IW + (¢~(1))2], (2.12b) 

where 

and 

1/'; (1) = eikx( + 1]1 sin(O'I/2)), 

1/'2(1) = eikx(ik ± 1]1 cos(O'I/2)), 

¢; (1) = e - ikx(ik + 1]loos(O'/2)), 

¢ 2(1) = e - ikx( + 1]lsin(O'/2)), 

(2.13a) 

(2.13b) 

(2.14a) 

(2.14b) 

with a l set equal to ± 21]1' The sets {1/';(1),1/'~(I)J and 
{ ¢ ; ( 1 ),¢ ~ ( I ) J satisfy the generalized ZS equations or 
ZSI AKNS equations2 

V lx + itvi = qv2, 

(2.15) 

(2.16) 

The 1/';(I)'s and ¢ ;(I)'s are linearly independent solutions of 
the ZSI AKNS equations. The argument 1 indicates that 
these functions refer to one-soliton or one-antisoliton solu
tions. 

The above IT about a one-soliton was obtained by actu
al integration. To obtain an IT about a two-soliton solution 
0'2' using the above method, requires the explicit form for 
solution 0'2' The latter is quite complicated and consequently 
the integration becomes very involved. It is, however, possi
ble to obtain an IT about a two-soliton solution without real
ly knowing the explict form of 0'2' We just conjecture it and 
verify that our conjecture satisfies all the requisite proper
ties. 

We conjecture that an IT about a two-soliton solution 
O'2(x,t) is 

y~ = LVI (k 2 + 1];)] - I [(1/'; (2))2 + (1/'~ (2))2] , (2.17a) 

or 

y~ = [lII(k 2 + 1];)] - I [(¢ ; (2)f + (¢ ~ (2))2], (2.17b) 

where 
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and 

1/'; (2) = [1/'; (1)( - ik ± 1]2 COS [(0'2 - 0'1)/2]) 

+ 1/'~ (1)( + 1]2 sin [(0'2 - O'Il/2])], (2.18a) 

1/'~ (2) = [1/'; (1)( ± 1]2 sin [(0'2 - 0'1)/2]) 

+ 1/'~(l)(ik ± 1]2 cos [(0'2 - O'd/2])], (2.18b) 

¢; (2) = [¢; (I)(ik + 1]2 cos [(0'2 - O'd/2]) 

± ¢ ~(1)(1]2 sin [(0'2 - O'd/2])], 

¢~(2) = [¢ ;(1)(+1]2 sin [(0'2 - O'd/2]) 

(2. 19a) 

- ¢ ~ (1)(ik ± 1]2 cos [(0'2 - O'd/2])]. (2.19b) 

We now convince ourselves that Eq. (2.17) is indeed an IT 
about 0'2(X,t). For this purpose we can explictly verify that 
(1/'; (2),1/'~ (2)) and (¢ ; (2),¢ ~ (2)) satisfy Eq. (2.15) with 

I a0'2 ( 2 . 0'2-0'1 2 .0'1) q= - --= + 1]2 sm ± 1] l sm- , 
2 ax 2 2 

(2.20) 

which is the "field" appropriate for two solitons (upper sign) 
or two antisolitons (lower sign). Also Eqs. (2.17a) and (2. 17b) 
satisfy Eq. (2.9) withYn = Y2' IT about a two-soliton solution 
0'2' andYn_1 =YI' IT about a one-soliton solution 0'1' It is 
now straightforward to generalize and obtain an IT about an 
n-soliton solution O'n' It is 

y~ = LVI (k 2 + 1];)] - I [(1/'; (n))2 + (1/'~ (n))2], (2.2Ia) 

or 

y~ = [JX (k 2 + 1];)] - I [(¢ ; (n))2 + (¢ ~ (n))2], (2.21b) 

where {1/';(n),1/'~(n)J and 1¢;(n),¢~(n)J satisfy the 
ZSI AKNS equations with 

1 aO'n [ . O'n -O'n_1 
q= - 2an= + 21]n sm 2 -21]n-1 

. O'n_1 -O'n_2 ()I 12 . 0'1] 
Xsm 2 + ... + - - 1]1 sm2 ' (2.22) 

where I stands for the I th term in the bracket and 

1/'; (n) = 1/'; (n - 1)( - ik ± 1]n cos [(O'n - O'n -I }/2]) 

+ 1/'~ (n - 1)( + 1]n sin[(O'n - O'n _ d/2]), (2.23a) 

1/'~ (n) = 1/'; (n - 1)( ± 1]n sin [(O'n - O'n _ d/2 ]) 

+ 1/'~ (n - l)(ik ± 1]n oos[(O'n - O'n _ d/2]), 

and 
(2.23b) 

¢;(n)=¢;(n-1)(ik +1]n cos[(O'n -O'n_d/2]) 

+ ¢ ~(n - 1)( ± 1]n sin[(O'n - O'n _ d12]), (2.24a) 

¢~(n) = ¢; (n - 1)( +1]n sin[(O'n - O'n_I}/2]) 

+¢~(n -1)( -ik +1]n cos[(O'n -O'n_d/2]). 
(2.24b) 

Needless to say, one verifies that Eq. (2.21) satisfies Eq. (2.9) 
with the 1/"s and ¢ 's satisfying the ZSI AKNS equations with 
q given by Eq. (2.22). Once again, the upper (lower) sign in 
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the above equations (2.22)-(2.24) refer to an n-soliton (n-anti
soliton) system. 

We write 

tI/( ") = (t/!; (j)) 
J t/!; (j") and ¢ '( .) = (¢ ; (j)) . 

J ¢ ;U") 
Then the eigenfunctions 

• I'(JOI t/!'(jl and.l.. (JOI = . ¢ 'U) 
If' ,,= II{= dik - '171) If'" IFr= dik - '171) 

have the standard asymptotic behaviors 

t/!(j~(~)eikx, x~ + 00; ¢ (j")~(~)e - ikx, x~ - 00. 

The localized solutions of the ZS/ AKNS equations are 
obtained for the values of k which correspond to the poles of 
transmission coefficients. For a SG equation these values of 
k either lie on the imaginary axis or are symmetrically placed 
about the imaginary axis. Since we are restricting ourselves 
here to purely soliton (or antisoliton) solutions the corre
sponding values of k lie on the imaginary axis only. For an n
soliton system there are precisely n such imaginary values. 
We take them to be 

k = iKr , r = 1,2 .... ,n. 

Even in this case, Eq. (2.21) is an IT about an n-soliton 
O'n (x,t). 

C. Generator of an infinite set of IT's about a given 
soliton solution 

In the preceding subsection. starting with an IT about 
the zero-soliton solution, we have successively obtained IT's 
about the 1-,2-, ... , n-soliton solutions in terms of the sum of 
squares of eigenfunctions of the corresponding ZS/ AKNS 
equations. It is well known4 that for a given u(x,t), Eq. (2.3) 
has an infinite number of solutions. We now obtain a recur
rence formula9 for an IT about a given soliton solution and 
thus obtain an infinite number ofIT's about a specific soliton 
solution. In the process we also obtain an eigenoperator lO for 
the IT'sy~. 

For the above purpose we start with the eigenvalue 
equations2 

(2.25a) 

(2.25b) 

where Land LA are given in Ref. 2. Using Eqs. (2.25) and 
(2.15) we get 

T", (O')(t/Ji + t/Ji) 
1 [a 2 

("" a ] ="4 - ax2 + O'x Jx dX1 O'x, aX
I 

(t/If +~) 

= k 2(t/Ji + t/Ji), (2.26a) 

T~(O')(¢ f + ¢ ~) 

= ! L:2 + 0'" f: "" dX1 O'xla~}¢i + ¢~) 
- k 2(¢ i + ¢ ~). (2.26b) 
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It may be emphasized that the 0' appearing in the above equa
tions is the same 0' for which {t/!1,t/!2 J and {¢I'¢2} are solu
tions of the ZSI AKNS equations. Specifically, 

T",(O'n )y~,,,, = k 2y~,,,,, 

T~(O'n)y~,,p = - k2y~.,p, 

(2.27a) 

(2.27b) 

where y~,,,, and y~ . .p are IT's about an n-soliton solution ex
pressed in terms of t/!'s and ¢ 's, respectively . 

To obtain the recursion relation we first note that if Y is 
asolutionofEq. (2.3) with a given 0', then T,p(O')Yand T",(O')Y 
are also solutions ofEq. (2.3) with the same 0'. 

The above result enables us to generate new IT's about a 
given u(x,t). To be specific, consider an n-soliton solution 
O'n (x,t). We already have two distinct IT's about the n-soli
tion solution given by y~,,,, and y~ . .p. From each of these we 
can generate an infinity of new IT's. For purposes of illustra
tion consider y~.",. We operate on this by T.p(O'n). The result
ing function is then an IT about O'n in view of the statement 
made in the preceding paragraph. Thus Y1 = T.p(O'n)y~,,,, is 
an IT. We now operate on Y1 with T.p(O'n), which would then 
give a new IT Y2• In this wayan infinite set of IT's can be 
generated. 

III. MODIFIED KORTEWEG-DE VRIES EQUATION 

As the method of obtaining IT's about an n-soliton so
lution in this case is exactly the same as for the SG equation, 
we limit ourselves by just quoting the main results. The 
MKdV equation is 

q, + ~qx + qxxx = O. (3.1) 

If q = - Wx then 

W, + 2W! + WXX>< = O. (3.2) 

Ify(x,t )isanITaboutasolution W(x,t )ofEq. (3.2), theny(x,t) 
satisfies the equation 

y, + 6W;y" + y""" = O. (3.3) 

We use Eq. (3.3) to obtain an IT about the trivial solution 
W(x,t) =0. 

The first half of the BT for Eq. (3.2) is ll 

Wx + W~ = 2'17 sin(W - W'), (3.4) 

and gives the following equation connecting the two IT's 
z(x,t) andy(x,t) about the solutions W'(x,t) and W(x,t). re
spectively: 

z" +yx = 2'17 cos(W - W'). (y -z). (3.5) 

We find that the result for an IT about an n-soliton solution 
of a MKdV equation is 

y~.", = LVI(k 2 + '17~)] -I [(¢;(nW + (t/!;(nW]. (3.6a) 

or 

y~,,p = [lI) (k 2 + '177)] - 1 [(¢ ; (n))2 + (¢; (nW]. (3.6b) 

where 

t/!;ln) = {t/!; In - 1)[ - ik - 'l7n cos(Wn - Wn _ III 
+ t/!;(n - l)['I7n sin(Wn - Wn _ d]}. (3.7a) 
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and 

¢~(n) = { - ¢;(n - 1)[77n sin(Wn - Wn_ d] 

+¢;(n-l)[ik-77n cos(Wn - Wn_ I )]), 
(3.7b) 

¢;(n)= {¢;(n-l)[ik+77n cos(Wn - Wn_d] 

-¢;(n -1)[77n sin(Wn - Wn_I)]j, (3.8a) 

¢ ~ (n) = {¢ ; (n - 1)[ 77n sin( Wn - Wn _ I)] 

- ¢ ~ (n - 1)[ ik - 77 n cost Wn - Wn - d] J . 
(3.8b) 

Here {¢; (n),¢;(n) J and {¢ ; (n),¢ ~ (nlJ satisfy Eq. (2.15) with 
;=kand 

q = [277n sin(Wn - Wn -I) - 277n -I sin(Wn _ , - W n _ Z ) 

+ ... + ( - )1-12771 sin(W,/2)], 

where, as before in Eq. (2.22), I stands for the I th term in the 
bracket. The IT'sy~,.p andy~,.p satisfy thefollowing eigenval
ue equations: 

T.p( W)y~,.p = k 2y~,.p, 

T.p(W)y~,.p = _k2y~,.p, 

where the operators are given by 

[ 1 a
2 1'" a ] T.p(W) = - --2 + Wx dx , Wx,- , 

4 ax x ax! 

[ 1J2 IX a] T.p(W)= --2 + Wx dx! Wx,-, 
4 ax '" ax! 
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(3.9a) 

(3.9b) 

(3, lOa) 

(3. lOb) 

These operators can be used to generate new IT's about a 
given solution in the same manner as described for the SG 
equation. 
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In the slow-fluctuation method, the bifurcations between solutions of a conservative, 
autonomous, nonlinear oscillatory system can be found by an essentially algebraic, systematic 
study of constant-amplitude motions and root parities. This is shown for simple systems with 
sufficient detail to indicate the extensions needed in the treatment of more complex systems. An 
example from celestial mechanics is given. 

I. INTRODUCTION 

We have developed the main aspects of the slow-fluctu
ation method in two previous papers, hereafter referred to as 
SF) and STAB. 2 One of our more important results was that 
in conservative, autonomous, nonlinear oscillatory systems 
of several degrees of freedom (d.f.'s) there are generally no 
purely periodic motions; instead, a plethora of constant-am
plitude (c-a) motions usually exists. These as well as all vari
able-amplitude motions can be calculated by means of a sin
gle polynomial, calledJ(p)). 

In a third paper, hereafter referred to as PAR,3 we in-
troduced the notion of the parity of the roots off Being a 
discrete attribute, it furnishes many technical advantages, 
much as if the tools of proof had been augmented by another 
conservation theorem. In PAR we showed specifically how 
root parity helped to develop a natural, mathematical classi
fication of all solutions, and to explore the subtleties of phase 
behavior in the dynamical neighborhood of c-a solutions. 

We now tum to solutions of variable amplitude. In 
practice, one should certainly like to know how to classify 
them, quickly and simply if possible, according to criteria 
which in a commonsense way emphasize outstanding and 
important features. Given the variety of possible systems, it 
is as well to glance at a few of them to see what notions of 
"importance" are feasible. 

We have elsewhere published a study4 of a system with 
two d.f. 's, coupling of q~ q~ type, and exact resonance 
(iJ) = (iJ2' All its solutions were bounded, and the variable
amplitude ones fell into three neatly distinct classes, even
even, even-odd, and odd-odd (cf. PAR, Sec. IV B), separat
ed by unstable c-a motions at certain critical parameter val
ues. In conformity with current usage with regard to con
spicuous, qualitative changes of behavior, we spoke of 
"bifurcation" values. There were two such bifurcations: one 
with respect to an integration constant (in fact, the c) type 
described in Fig. 1 below), the other with respect to a system 
parameter which allows either the even-even or the odd-odd 
class but not both. On the other hand, consider the elastic 
pendulum5

: amidst the richness of its solutions, including 
the stable cup and cap c-a motions, all change is smooth and 
gradual except for the rather obvious bifurcation where the 

a) Now at Department of Computer Science, University of Colorado at 
Colorado Springs, Colorado Springs, Colorado 80933. 

suspension motion becomes unstable and the class of "non
trivial c) = 0" motions appears suddenly. Yet, when in the 
elastic-pendulum Hamiltonian we make one mass negative, 
as we do below in Sec. V, we always find four sharply distinct 
classes of motions bordered by c-a motions and by excep
tionallow-amplitude motions in different ways. In either of 
these cases, somewhat similar to Ref. 4, there are system 
parameter bifurcations in the form of sign and parity 
changes. 

It would be idle to conclude that "apparently anything 
can happen"; it rather seems certain that the c-a motions 
should be taken as the skeleton of classification. This is a 
truism in abstract phase space, but it was not obvious that in 
real situations, too, the types of actual motions which most 
readily meet the eye should be closely related to c-a motions 
in various ways. 

In the present paper we follow this lead. The param
eters determining the c-a motions are, of course, exactly the 
integration constants a2, ... ,an , E which we have to employ 
anyway (see PAR); hence their bifurcation values must be 
sought. [Phase shifts and a shift in the zero of time cannot 
cause any qualitative differences between representative so
lutions and others (c.f. PAR, Sec. II), hence they can be en
tirely left out of the bifurcation context.] We find that when 
we look at the simplest cases they exhibit characteristics 
which deserve to be defined formally, and are susceptible to 
generalization. We also find that root parity is an indispensa
ble tool, and that skew roots of the first order need to be 
carefully considered where they exist, as we did in many 
previous instances. 

Thus we outline a corpus of general theorems, parity 
arguments, and procedural rules which are adequate to deal 
with the simpler systems, and point the way toward the 
treatment of more complex systems. In the interest of bre
vity, we have strictly confined ourselves to physical, oscilla
tory systems (as defined in PAR, Sec. III D). We have also 
left out momentum-dependent couplings because the defini
tion of root parity in such systems seems to lead to complica
tions. As for system parameter bifurcations, we have not 
touched them in any generality because we are doubtful that 
there are any simple, clear types of them beyond the trans
parent parity-switch and sign-change cases mentioned 
above. Lastly, we emphasize that we say nothing about 
quantitative aspects of classification such as amplitude mo
dulation ranges; the calculation of the roots ofJis an algebra-
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ic and/or numerical task rather different from the qualita
tive one that we pursued. 

II. THE c, BIFURCATIONS 

A. The parameter c, 
The polynomial/(Pl) has been defined in SF, Eq. (3.9). 

We rewrite it here with some adaptations introduced in 
PAR, Eqs. (3.1) and (3.2) as 

/(PI) = F(PI,af - P (P1,a,E f, 
P= CI - (E + bllPl - ... - bmpT, (2.1) 

n 

CI = E - LWiai - bo, 
2 

where F is given explicitly in PAR, Eq. (3.5), and the bi are 
polynomials in system parameters and the a's (see STAB, 
Sec. III A). 

Any root of/satisfies 

P= +F and/or P= -F. (2.2) 
Thus, at a fixed set of integration constants a 2 , ... ,an , E all 
roots of/can be obtained graphically from the intersections 
of curves representing the two sides of Eqs. (2.2); for formal 
examples, see PAR, Sec. III D, while an application to plas
ma physics can be found in Ref. 6. The constant E occurs in 
Eqs. g.l) in only one place, in the constant term C I of polyno
mial p. therefore a variation of E at constant a will only shift 

-' -the P curve vertically while the ± F curves remain fixed. 
The accompanying variation of the roots of/ then becomes 
especially transparent. At constant a, it makes no difference 
whether we vary E or C I' and because of some formal conve
niences we choose the latter. Thus we begin with a discussion 
of the roots of/as CI is varied at constant d.. 

Following the detailed exposition in PAR, a root of/is 
called even or odd, respectively, if either the first or the sec
ond Eq. (2.2) is fulfilled. Ifb,2,th are fulfilled, the root ~ called 
skew; then (and only t!!.en) F = 0 holds, and with it P = o. 

Thus, a skew rootP = F obeys the equation F (F,a) = 0, 
which does not contain E, or C I' In physical systems PI is real, 
and therefore we are primarily interested in real roots r. In 
an oscillatory system, F must also lie in a certain non-nega
tive interval, the domain of PI; see PAR, Sec. III D for detail. 
A solution ofF(F,a) = 0 can be a first-order skew root of/ 
only in systems which permit exceptional low-amplitude 
conditions; it can be a second-order skew root of/at any 
given set of values a2, ... a n provided CI is chosen right, al
though this value of CI does not necessarily correspond to a 
physically possible system energy; and it will in general not 
be a higher-order root of/unless the a's have certain particu
lar values (and/or unless system parameters have special val
ues, as in STAB, Fig. 5, where the triple skew root at the 
origin requires exact resonance E = 0). 

Alternatively, consider a root which is not skew. It re
quires an intersection of P with ± Fat F oF 0; this may be a 
simple crossing of two curves, or it may be a contact of possi
bly high order and then the root is multiple. In the latter 
case, some special value of CI is requ!!:.ed. If.,!he domain of PI 
is finite, all this is easy to see. Sinc~'p and F are continuous 
and smooth over the domain, and F = 0 holds at both end
points, we can always find aC I such thatPintersects the ± F 
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curves, and another C I such that there is no intersection; 
hence there exists an intermediate value where the curves 
touch. This contact will normally be of the second order, but 
at particular values of the a's (and/or system parameters) 
which yield the right curve shapes it can be of higher order. 
With a half-infinite domain, particular values of the a's (and 
parameters) will generally be required even for second-order 
contact, in addition to the right CI . 

It emerges from this survey that at an arbitrary set of a 
values we may normally expect the physically relevant roots 
of/ to be single and of definite parity. Keeping the a's fixed, 
we may often expect to find second-order roots by varying C I' 

but higher-order roots generally require special values of the 
a's (and/or system parameters) in addition to special values 
of C I' We arrange the following discussions accordingly, 
with the a's fixed in one instance and variable in the other, 
and omitting explicit mention of system parameters which 
are always assumed fixed. 

B. Discontinuous change of amplitude modulation 

Consider a set of fixed a values such that there can be 
more than two real, single roots of/in the domain of PI' 
Figure l(a) sketches a typical case, with amplitude modula
tion between R I and R 2 • Now vary C I through some interval. 
Since/ depends on CI in a continuous way, only continuous 
deformations of the graph of/are possible. It can happen, 
amongst other things, that a third root R3 approaches R2 and 
at a certain value CI = cT coalesces with it, as in Fig. l(b). 
Moreover, it can happen that under further change of CI the 
double root R2 = R3 becomes complex, and the graph of/ 
lifts off the axis as in Fig. l(c). The modulation range of PI 
then increases abruptly to the next real root if there is one; or 
if there is none, monotonic growthpl--+oo takes place ("ex
plosive instability"). For examples, see Fig. 1 of Ref. 4, and 
also Ref. 6. 

Owing to this discontinuous change of the modulation 
range, cT constitutes a bifurcation value of CI where the sys
tem motion mutates from one type to another in phase space 
as well as in configuration space. In the literature,8 such a 
critical value is often called a separatrix. 

At the bifurcation, there is a double rootR2 = R3 which 
cannot be skew. Indeed at any skew root R = r we have 

If~ /,.l 
7RI R2~ 

~"\ 
~\(c) 

RI R4? 

FIG. 1. Discontinuous change in the range ofp,(t) under monotonic change 
ofc, at constant a2 •...• a n • (a) Modulation between R, and R 2; R3 is near R2 
and has the same. definite parity. (b) Aperiodic modulation. or unstable 
Case (II) c-a motion. whenR2 = R3 andc, = ct. (c) Modulation betweenR, 
and some new turning point R4 • if any. 
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P = I' = 0, and if we now vary CI at constanta,P = Ocontin
ues to hold atpI = rsothat/(r 1< 0 results according to Eq . 
(2.1); thus the minimum in the graph of/cannot lift off the 
axis as in Fig. l(c) but must sink below it as in Fig. l(a), and 
there is no abrupt change of the modulation range. Inciden
tally, a multiple root of definite parity, such as the R2 = R3 
of Fig. 1, can never lie at an endpoint of the domain of PI; as 
discussed in PAR, Sec. III C, at an endpoint one or mo~ 
(resonant) system amplitudes Pi must vanish, with them F 
vanishes, and hence any root at the endpoint is skew. 

Clearly it is crucial that at the bifurcation the graph of/ 
touches the PI axis from above, or in equivalent terms, that 
the c-a motion at the multiple root be orbitally unstable. 
Conversely, whenever a multiple root of definite parity with 
an unstable c-a motion occurs in the domain of PI' it must lie 
in the interior of the domain as has just been remarked, and 
therefore it can separate adjacent modulation ranges. These 
two statements hold not only for the second-order root de
scribed by Fig. 1, but for roots ofhigher.2rder as well. In anl. 
case, there will be contact between the P curve and the ± F 
curves which graphically determine the roots. However, 
with a contact of higher order it is not generally po~ible to 
say how it must evolve under a vertical shift of the P curve, 
i.e., under a change of CI; what kind of bifurcation results is, 
therefore, a matter for separate study in each such case. Still, 
for a second-order contact as in Fig. 1 a universal evolution 
does take place: if a change of CI first merges two simple 
intersections, then further change in the same direction will 
remove the contact altogether. We can therefore without 
restriction state the following theorem. 

Theorem: Whenever in an oscillatory system orbitally 
unstable Case (II) c-a motion exists at a double root of/IPI)' 
the corresponding value C I = cT marks a bifurcation in the 
sense that under variation of CI at constant a2, ... a n a discon
tinuous change of amplitude modulation range occurs at 
CI = cT· 

c. Discontinuous change of phase function 

It is possible for a root marking the end of a modulation 
range to change parity as C I is varied. According to PAR, 
Sec. III B, a change between even and odd involves an inter
mediary skew stage. This skew root could be of any order 
from the first up. We again leave cases of order three and 
higher for ad hoc investigation on account of their multifar
ious nature, and begin with the second order. 

Figure 2(a) sketches a type case. Beyond the modulation 
range from R I to R 2' there is some oth.=.r single root R 3' and 
between R2 and R3 there is a zero r of F. It can happen that, 
as C I is varied, R2 and R3 approach each other, and at a value 
CI = Clr coalesce into a skew double root at r; see Fig. 2(b) 
and the Theorem of PAR, Sec. III D. Under further change 
of CI the graph of/cannot lift off the axis, as has been shown 
for any skew root in the previous section; the next stage is 
therefore as in Fig. 2(c). 

The distinctive feature of the process is that the parities 
of R2 and R 2 are necessarily opposite. For the proof, the 
unstable nature of the double root in Fig. 2(b) is again crucial. 
Suppose first that the zer~of Pat r is of the first order; t.!!en 
for instability the slope of Pat r must be less than that of Fin 
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I

f 

. ~r/ (e) 
7 ..,...s.. 

I f 
~r/(c) 

IR R'~R' 
I 2 3 

FIG. 2. The change in turning point near a second-order skew root runder 
monotonic change of c, at constant a2 ..... a •. (a) Modulation between R, 
and R2• (b) Aperiodic modulation. or unstable Case (I) c-a motion. when 
R2 = R3 andc, = C,r' (c) Modulation betweenR, andR i;R2andR i have 
definite. opposite parities (proof by means of Fig. 3). 

amount, according to STAB, Eq. (3.12). Graphically, the 
situation is as in Fig. 3, and it is seen at once that vertical 
shifts of the I' curve through r produce roots R~d R 2 of 
opposite parities. Next suppose that r is a zero ofF of order ~ 
or higher. If l' has a first-order zero at rwhen CI = cIr~then 
the quoted criterion for instability cannot be met, but if P has 
a zero of second or higher order, then r is a root of 
/ = p2 _ 1'2 of order at least three, contrary to hypothesis. 
Hence the configuration of Fig. 3 is the only relevant one 
(except for mirror versions there2.,t). Incidentally, note that it 
makes no difference how the ± F curves pass through r, as 
unbroken straight lines, or with kinks as for the "confluence 
of two exceptional low-amplitude conditions" of PAR, Fig. 
5; in the latter case, interestingly enough, R2 and R3 are of 
the same parity (and so are R 2 and R i). 

The difference in parity implies that the combined 
phase function iil(t) differs at R2 and R 2 by an odd multiple 
of 11'. This discontinuity as CI passes through Clr is again 
properly a bifurcation, but it is conspicuous in phase space 

/ 

= / 
-F/ 
/ 

/ 
/ 

/RI 
/ 2 

FIG. 3. The origin of the roots in Fig. 2. The ± Fcurves have a first-ordc;r 
zero at r (which may lie at an endpoint of the domain of.J, or not). The P 
curve has a slope at r smaller in amount than that of F. so that the c-a 
motion at the second-order skew root r is unstable. Under vertical shift 
through r. the P curves yield roots R2 and R i of opposite parities. 
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rather than in configuration space. In particular, when one 
d.f. almost goes to rest, as in so many motions neighboring to 
an unstable Case (I), the variability ofits phase is not reduced 
(cf. PAR, Sec. IV D, Theorem 5); thus, while nothing re
mains to be seen along the coordinate axis, the phase discon
tinuity at Clr stands out. How severe the discontinuity is in 
general can be appreciated from the fact that, as long as the 
parity of the lower modulation limit R I does not change at 
Clr, too, the change in parity at the upper limit entails a 
change from a purely periodic phase function ql(t) to one 
which steadily grows by 1T during any half-period of the mo
dulation; cf. the Theorem in PAR, Sec. IV A. 

In summary, we have Theorem 1. 
Theorem 1: Whenever in an oscillatory system unstable 

Case (I) c-a motion exists at a double root offfP,), the corre
sponding value CI = clr marks a phase space bifurcation in 
the sense that under variation of CI at constant a2, ... ,an a 
discontinuous change of the combined phase q I (t ) takes place 
at CI = clri the change amounts to an odd multiple of 1T at 
the modulation turning point next to the skew root. 

It remains to look briefly at a skew root r of the first 
order (which marks an "exceptional low-amplitude condi
tion," and cannot lie in the interior of the domain; see SF and 
PAR). The origin of such a root is described in PAR, Fig. 1, 
where we read off at once that the sequence under variation 
of C I will be as in Fig. 4 (which has been drawn for r at a 
lower endpoint of the domain). Again there is a change of 
parity for the root which passes through the skew one, and a 
corresponding phase discontinuity at the critical CI = Clr , 

just like the one discussed above. The phase behavior at the 
critical value, with the root configuration of Fig. 4(b), is not 
simple, cf. PAR, Sec. IV E, but this is not relevant to the 
occurrence of a bifurcation as CI passes through clr . In 
short, we have Theorem 2. 

Theorem 2: Whenever in an oscillatory system a first
order skew root offfP,) lies at an endpoint of the domain of 
PI' the corresponding value c i = clr marks a phase space 
bifurcation of the kind described in Theorem 1. 

III. THE a BIFURCATIONS 

The C I bifurcations at second-order roots are associated 
with instability because in the (phase space) neighborhood of 

r 

L[ ' __ rL! ~/,L~------="",..------- (el 

R; R2 

FIG. 4. The change in turning point near a first-order skew root r under 
monotonic change of c 1 at constant a2, ••• ,an • R 1 and R ; have opposite pari
ties (prooffrom PAR, Fig. 1). 
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an orbitally stable c-a motion there are by definition no dis
continuities. The pertaining stability criteria STAB (3.12) 
and (3.14) do not contain E, and therefore do not depend on 
C I' Thus, under a change of C I at constant a it cannot happen 
that a double root changes its stability character and thereby 
makes a CI bifurcation appear or disappear. It can happen 
under a change of a 2, ••• ,an , though, and this is one example 
of an a bifurcation. 

A precisely analogous possibility exists at higher-order 
roots, but we shall again not treat these because of their var
iety. 

The a's also determine the endpoints of the domain of 
PI; see PAR, Sec. III C. It can therefore happen that under a 
change of one or more a's there is an exchange of roles 
between the d.f.'s as to which of them will have its amplitude 
modulation reach right out to a domain endpoint. A typical 
case is the passing of an "exceptional low-amplitude condi
tion" from one d.f. to another, with a confluence of two such 
conditions in between. The attendant phase space complex
ities are summarily described by Fig. 4 of PAR, and are 
exemplified by the much-discussed "case of the three inter
acting waves.,,6 This, and analogous a bifurcations involv
ing higher-order skew roots, whether intrinsically compli
cated or not, are very easy to spot in any given system. In the 
interest of brevity we abstain from further discussion of such 
fairly obvious cases. 

At any rate, a bifurcations are associated with the ap
pearance of orbital instabilities, just like C I bifurcations. For 
the summary description of the dynamical stability of an 
oscillatory system we introduced in STAB an n-dimensional 
space spanned by PI'" .,Pn . In this P space, any system motion 
is represented by a segment of some straight line having giv
en slopes; for a c-a motion the segment contracts into a point. 
The points representing all c-a motions of a particular class 
form an object which we called the "existence surface" of the 
class; the existence surfaces for Cases (I) and (II) at second
order roots are reciprocal to each other in the sense that 
(essentially) one marks the stability boundaries on the other. 

For the present purposes, we subject the p space to the 
linear transformation SF, Eqs. (3.3) and (3.4), to obtain a 
space spanned by PI' a 2, ... ,an • In this PI' a space any system 
motion is represented by a segment of some straight line 
parallel to the PI axis. The transformation is affine and thus 
puts no strain on the imagination; all geometrical terms from 
STAB may be taken over verbatim. 

Since we confine ourselves to a bifurcations associated 
with stability changes of second-order roots, we should find 
them in general at intersections of second-order existence 
surfaces for a Case (I) and a Case (II), where in general there 
will be found the c-a motions associated with (skew) roots of 
at least the third order. An exhaustive study of third-order 
roots looks uninviting, but somewhat contrary to expecta
tions, general results of a helpful nature do exist. We present 
several of these in the following, both for practical applica
tion, and to show the way towards possible extensions. 

A. Intersection of 1- and II-existence surfaces 

For a Case (I) c-a motion it is required that P = P = 0 
and that p2 have a root of at least the seond order. For a Case 
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(II), at a root of definite parity, P = ± £ #0 is required to
gether with 

ap aF 
-=±
OPI OPI 

to guarantee that the root is multiple. 

(3.1) 

Where a I-existence surface intersects a II-existence 
surface, the condition P = F = 0 is augmented by Eq. (3.1), 
which must hold in the intersection by continuity of the first 
derivatives, given that £2 has at least a double root there. It 
follows that/ = p2 - p2 has in the intersection a root of or
der higher than two. It could be of order four or higher, of 
course, but in that case, in addition to (3.1), 

a2p azp 
-= +- (3.2) api - api 

must hold to guarantee the high order. 
If on the other hand Eq. (3.2) does not hold, the root of/ 

in the intersection can only be of order three. Note also that 
Eq. (3.2) is identical with STAB, Eq. (3.19), which describes 
the "supplementary stability boundary" of the II-existence 
surface; if this equation is not fulfilled at the intersection in 
question, the possible complication of a supplementary 
boundary is absent. Thus, this case is intrinsically simple. 
We pick from it the simplest of its variants, and for the rest of 
this section make the following assumption. 

Least-complexity assumption: A 1- and a II-existence 
surface intersect in a set C such that (a) C represents triple 
roots only, (b) in some neighborhood of C both existence 
surfaces represent double roots only, and (c) no F = 0 sheets 
corresponding to single skew roots pass through the said 
neighborhood of C. 

Here part (c) excludes not only the parity complications 
displayed in PAR, Figs. 1 and 4; it also excludes that Pis not 
differentiable at PI = r. Hence the word "intersection" may 
be taken in the narrow sense that either existence surface 
passes through C continuously and with a smooth tangent. 
However, we do not require that any of the multiple roots 
correspond to physically possible motions; they may well lie 
outside the domain of PI' 

We now prove several results which are best formulated 
inpI' a space. They hold for physical, oscillatory systems. 

Lemma 1: Under least-complexity conditions, at points 
of C neither of the intersecting existence surfaces has a tan
gent parallel to the PI axis. 

Proof: (I) Consider the exJ2!!.cit expression for P in PAR, 
Eq. (3.5): a I-existence surface F = Ois seen always to consist 
of planes PI =Oandaj = -gjpI,noneofwhichcontainsa 
parallel to the PI axis, together with plane andlor curved 
sheets arising from a polynomial Q{PI,a), if there is one; 
therefore, if a'F lap I = 0 were possible in C, this could only 
happen because of a~ lap I = O. In C, the surface F =,2 also 
fulfills Eq. (3.1). If aF lop I = 0 were possible there, ap lop I 
= 0 would follow; then both polynomials Q and P have in C 

zeros of at least the second order, and hence the root of/in C 
is of at least the fourth order, contrary to hypothesis. (II) The 
II-existence surface fulfills Eq. (3.1). Where it has apI-paral
lel tangent, the PI-derivative equation (3.2) must hold, too, 
but in C this cannot be the case, by hypothesis. Q.E.D. 
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Theorem 1: Under least-complexity conditions, and in 
the said neighborhood of C, if D is a point of the intersecting 
existence surfaces but not in C, then there exists a point E on 
the other existence surface but not in C, having the same 
coordinates a2, ... ,an and such that for the double roots at D 
and E the graph of/!PIl has opposite curvature. 

Corollary: If both D and E lie in the domain of PI' then 
the corresponding c-a motions have opposite orbital stabil
ity. 

Proof: By Lemma 1, a straight line parallel to thep I axis, 
not passing through C but coming sufficiently close to it, 
must intersect both existence surfaces at neighboring points, 
say D and E. The possible situations are depicted in Fig. 5. 
Corresponding to a point in C, the graph of/WI) has for a 
certain small range of PI values the configuration of Fig. 6(a), 
by hypothesis. At D or E, with a values outside C, the config
uration off can only be as in Fig. 6(b) or 6(c), by the contin
uity of/under changes of the a's. One of the double roots at 
D and E is skew, the other has definite parity, by hypothesis. 
Ifwe keep the a's constant and vary only CI' the skew root 
can only split into two real, single roots by a Theorem in 
PAR, Sec. III D; the corresponding/ has the configuration 
of Fig. 6(d). This holds whether we decrease or increase CI 
from its value Clr at the skew root. Let us vary CI in that 
sense which should eventually lead to the other double root, 
which is not skew. Figuratively speaking: we can pass from 
the skew end of the interval DE in Fig. 5 into its interior, 
where the corresponding values of C I yield three real, distinct 
roots of/as in Fig. 6(d), and by continuity of/under changes 
of CI we can continue to the other end of the interval, where 
there is another double root off, but with definite parity. 
Since the skew root at the outset is not formed from a con
fluence of low-amplitude conditions, it follows from the 
theorem just quoted that it necessarily splits into an even and 
an odd single root (cf. also Fig. 3 above!). Furthermore, since 
no single skew root can occur in the vicinity, by assumption, 
all single roots must conserve their parities under change of 
C I' If the double root at the other end were again formed by 
coalescence of the said two single roots, it would therefore be 
skew, contrary to hypothesis. Rather, it must be formed by 
coalescence with the third one of the three real roots' thus in 
Fig. 6(d) it is the middle root which under monotoni~ cha~ge 
of C I moves from the configuration of Fig. 6(b) to that of 6( c), 

-------- - - - - ---------- P, 

(al (bl 

FIG. 5. The two existence surfaces meeting at a point QeC, (a) at an angle, 
and (b) with contact. The figure is a projection from n-dimensional space 
into some plane containing the P, axis, and the resultant two-dimensional 
curves are schematic only. 
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FIG. 6. The splitting of a third-order root offljl) in the vicinity of C (sche
matic, with analogous mirror images). At any point in C, the graph off has 
the form (a). If then a set of values a2, ... ,a. outside C is chosen and kept 
constant, under change of C I the graph takes the forms (b) for a value of cion 
one existence surface, (c) for a value on the other existence surface, and (d) in 
the interval between. That the sequence is (bHdHc) (or reverse), without 
complex roots is proved in the text. 

or the reverse. Q.E.D. The Corollary follows trivially from 
STAB, Sec. III C. 

Incidentally, it follows that in Fig. 6(d) the outer roots 
necessarily have opposite parities. Another small detail be
comes clear which has further uses: when the skew double 
root at r is split by a change of C I' none of the three resultant 
real roots in Fig. 6(d) can under a further change CI move 
across the a!!,sciss!,j?1 = r. In fact, r can only be a doub!! 
root of/ = F Z 

- P Z because r remains a single root of F 
whenc i is changed while the a's are kept constant. It follows 
that of the three separate roots in Fig. 6(d) at least two must 
lie on the same side of r as the other double root, for the 
latter needs to be formed by a coalescence of two such roots. 
This allows us to clarify an ambiguity remaining in Theorem 
1 by the following. 

Lemma 2: Under the conditions of Theorem 1, and as
suming the configuration of Figs. 5 and 6, with D to the left 
of E on a parallel to thep I axis, and with the cubic part of/(P I) 
increasing towards the right, the graphs 6(b) and 6(c) are 
associated with D and E, respectively. This is analogous for 
mirror versions of the figures. 

Proof: The proof is by contradiction. Interchange the 
graphs, assigning Fig. 6(c) to D and 6(b) to E, and then pass 
from D to E and back to D by changes of C I' In such a com
plete cycle, each of the outer roots in the intermediate config
uration 6(d) needs to move across one double root in order to 
make a coalescence of that outer root with the middle root 
possible at the other double root, as is required by the root 
parities. However, one ofthe double roots is skew and there
fore cannot be crossed by a single root under a change of C I 

alone, as has been noted above; hence this assignment is im
possible. This is analogous for the mirror versions. 

Theorem 2: Under the conditions of Theorem 1, if the 
two existence surfaces meet in C with different or equal PI 
derivatives, then C divides each surface into parts where/(p tl 
at the double roots has opposite curvatures or the same cur
vature, respectively. 

Proof' In Fig. 5 assume for the sake of argument that D 
and E are associated with Figs. 6(b) and 6(c), respectively. 
Figure 5(a) corresponds to the case of different PI derivatives 
with the points D I and E on one surface, and D and E I on the 
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other. Figure 5(b) corresponds to equal derivatives; now E 
and E I are on one surface, and D and D I on the other. With 
this labeling of points the following argument is valid for 
both cases.When we change the a's back to their values at 
the point Q, the graphs 6(b) and 6(c) collapse into 6(a). Now, if 
we continue to change the a's so as to reach the points D I and 
E I, the pertaining graphs of/do not flip over into mirror 
versions of Fig. 6, because of the continuity of/under such 
changes. Therefore Lemma 2 applies to D I and E I exactly as 
to D and E, respectively. This is analogous if mirror versions 
of the graphs are associated with D and E at the outset. In 
any case, by Lemma 2, at the left pointsD andD I the graph of 
/ has at the double root the same curvature, and at the right 
points E and E I the curvature is the opposite. Q.E.D. 

Theorem 2 in conjunction with the corollary to 
Theorem 1 allows one to determine dynamical stability all 
around C if it has been determined for only half of one exis
tence surface. Examples abound. A very simple one is found 
in the elastic pendulum; see STAB, Sec. V A. In this system, 
there is a Case (I) surface PI = 0 which also marks the lower 
endpoint of the domain of .0 I' It describes pure suspension 
motion which remains orbitally stable up to a critical a value 
(az = eli? in the notation of STAB) where / has a triple. 
root. Here a stable Case (II) (cup or cap motion) surface 
branches off and leaves the suspension oscillation unstable 
for all higher values of az. 

In essence, the results of this section show that a bifur
cations will group around intersections of!- and II-existence 
surfaces only in certain patterns. 

B. Vanishing ~ derivatives 

In an intersection C representing only third-order roots 
the existence surfaces cannot have tangents parallel to the PI 
axis. Such tangents can occur outside C, however, and indi
cate a bifurcations with a characteristic signature. 

Consider first a II-existence surface. It fulfills Eq. (3.1). 
We are now only interested in its parts which do not intersect 
with any I-existence sheets, and which therefore do not in
clude the boundary of the domain of PI' In the interior of the 
domain, F is repeatedly differentiable as well as P. At a point 
of any II-existence surface with a horizontal tangent, such as 
Tin Fig. 7, the derivative Eq. (3.2) must be satisfied too; thus 
T is an intersection with the supplementary stability bound
ary STA,P (3.191. The root of/corresponding to T, which 
satisfies P = ± F =1= 0, is therefore of at least the third order. 

Let us again aSsume the simplest case, that the root of/ 
at T is exactly ofthe third order, i.e., 

LI __ ~~ ____ -L __ -=~ __ __ 
L2-----=~~~-----/ T 

-------------------------p, 
FIG. 7. Vanishing PI derivative on a II-existence surface. Like Fig. 5, the 
figure is a projection into some plane containing the PI axis. At the constant 
a values along the (amplitude modulation) line L I , variation of CI yields two 
c-a motions, but along L2 there are none. 
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~p ~F even 
ap(1= ± apr r odd' (3.3) 

Then the multiple roots of/in the vicinity of T, where Eq. 
(3.2) no longer holds, are of the second order. Moreover, the 
curvature of/ at these roots changes sign as T is crossed by 
variation of the a's and CI; this follows at once from the 
discussion in STAB, Sec. III D, together with (3.3). From 
this fact, together with Fig. 7, we conclude the following. 

Theorem: A third-order definite-parity root of/marks a 
bifurcation in the sense that its dynamical neighborhood of a 
values contains one continuous part without any c-a mo
tions, and a complementary part with pairs of one stable and 
one unstable Case (II) c-a motion which differ only in the 
value ofc l • 

Second, consider a I-existence surface. OfF= 0, only 
the sheet Q = 0 could have a tangent with a'Q I apl = O. Then 
aF lap I = 0 holds, too, and since Eq. (3.1) must not be satis
fied, so as to exclude an intersection with a II-existence sur
face, it follows that the pertaining root of/cannot be of order 
higher than the second. Moreover, it foll~ws that lap lap I I 
#0, and hence, that the root is orbitally stable, by criterion 
STAB, Eq. (3.12). As in its dynamical vicinity there is noth
ing discontinuous, we are not now faced with a bifurcation. 
Indeed, we have here one of those "double skew root inside 
the domain" motions which are difficult even to recognize; 
cf. PAR, Sec. IV D. 

IV. PROCEDURAL RULES 

Cursory as the preceding survey is, it allows us to out
line a general procedure for spotting all motion types in a 
given system. 

First of all, locate the endpoints of the domain of Pl' If 
the d.f.'s defining one or both ofthem can change, then the 
set of all physically possible values az, ... ,an should at once 
be subdivided into corresponding subsets. 

Excluding confluences of exceptional low-amplitude 
conditions, if any, all a bifurcations are associated with 
change in stability of c-a motions, and occur at roots of/ of 
order higher than the second, as we have shown above. Thus, 
locate these roots; determine by means of a stability diagram 
and arguments such as those developed above, which of 
them gives rise to an a bifurcation, and further subdivide the 
a's into subsets in accordance with the findings. 

Then consider each a subset separately and vary C I 

through all possible values while keeping the a's constant. 
The remaining, distinct motion types are separated by C I 

bifurcations. 
Lastly, take up the confluences oflow-amplitude condi

tions, if any, and add details on conversion motions, if appro
priate. 

Parenthetically, we remark that in the course of sorting 
out a and C I intervals one obviously also comes across dyna
mically stable, mUltiple roots of/which move into or out of 
the domain of PI' or which appear or disappear inside the 
domain. The corresponding (dis)appearances of c-a motions 
deserve to be noted, of course, but because of the smooth 
nature of their phase space neighborhoods they cannot be 
called "bifurcations" in any contemporary sense. 
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In essence, this procedure amounts to a systematic reor
dering of all representative solutions into contiguous classes 
distinguished from each other by major features at the ex
pense of less prominent ones. It thus leads a long way 
towards the goal first formulated in PAR, to obtain a quali
tative description and classification of motions with variable 
amplitude. 

V. AN EXAMPLE 

To illustrate the procedure we choose a system of two 
d.f.'s with coupling rqi qz, but with m z and cuz negative so 
that the resonant condition is 2m1 + CUz = E. This system has 
some importance in celestial mechanics.7 We touched upon 
it in STAB, Sec. V A, and can now add detail. For brevity, 
we omit all algebraic manipulations. For definiteness, we 
assume r> 0 and E> 0 throughout; if one of the two signs is 
changed, primarily "even" and "odd" change places. 

A. Subsets of a values 

The momentum integral is for this system 

P2=P2-!Pl=a, (5.1) 

and a has therefore no physical, lower bound. The domain of 
PI = !.ol evidently has no upper bound, while its lower one 
lies at max(O, - a); cf. STAB, Sec. III C. Thus the range of a 
values must be divided at a = O. 

The integration constants E and 

CI =E-cuza (5.2) 

also have no physical bounds. Given that 

F = rPI[2(PI + ajp12, 

where 

r = r(mi cui mzcuz) - liZ, (5.3) 

the Case (I) existence line is simply PI = 0; the other possibil
ity PI = - a means .oz = 0, which lies at the extreme of an 
exceptional low-amplitude region and would require special 
study, which we omit. Given also 

P=CI-EPI, 

the Case (II) existence line (3.1) is calculated to be 

a = !(!O z - 3PI) ± ! [ B Z(!B z - PI) ] liZ, 

where 

(5.4) 

(5.5) 

the c-a motion is odd or even according as 0> 0 or 0 < 0, 
respectively. The supplementary stability boundary (3.2) is 

a = - iPI' (5.6) 

Since / = F z - P 2 is cubic, no roots of order higher than 
three exist. 

The stability diagram from (5.3), (5.5), and (5.6) is shown 
in Fig. 8. The intersection atA, where a = !B 2, and the hori
zontal tangent at B, where a = - to 2, mark a bifurcations 
of the types discussed in conjunction with Figs. 5(a) and 7. 
Since the slope of F clearly steepens with increasing a at 
PI = 0, the Case (I) must at high a become unstable accord
ing to criterion STAB, Eq. (3.12), and the other stability as-
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a 
u 

! 82 
2 A 

(odd) 

kc--------..--p, 

unphysical 

supp. 
stab. b. 

low amp. 

FIG. 8. Stability diagram for coupling r~ q2 in the resonance 2m, + /l12 = E. 

This is an affine image of the right half of Fig. 2 from STAB. At the I-II 
intersection A (0,!8 2) there is a skew triple root; at B (~8 2, -!8 2) there is an 

odd triple root with a horizontal tangent; at both points the typical_stability 
changes discussed in Sec. III occur. The drawing assumes 8 = E/r> 0; for 
8 < 0 replace odd by even. 

signments now follow at once from Sec. III. Thus the values 
a = - 1,0 2, 10 2 further subdivide the a range. 

B. The behavior of f 

The Case (II) c-a motions of Fig. 8 require multiple 
roots of/ in the interior of the domain of P I' If as usual we 
plotPand ± F from (5.3) and (5.4) as in Fig. 9, we see at once 
that contacts between the lines are only possible inside the 
domain if the slope of F is not too steep, corresponding to 
- i0 2<a<!02. 

+F +F 

p, p, 

-F 
-F 

(8) (b) 

FIG. 9. Formation ofthe roots of/in different a ranges. The graph of Pis 
always a straight line (5.4) with slope independent of a, and intercept still 
adjustable by choice of c,; cf. (5.2). (a) a> 0; the domain ofp, begins at the 
origin. For large a, the loop on the left is large, and no P line of the given 
slope can make more than one intercept in the domain. As a decreases, 
contact in the domain becomes possible when a<!8 2; point A of Fig. 8 re

quires contact atthe origin. (b) a < 0; the domain begins at - a. At large lal 
the slope of ± Fis too steep for more than one intercept. Contact becomes 
possible at a> - 182, corresponding to the Case (II) motions above point B 

in Fig. 8. The drawing assumes E> 0 and r> O. 

1226 J. Math. Phys., Vol. 26, No.6, June 1985 

It is also seen that at any given a, for every CI whatso
ever there is at least one intercept between P and ± F, and 
beyond this intercept IP I < IF I holds so that/remains posi
tive out to infinity. Thus at any pair of values a, CI there 
exists a motion with unboundedpl' Bounded motion is pos
sible only when there are two more intercepts, as can only 
happen for - i02 < a <!O 2, and will require appropriate 
initial conditions. 

C. The C1 bifurcations 

1. a>-i02 

There can be only one intercept between P and ± Fin 
the domain of PI' If CI = Clr = 0, the intercept lies at the 
lower endpoint of the domain and yields a Case (I) motion 
PI~O. If ct'~O the motion is necessarily unbounded. The 
value clr = 0 marks a bifurcation inasmuch as it divides 
motions with an even from motions with an odd, lower turn
ing point according as C I > 0 or C I < 0, respectively [see Fig. 
9(a)]. Point A of Fig. 8 is now readily seen to be unstable. 

2.0<a<-i02 

Consider Fig. 9(a), flatten the loop to correspond to the 
reduced a, and shift theP lineup from below. At negative CI, 

only unbounded motion with an odd turning point is possi
ble. Atc1r = OtheP line passes through the origin; theresul
tant, new Case (I) is stable because at neighboring, positive 
values of C1 there is now an even-odd pair of neighboring 
single roots which have moved into the domain from the left. 
This c1r marks a typical (dis)appearance of the kind briefly 
mentioned in Sec. IV. 

a 

A even 

odd C~(a) 

o 

FIG. 10. The c, bifurcations. An infinite plane of a vs c,/i- represents the 
unbounded motions; it is bifurcated by the chain-linked line into classes 
having even and odd amplitude modulation minima. Overlaid on the plane, 
and joined to it along the cT arc ADEB, is the curved triangle AOB. It repre
sents the bounded motions and is divided by its bifurcation line OE (which 
represents exceptional low amplitudes) into an even-odd range AOE and a 
narrow odd-odd range EOB. Its free edges AO and OB represent stable c-a 
motions. Points 0, A, B, D, E correspond to Fig. 8. The drawing assumes 
E> 0 and r> 0; if one of the two signs is changed, interchange even and odd 
and change the direction ofthe c./i- axis. 
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At a certain hi~er value C I = cT the P line will make 
contact with the - F curve, leading to the unstable Case (II) 
on the arc AD in Fig. 8, and to a c I bifurcation precisely like 
the one depicted in Fig. 1. To calculate the critical cT, note 
that in Eq. (5.2) the constant E is the Hamiltonian SF (3.6), 
which for an odd Case (II) in our system yields cT = €PI - F; 
here the required (constant) value of PI is determined by the 
existence condition (5.5), so that by elimination of PI we ob
tain cT as a function of a. The result is plotted in Fig. 10. At 
still higher c I > cT, only unbounded motion with an even 
turning point remains. 

3. --I;02<a<O. 

Proceed in the same way in Fig. 9(b). Only one, odd, 
single root exists for large, negative c I' Then at a certain 
c I = cf· the P line will make contact with the - F curve 
from be/ow, resulting in the stable, odd Case (II) on the arc 
OB in Fig. 8; cT· can be calculated as a function of a like the 
cT above, and is plotted in Fig. 10. This cT· marks another 
(dis )appearance. 

At a certain, still higher value c I = cT the P line will 
make contact with the - F curve from above, yielding the 
odd Case (II) along the arc DEB in Fig. 8. This cf is the 
continuation of the cT for the arc AD, as follows from the 
elimination process described above. This Case (II) is now 
unstable and the corresponding c I bifurcation is again of the 
type of F~. 1. 

The P line passes through the apex point PI = - a in 
Fig. 9(b) when CI = CIT = - €a; cf. Eq. (5.4). This value 
marks a CI bifurcation of the kind depicted in Fig. 4, where a 
single root of/changes parity. At smaller values of lal this 
c IT lies between cT· and cT so that the bifurcation separates 
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odd-odd and even-odd bounded motions, but at larger la I it 
lies beyond cT so that the bifurcation separates unbounded 
motions with even and odd amplitude minima. See Fig. 10. 

4. a< - -1;02
. 

Again the ± F curves are too steep for more than one 
intercept. There are only unbounded motions, separated by a 
bifurcation at CIT = - €a into an even and odd class. 

D. The a bifurcations 

It is now possible to return to the a bifurcations to study 
them in more detail throughout entire neighborhoods of the 
critical values - to 2, 0, and~O 2. We prefer not to do this in 
words, but refer to Fig. 10 which fully exhibits the complex
ity of the situation, and can be read along verticals 
CI = const, always keeping in mind the important change at 
a = ° depicted in Fig. 9. Incidentally, a survey of more such 
verticals bears out the correctness of the rule "divide the a 
range first, then study the c I bifurcations," for it is the latter 
which cause the most interesting phenomena. 
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In this paper, Jacobi's decomposition theorem, which states that the motion of a heavy 
symmetrical top can be decomposed into the motions of two torque-free triaxial tops (free 
asymmetrical tops), is applied to the case of a regular precession (no nutation) of the heavy 
symmetrical top, and it is found that the heavy top motion can be expressed as a composite motion 
consisting oftwo torque-free symmetrical tops with no nutation. A top motion without nutation is 
an extremely simple motion since it consists of only spin and precession, which are merely 
constant rotations. The dynamical relations among the three symmetrical tops are obtained. 
Quantum analysis of a torque-free top is completely known. Since the Hamiltonian of the regular 
precession of a heavy symmetrical top has the same form as that of the Stark effect of a 
symmetrical molecule, our result indicates a possibility of quantum treatment of Jacobi's 
decomposition theorem. 

I. INTRODUCTION 

In the rigid body dynamics, there are three soluble cases 
which can be solved under general initial conditions: (1) La
grange's case,I-3 (2) Euler's case,2-4 and (3) Kowalenski's 
case. 

Lagrange's case is normally referred to as the heavy 
symmetrical top, which is the motion of a symmetrical top 
(II = 12) with one point fixed under the uniform gravita
tional field. This is a usual toy top. 

Euler's case is the motion of an asymmetrical rigid body 
with its center of mass fixed and this is referred to as the 
torque-free triaxial top. 

Jacobi discovered that the motion ofa heavy symmetri
cal top can be expressed as a composite motion of two 
torque-free triaxial tops. I This is remarkable because the an
gular momentum of a heavy symmetrical top is not constant 
due to the gravity, and the angular momentum of a torque
free triaxial top is clearly constant. That is, the angular mo
menta of the composite motion are constant. This theorem 
discovered by Jacobi is generally known as Jacobi's decom
position theorem. 

In either Lagrange's case or Euler's case, three motions 
are involved2

: (a) nutation, (b) precession, and (c) spin. In this 
paper we will show that Jacobi's theorem still works even 
when no nutation is involved. In the case of a heavy symmet
rical top, the motion without nutation is referred to as regu
lar precession.2 The question is that, in Jacobi's decomposi
tion theorem, what kind of composite motion results when 
the heavy top undergoes a regular precession. In Sec. V, we 
show that the motion of a heavy symmetrical top without 
nutation can be decomposed into the motions of two torque
free symmetrical tops instead of triaxial tops. 

Since there is no nutation in the motion of a torque-free 
symmetrical top, Jacobi's decomposition theorem in this 
case involves no nutation. That is, each of the three symmet
rical tops involved in the decomposition theorem precesses 
around an axis while it is spinning with a fixed inclination of 
the axis of symmetry. 

In general, the rigid body dynamics is nonlinear and, 
therefore, Jacobi's decomposition theorem is described in 
terms of transcendental functions, that is, elliptic functions 

and theta functions. I
,4 In Sec. V, however, we show that as 

the nutations approach zero, the whole dynamics ap
proaches a linear dynamics, and the transcendental func
tions reduce to familiar trigonometric functions in the limit 
of zero nutations. This is discussed in the final section, the 
Appendix. 

The total energy of a heavy symmetrical top undergoing 
a regular precession is expressed as a sum of the total energy 
of a torque-free symmetrical top and the gravitational inter
action energy. Then, since the quantum-mechanical analysis 
of a torque-free symmetrical top is completely known,S we 
can quantize the regular precession of a heavy symmetrical 
top by diagonalizing the Hamiltonian of the heavy top.s This 
suggests that in the case of a regular precession, the whole 
decomposition theorem is possibly treated quantum-me
chanically. Then one immediate application would be the 
molecular Stark effect.5 This is discussed in Sec. VII. 

II. SUMMARY OF THE DYNAMICS AND THE 
KINEMATICS OF TOP MOTIONS PERTAINING TO THE 
DECOMPOSITION THEOREM 

An instantaneous orientation of a rotating rigid body 
with one point fixed with respect to some inertial frame of 
reference (x, y,z) can be expressed by specifying three Euler 
angles e, tjJ, and rP as explicit functions of time. 1-3 Angle e 
describes the nutation or the oscillation of the body z axis 
with respect to the space z axis, angle tjJ describes the preces
sion, and angle rP describes the spin motion. I 

A. A heavy symmetrical top1-3 

For a given heavy symmetrical top, an initial condition 
determines several constants of motion: the total energy, 
constant components of the total angular momentum, and 
so on. Yamada and Shieh6 introduced the physical constants 

(2.1) 

and also introduced the transcendental constants 

(2.2) 

But only three of the above eleven constants are indepen
dent. Although we can choose any three of them as indepen-
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dent constants, we choose the following three constants 
since their physical nature is very clear: a' = a quantity re
lated to the total energy of the heavy top; a = a quantity 
proportional to the angular momentum component along 
the axis of symmetry; and b = a quantity proportional to the 
angular momentum component along the space z axis which 
is antiparallel to the gravity. Then all the remaining eight 
constants can be expressed in terms of a', a, and b. 

Although Euler's equations are expressed in terms of 
the orthogonal angular velocity components (wx , wy , and 
wz ) (Refs. 2 and 3), it is more convenient to solve the energy 
equation which is expressed in terms of Euler angles2 

E =! 12(0 2 + ¢ 2 sin2 0) +! 13w;, + Mgl cos 0, (2.3) 

where E is the total energy, 12 and 13 are the moments of 
inertia, Mis the total mass of the heavy symmetrical top, and 
I is the length between the center of mass and the fixed point. 

By rearranging the above energy equation and using the 
three physical constants introduced above, we can set up the 
following three coupled first-order nonlinear differential 
equations1,2,3: 

*2 = (1 _ x2)(a' - x) - (b - ax)2, 

¢ = (b - aX)/(1 - x 2
), 

'" = ((12 - 13)/13)a + (a - bx)/(1 - x 2), 

where 

x = cos o. 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

Here we compare Eq. (2.4) with the energy equation of a 
simple harmonic oscillator which is given by 

*2 = 2E /M _ W
2
X

2
, 

and we see that the right-hand side is a quadratic equation in 
x and we know that the solution gives a linear oscillation. On 
the other hand, Eq. (2.4) is a cubic equation in x. Therefore, 
the solution to Eq. (2.4) will not give any linear oscillation, 
but it is expressed in terms of a transcendental function (an 
elliptic function). The detailed solutions of Eqs. (2.4)-(2.6) 
are given by Jacobi. I The final form of the solution of Eq. 
(2.4) is given by 

(2.8) 

where sn(nt) is the elliptic function which is a periodic func
tion. Thus we see that 0 (t) oscillates about the fixed valuex3• 

This motion is called nutation. 
The solutions of Eqs. (2.5) and (2.6) are, respectively, 

expressed as I 

tP (t ) = tPp (t) + tPs (t ), 

tP(t) = tPp(t) + tPs(t), 

(2.9) 

(2.10) 

where tPp (t) and tPp (t) represent periodic functions which 
consist of Jacobian theta functions and are expressed in 
terms of the constants given by Eqs. (2.1) and (2.2). Further, 
tPs (t) and tPs (t) in Eqs. (2.9) and (2.10), respectively, represent 
secular terms; that is, the terms which are proportional to 
time t. Because of these secular terms, the angles tP and tP 
increase indefinitely. It is very important to note that the two 
Euler angles tP and tP consist of two separate parts; a periodic 
part and a secular term. 
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B. A torque-free triaxial top:&'4 

This is the motion of an asymmetrical top whose center 
of mass is fixed so that its total angular momentum is con
stant even under a uniform gravitational field. Yamada and 
Shieh6 introduced the following four physical constants for 
the motion of a torque-free asymmetrical top: 

SO=~I, SI= ~ , S2= ~I , S3= ~I, (2.11) 
I I I I 

where II is the magnitude of the total angular momentum, hI 
is twice the total energy (kinetic energy), and AI' BI> and C1 

are the moments of inertia. In terms of these physical con
stants, we can define the following transcendental con
stants6

: 

(2.12) 

The Euler angles which specify the orientation of the free top 
with respect to an inertial frame of reference are denoted by 
01, tPI> and tPl' Then the angular velocity components are 
given by7 

01 = (S2 - s3)sin 0 1 sin tPl cos tPI' 
• • 2 2 

tPl = S2 sm tPl + S3 cos tPl' 
. • 2 
tPl = (cos Ol/sm OIl(SI - so)· 

(2.13) 

(2.14) 

(2.15) 

These are coupled nonlinear differential equations for the 
Euler angles 0 1, tPI, and tPl' 

As in the case of the motion of a heavy symmetrical top, 
we consider the energy equation which is given by 

EI=!(Alw~ +Blw~ +CIW~), 

where8 

WI = ¢I sin 0 sintP + 0 cos tP, 

W2 = ¢I sin 0 cos tP - 0 sin tP, 

W3 = ¢I cos 0 + "'I' 

(2.16) 

(2.17) 

By properly combining these equations with Eqs. (2.13)
(2.15), we can obtain the Euler angles exactly3.4 

cos 0l(t) = ((so - S2)1(SI - S2W/2 dn(nlt), 

tPl(t) = tPIP(t) + tPls(t), 

tan tPI(t) = (SI -S3)1I2 cn(nlt) , 
SI - S2 sn(nlt) 

(2.18) 

(2.19) 

(2.20) 

where dn, cn, and sn represent the elliptic functions. The 
constant n I is one of the transcendental constants introduced 
in Eq. (2.12). 

As shown in Eq. (2.19), in the case of the motion of a 
torque-free triaxial top, only the precession angle tPl can be 
expressed as a sum of a periodic part tPlp and a secular term 
tPls, which is simply proportional to time. 

III. JACOBI'S DECOMPOSITION THEOREM1 

First we describe the motion of a heavy symmetrical top 
in matrix representation. 

Let X represent a column matrix whose elements are x, 
y, and z, which are the Cartesian coordinates of a frame of 
reference fixed in space where a uniform gravitational field g 
exists in the direction of the negativez axis. Further, let Xl be 
a column matrix whose elements arex2,Y2, andz2, which are 
the principal axes of a heavy symmetrical top. Axis Z2 is 
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along the axis of symmetry of the heavy top. Now when the 
rotational motion of the frame X2 is observed from the frame 
of reference X, the rotational motion can be expressed as9 

X = N (8,t/J,rp)X2, (3.1) 

where N (8,t/J, rp) represents a 3 X 3 matrix whose nine ele
ments are the direction cosines expressed in terms of the 
Euler angles 8, t/J, and rp, which are functions of time as 
shown in Eqs. (2.8), (2.9), and (2.10), respectively. Then, 
when Eq. (3.1) is inverted, we obtain the matrix representa
tion of a heavy symmetrical top. Here we recall that preces
sion angle t/J and spin angle rp are expressed as a sum of a 
periodic part and a secular term, as shown in Eqs. (2.9) and 
(2.10). Then the orthogonal matrix N can be written as9 

(3.2) 

where P (t/Js) is a 3 X 3 matrix consisting only of the preces
sion secular term t/Js' The S(rps) is a 3X3 matrix consisting 
only of the spin secular term rps. Matrix M in Eq. (3.2) con
sists of angle 8 and pure periodic parts t/Jp and rpp. 

After expressing all the nine elements of matrix 
M(8,t/Jp,rpp) in terms of the theta functions and changing 
them into appropriate forms, Jacobi employed the funda
mental theorem of theta functions and the addition theorem 
of the elliptic functions to discover that matrix M(8,t/Jp,rpp) 
can be written as a product of two orthogonal matrices M) 
andJ2,) 

(3.3) 

Now, like the motion of a heavy symmetrical top, the 
motion of a torque-free triaxial top can also be expressed in 
matrix representation with the nine elements in terms of the 
theta functions. We observe that matrix M) in Eq. (3.3) has 
exactly the same structure as that of a torque-free triaxial top 
except that the precession angle includes only the periodic 
part4

; that is, t/J)P of Eq. (2.19). Then we can write 
M) = M)(8),t/J)p,rpIl. 

Matrix J2 in Eq. (3.3) turned out to be the transposed 
form of a matrix M2 which describes the motion of another 
torque-free triaxial top 

J2 =M2 • 

The nine elements of matrix M2 are expressed in terms of 
three Euler angles: 82,t/J2p, and rp2' Note that the precession 
angle again consists only of the periodic part 
t/J2p(t/J2 = t/J2s + t/J2P)' Thus we can write J2 = M2(82,t/J2P,rp2)' 
Consequently, Eq. (3.3) can be written 

M(8,t/Jp,rpp) = M)(8),t/J)p,rpIlM(82,t/J2P,rp2)' (3.4) 

This is the furthest Jacobi pursued since this turned out to be 
his last work in his life and this paper appeared as his posthu
mous paper. ) 

After noting Jacobi's work, Darboux 10 approached this 
problem by strictly considering the dynamics of the rigid 
body motion and predicted the existence of the decomposi
tion theorem. Darboux showed that the decomposition 
theorem exists even when all the secular terms t/Js, rps' t/J)s' 
and rp2s are included. 10 Then, since 

t/J=t/Jp+t/Js, rp=rpp+rps, 

t/J) = ifJ)P + ifJ)s' ifJ2 = ifJ2P + ifJ2s' 
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that is, the secular terms are simply added to the periodic 
terms, when we modify Eq. (3.4) by adding the secular terms, 
the effect appears in the form9 

P (ifJs)M (8,t/Jp,rpp)S (rps) 

= PMIsJM)(8),ifJ)p,rpIlM2(82,t/J2P,rpip2(ifJzS). (3.5) 

The left-hand side of Eq. (3.5) comes from Eq. (3.2). The 
p)(ifJ)s) is a 3 X 3 matrix consisting only of the secular preces
sion angle of the first free top, and P2(t/J2s) is a 3 X 3 matrix 
including only the secular precession term of the second free 
top. 

By writing 

N)(8),t/J),rp)) = p)(t/JIs)M)(8),ifJ)p,rpIl, (3.6) 

(3.7) 

and using Eq. (3.2), Eq. (3.5) can now be written as 

N (8,ifJ,rp) = N)(81,ifJ),rpIlN2(82,t/J2,rp2)' (3.8) 

which includes all the angles. Each matrix in Eq. (3.8) can be 
interpreted as N (8,t/J, rp) = the matrix describing the motion 
of a heavy symmetrical top relative to a frame of reference 
fixed in space; N)(8),t/J),rp)) = the matrix describing the mo
tion of a torque-free triaxial top relative to the same frame of 
reference; and N2(82,t/J2,rp2) = the matrix describing the mo
tion of another torque-free triaxial top observed from the 
frame of the heavy symmetrical top. Then clearly Eq. (3.8) 
tells us that the motion of a heavy symmetrical top can be 
decomposed into the motions of two torque-free triaxial 
tops. 

IV. REGULAR PRECESSION OF A HEAVY 
SYMMETRICAL TOP 

Most of the standard mechanics textbooks treat the re
gular precession.2 In general, the equation of the motion of a 
rotating rigid body is given by2 

- - - +O)XL (dL) (dL) 
dt space - dt body , 

(4.1) 

where L is the total angular momentum and 0) stands for the 
angular velocity vector. 

In terms of Euler angles, 0) can be written 

0) = 0 + cj, + tj,. (4.2) 

When there is no nutation, we have iJ = 0 or 8 = const, and 
this condition results in regular precession. Let us see this in 
more detail. 

When iJ = 0, Eq. (4.2) becomes 

0) = cj, + tj,. (4.3) 
Now, in the case of a heavy symmetrical top, the angular 
momentum component along the body Z2 axis is always con
stane 

L z, = const. (4.4) 

With these two conditions expressed by Eqs. (4.3) and (4.4), it 
is easy to show 

( d L) = LXtj,. (4.5) 
dt body 

Substituting Eq. (4.5) into Eq. (4.1), we obtain 

(dL) = cj,XL, (4.6) 
dt space 
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which represents an equation of precession. This equation 
clearly shows that the magnitude of the angular momentum 
L of a heavy symmetric top under a regular precession is 
constant, and the vector L merely precesses around the vec
tor cj,. 

v. THE DECOMPOSITION THEOREM IN THE LIMIT 
WHEN THE MODULI k's APPROACH ZERO 

In general, a rigid body motion is described by transcen
dental functions: the elliptic functions and the theta func
tions. l

,4 Each of these functions is characterized by a con
stant called modulus.6 This modulus also characterizes the 
nonlinearity of a rigid body motion. The moduli k, k l, and k2 
of a heavy symmetrical top, the first torque-free triaxial top, 
and the second torque-free triaxial top are, respectively, de
fined as6 

k 2 = (X2 -X3)/(XI -x3), (5.1) 

k i = (S3 - S2)(SI - sol/Iso - S2)(SI - S3)' (5.2) 

k~ =(si -S2)(S; -sb)/(sb -S2)(S; -s;). (5.3) 

The modulus of a rigid body motion also determines the 
period of its motion. In the decomposition theorem, since the 
periods of all three top motions are the same, we have6 

k = kl = k 2• (5.4) 

Now it is clear that when the moduli become zero, all the 
periodic motions disappear and it can be shown that all three 
tops undergo pure rotations with constant angular veloc
ities. 

A. A heavy symmetrical top 

FromEq. (5.1), whenk = 0, wehavex2 = X 3, and when 
we put this condition in Eq. (2.8), we obtain 

x = cos (J = X3 = const, 

which means (J = const and the nutation disappears. 
Further, when we put the condition x = const in Eqs. (2.5) 
and (2.6), we obtain ~ = const and fp = const. Thus, the mo
tion becomes a pure rotation without periodic motion. 
Clearly, Eqs. (2.4)-(2.6) are linear differential equations for 
x = const. Thus, in Eqs. (2.9) and (2.10), when k = 0, we can 
conclude 

cPp = tPp = O. 

That is, cP = cPs and tP = tPs· 

B. A torque-free triaxial top 

From the paper of Yamada and Shieh,6 we have 

SI - So = ± n l [i dn(ipIl/sn(ZPI)cn(ZPI)], (5.5) 

S2 - So = ± nl [sn(ipl)dn(ipIl/i cn(ipl)], (5.6) 

S3 - So = ± n l [k;2 sn(ipl)/i cn(ipIldn(ipl)]' (5.7) 

where k ;2 = 1 - ki . 
Now we impose the condition kl = 0 in the above ex

pressions. In the Appendix, we show that as kl approaches 
zero, we have 
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dn(ipIl = 1, sn(ipIl = sin(zpl)' 

cn(ipl) = COS(ZPI), k ;2 = 1. 
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Then Eqs. (5.5), (5.6), and (5.7), respectively, become 

SI - So = ± nl [i/sin(zpdcos(zpd], (5.8) 

S2 - So = ± nl tan(ipIl, (5.9) 

S3 - So = ± n l tan(ipIl. (5.10) 

From Eqs. (5.9) and (5.10), we can conclude 

S2 =S3' (5.11) 

Or by Eq. (2.11), we have 

AI=BI· (5.12) 

That is, the two moments of inertia of the torque-free triaxial 
top become equal (a symmetrical free top). Putting the condi
tion ofEq. (5.11) in Eq. (2.13) immediately gives 

iJl = 0, or (JI = const. (5.13) 

That is, the nutation disappears. With this condition, Eq. 
(2.15) becomes 

fpl = const. 

Then Eq. (2.14) gives 

~I = const. 

(5.14) 

(5.15) 

Again the motion becomes pure rotations and the periodic 
motions disappear. We note that Eqs. (5.13), (5.14), and 
(5.15) are linear differential equations. Here we recall Eq. 
(2.19) and, since we have just seen that all the periodic mo
tions vanish, we conclude that 

cPlp = O. 

Now we can put a conclusion for the limiting case when 
the moduli approach zero: In the three top motions associat
ed with the decomposition theorem, in those Euler angles 
which are expressed as a sum of a periodic term and a secular 
term, the periodic term vanishes in each top motion. That is, 

cPp = tPp = cPIP = cP2P = 0, 

and the matrix representation of Jacobi's decomposition 
theorem given by Eq. (3.4) becomes 

M ((J,O,O) = M I((J1,0,tPIlM2((J2,0,tP2)' (5.16) 

In Jacobi's paper, I all the matrix elements of Eq. (3.4) 
are expressed in terms of the theta functions and each theta 
function is an infinite series as shown in the Appendix. How
ever, when the moduli become zero, each theta function be
comes a monomial (a single term). Under the condition 
k = kl = k2 = 0, it can be shown that matrix equation (5.16) 
is still satisfied. Consequently, Eq. (3.8) is still valid. But 
since all the periodic terms vanish, only the secular terms 
survive. Thus, in the limit when the moduli are zero, Eq. (3.8) 
can be written 

N ((J,cPs,tPs) = N I((JI,cPls,tPl)N2((J2,cP2s,tP2)' (5.17) 

Further, it can be shown that in Eq. (5.17), matrixN((J,cPs,tPs) 
describes the regular precession of a heavy symmetrical top, 
NI((JI,cPls,tPl) describes the motion ofa torque-freesymmetri
cal top, and N2((J2,cP2s,tP2) describes the motion of another 
torque-free symmetrical top. Thus we can conclude that the 
regular precession of a heavy symmetrical top can be decom
posed into the motions of two torque-free symmetrical tops 
and no asymmetric top (triaxial top) will appear. 
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VI. CONNECTION FORMULAS AMONG THE 
DYNAMICAL CONSTANTS OF THE THREE TOP 
MOTIONS WHEN THE HEAVY SYMMETRICAL TOP 
UNDERGOES A REGULAR PRECESSION 

Yamada and Shieh obtained the connection formula for 
a general case.6 In Sec. V, we showed that in the motion of a 
heavy symmetrical top, when the modulus k becomes zero, 
Eq. (5.1) gives Xz = X3 and this condition results in a regular 
precession. When the condition Xz = X3 is imposed on the 
connection formulas obtained by Yamada and Shieh,6 we 
immediately obtain 

lllAI = lllBI = (a - bXz)/2(a - xz), (6.1) 

lllCI = (a - bxl )/2(a - XI)' 

hlill = b12. 

(6.2) 

(6.3) 

Clearly A I = B I; that is, the first torque-free top is symmetri
cal. Also, we obtain 

IzlAz = IzlBz = (b - aXz)/2(a' - Xz), 

IzlCz = (b - axi)/2(a' - XI)' 

hzl12 = a/2. 

(6.4) 

(6.5) 

(6.6) 

Again we haveA2 = B2; that is, the second torque-free top is 
also symmetrical. 

The result of a free triaxial top becoming a symmetrical 
top was already obtained in Sec. Vas shown in Eq. (5.12). 

VII. FEASIBILITY OF QUANTUM TREATISE OF 
JACOBI'S DECOMPOSITION THEOREM 

The total energy E of a heavy symmetrical top is given 
by 

L2 1(1 1) z E=-+- --- L3 +Mglcos(), 
211 2 II 13 

(7.1) 

where II( = 12) and 13 are the principal moments of inertia 
and L 2 is the squared value of the total angular momentum. 
The L3 is the angular momentum component along the axis 
of symmetry of the top and is constant in time. Therefore, the 
second term ofEq. (7.1) is always constant. Then, when there 
exists a nutation, since the last term Mg/ cos () is not con
stant, the first term, or L 2, is not constant either because the 
total energy E is always constant. That is, the magnitude of 
the total angular momentum varies in time when there is a 
nutation. 

However, when there is no nutation, or when the top 
undergoes a regular precession, since Mg/ cos () is constant, 
we see that each term in Eq. (7.1) becomes constant. Under 
this condition, the first two terms of Eq. (7.1) can be identi
fied as the total energy of a torque-free symmetrical top5 in 
which the total angular momentum is constant. The fact that 
the magnitude of the total angular momentum of a heavy 
symmetrical top is constant is consistent with Eq. (4.6). 

Thus, when a heavy symmetrical top undergoes a regu
lar precession, its total energy can be written as a sum of the 
energy of a torque-free symmetrical top and the interaction 
energy Mg/ cos (). Then, since quantum-mechanical analysis 
of a torque-free symmetrical top is completely known,5 we 
can evaluate the energies of the regular precession of a heavy 
symmetrical top by diagonalizing the Hamiltonian in the 
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representation of the states of a torque-free symmetrical 
top.5 

At this stage, however, the only way to check the valid
ity of the connection formulas given by Eqs. (6.1)-(6.6) in the 
treatise of quantum mechanics is to check them numerically, 
since we can evaluate the dynamical constants of the regular 
precession of a heavy symmetrical top and those of the two 
torque-free symmetrical tops in terms of angular momentum 
quantum numbers. If the quantum treatise is established, 
one immediate application would be the molecular Stark ef
fect, since its dynamical structure is the same as that of the 
regular precession of a heavy symmetrical top, i.e., the mo
tion of a symmetric molecule possessing a permanent elec
tric dipole moment along its symmetry axis placed in a uni
form electric field. 

APPENDIX11 ; PROPERTIES OF THE ELLIPTIC 
FUNCTIONS AND THE THETA FUNCTIONS 

As we discussed in Sec. III, Jacobi discovered the de
composition theorem when he expressed each element (di
rection cosine) of the matrix which describes the motion of a 
heavy symmetrical top in terms of the theta functions. This is 
possible because the top motion is described by the elliptic 
functions, which can further be expressed by the theta func
tions. The elliptic functions sn(u) and cn(u) are expressed in 
terms of the four theta functions II 

sn(u) = [81(O)IHI(O)].[H(u)/8(u)], 

cn(u) = [8(O)IHI(O)]·[HI(u)/8(u)], 

(AI) 

(A2) 

where H, 8, HI' and 8 1 represent the theta functions and are 
expressed as infinite series similar to Fourier series II 

H (u) = 2q1/4 sin(17"12K)u - 2q9/4 sin(317"12K)U 

+ 2q25/4 sin(517"12K)u - ..• , (A3) 

8(u) = 1 - 2q cos(1TIK)u + 2q4 COS(21TIK)u 

- 2q9 COS(31TIK)u + ... , (A4) 

HI(u) = 2q1/4 cos(1TI2K)u + 2q9/4 COS(31T12K)u 

+ 2q25/4 cos(51T12K)u + ... , (AS) 

8 1(u) = 1 + 2q cos(1TIK)u + 2q4 COS(21TIK)u 

+ 2q9 COS(31TIK)u + ... , (A6) 

where 

q = exp( -1T{K'IK)), 

K= Of' 1"/2 dA. 

o (1 - k 2 sin2 r/J )1/2 ' 

K' _ ("/2 dr/J 
-)0 (l-k,2 sin2r/J)1/2' 

k,2 = 1- k 2. 

(A7) 

(AS) 

(A9) 

(AlO) 

The factor k, as we already introduced in Sec. V, is the modu
lus. 

Since the range of k is O<h;; 1, using Eqs. (A 7)-(A9) we 
can easily prove that the range of q is also O<q< 1. Then, 
from Eqs. (A3)-(A6), we observe that for q < 1, all the four 
theta functions rapidly converge. The relation between the 
modulus k and the value of q is given byl2 

q=Q+2Q5+15Q9+ ••• , (All) 
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where 

Q=!. {[l- (1- k2)1/4]1[1 + (1- k2)1/4]) < 1. 

(A12) 

For example, we can obtain q = 0.367 8794 for 
k = 0.999 5865, and q = 0.000 6276 for k = 0.099 958 65. 
Thus we see that Eq. (All) shows that the value of q is ex
tremely sensitive to the change of k, and q approaches zero 
much more rapidly than k does. Then it would be safe, for 
any value of k which is less than unity, to keep only the first 
term in Eqs. (A3) and (A5) and the first two terms in Eqs. 
(A4) and (A6). The elliptic functions can then be written 

sn(u) = 1(1 +2q)sin(1TI2K)u/[l-2qcos(1TIK)u], 
(A13) 

cn(u) = (1 - 2q)cos(1TI2K)u/[ 1 + 2q cos (1T/2)u]. 
(A14) 

Now in the limit k = 0, we have q = 0 from Eq. (All) 
and K = 1T/2 from Eq. (A8). Then Eqs. (A13) and (A14) be
come 

sn(u) = sin(u). 

cn(u) = cos(u). 

That is, the elliptic functions become trigonometric func-
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tions. Thus we can conclude that as the modulus k decreases, 
since the value of q decreases drastically, the elliptic func
tions rapidly approach the trigonometric functions. In the 
case of the motion of a heavy symmetrical top, as the value of 
k decreases, the motion rapidly approaches a regular preces
sion. 
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In this paper, the flow ofa particular class ofa non-Newtonian fluid between two parallel plates 
has been considered, employing a well-known transform technique, when one plate is stationary 
and the other plate suddenly starts oscillating. Both finite Fourier sine transform and Laplace 
trl\Ilsform techniques have been employed to solve the basic differential equations. The flow 
phenomenon has been characterized by the parameters Sand 0). Expressions for the velocity have 
been calculated. Effects of the viscoelastic parameter and the frequency parameter on the fluid 
flow have been studied through several tables. 

I. INTRODUCTION 

The theoretical study of elasticoviscous liquids has been 
stimulated by the fact that many materials of industrial im
portance can be classified under this heading. It is required 
to formulate rheological equations of state to characterize 
the behavior of non-Newtonian liquids, and then to use these 
formulated equations, together with the familiar equations 
of motion and continuity, to predict the behavior of these 
materials. The non-Newtonian fluid considered is ofRivlin
Ericksen type. 1 Rayleigh2 solved the viscous fluid problem 
of a semi-infinite space of fluid in contact with a plane wall 
initially at rest, the wall being suddenly accelerated to a con
stant velocity parallel to itself. Tanne~ and Soundalgekar4 
solved the same problem replacing the viscous liquid by an 
elasticoviscous liquid. Viscous flow formation in Couetten 
motion has been discussed in the book by Schlichting.5 Tei
pel6 studied the flow near a wall suddenly set in motion for a 
particular class of non-Newtonian viscoelastic fluids (Riv
lin-Ericksen type). The aim of this paper is to study the prob
lem of flow of a viscoelastic liquid due to a plate which sud
denly starts oscillating in the presence of another parallel 
stationary plate. 

From Teipel6 the flow field near a wall suddenly set in 
motion prescribes that the velocity component u along the 
wall is only a function of time and ofthe coordinate perpen
dicular to the wall. As a result one gets 

au ~u a3u 
Tt=v ay2 +{3atay2' (1) 

where v is the kinematic coefficient of viscosity and f3 the 
kinematic coefficient of viscoelasticity. 

The plate y = 0 suddenly starts oscillating from rest in 
its own plane while the plate y = h is at rest. Since the plates 
are infinitely long, all physical quantities are independent of 
x. So the velocity field, consistent with the continuity equa
tion is 

u = u(y, t ), v = o. (2) 

The nondimensional form of (1) is 

aw = ~w + S a
3
w , (3) 

ar a",2 ara",2 
where", = ylh, r = vt Ih 2, S = f3 Ih 2, and w = uiU. This 
equation (3) is to be solved with the initial and boundary 
conditions 

r';;;;O, w=O, for 0.;;;;",.;;;; 1; 

W 
= {COS 0) r, for", = 0 , r;;;'O, 

0, for", = 1; 

and further it is assumed that 

aw=O h 0 ar ,wenr=. 

II. SOLUTION AND RESULTS 

(4) 

(5) 

(6) 

To solve Eq. (3) in exact form we first apply the finite 
Fourier sine transform. Following Sneddon7 we define 

w* (m, r) = fW("" r) sin (m1T'TJ)d"" 

so that 
00 

w("" r) = 2 I w* sin (m1T'TJ). (7) 
m=l 

Multiplying Eq. (3) throughout by sin m1T'TJ and inte
grating with respect to ", within the limits 0 and 1, we get, 
using the conditions (5), 

aw* 
(1 + m2"r S~ + m2"rw* = m1T[cos O)r - 8m sin O)r]. 

ar 

The boundary conditions (4)-(6) yield 

*( 0) - aw* (m,O) - 0 w m, - - . 
ar 

(8) 

(9) 

Let the Laplace transform of w* (m, r) be w* (m, p) so that 
w*(m,p) = fO'e-PTw*(m, r)dr. Taking a Laplace transform 
of both sides ofEq. (8) and using (9) we get 

w* (m,p) = a1(P - S0)2)1(P2 + 0)2) (P + a2)' (10) 

where 
a 1 = m1TI(l +"r m 2 S) (11) 

and 
a 2 = "rm2

/( 1 + "r m2 s). 

Taking the inverse Laplace transform of (10) we get 
w*(m; r) = a1[A cos 0) r + B sin O)r + C e-U,T], (12) 

where 
A = (a2 + Su?)I(a~ + 0)2), 

B = 0)(1 - a~s)l(a~ + 0)2), 
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TABLE I. Effect of elastic element and frequency parameter on velocity and skin friction for l' = 0.1. 

Velocity profile Skin friction 

1'=0.1 1'=0.1 

liJ=4O liJ=60 liJ=80 liJ=4O liJ=60 liJ= 80 

0.00 0.2 - 0.653 644 0.960 170 - 0.145500 - 0.559 399 - 2.173 002 - 1.067525 
0.10 - 0.588 328 0.864104 - 0.130999 -0.559302 - 2.173103 - 1.067428 
0.30 - 0.457 697 0.671973 - 0.101996 -0.558527 - 2.172 330 - 1.066652 
0.60 -0.261750 0.383776 - 0.058 493 -0.555910 - 2.169 713 -1.064036 
0.90 -0.065803 0.095579 - 0.014 988 -0.551554 - 2.165 357 - 1.059680 
1.00 -0.000000 0.000 000 -0.000000 -0.549716 - 2.163 519 - 1.057842 

0.00 0.8 - 0.653 644 0.960 170 - 0.145300 -1.111332 - 2.725144 - 1.619474 
0.10 -0.588350 0.864082 - 0.131021 - 1.111 191 - 2.725 003 - 1.619333 
0.30 -0.457963 0.671906 - 0.102030 - 1.110 062 - 2.723875 - 1.618204 
0.60 - 0.261883 0.383643 - 0.098 626 - 1.106256 - 2.720068 - 1.614398 
0.90 - 0.066002 0.095379 - 0.Dl5 186 - 1.099917 - 2.713 730 - 1.608059 
1.00 0.000000 0.000000 0.000 000 - 1.097243 - 2.711 056 - 1.605 385 

0.00 1.4 - 0.653644 0.960 170 - 0.145500 -1.208470 - 2.822 283 - 1.716613 
0.10 - 0.588 354 0.864078 - 0.131025 - 1.208321 - 2.822134 -1.716464 
0.20 - 0.588 354 0.864078 - 0.131025 - 1.208321 - 2.822134 - 1.716464 
0.30 - 0.457 775 0.671 895 -0.102075 - 1.207 137 - 2.820944 - 1.715274 
0.60 - 0.261906 0.383619 - 0.058 649 - 0.203114 - 2.816 928 - 1.711 257 
0.90 - 0.066037 0.095344 -0.015223 - 1.196427 - 2.810 240 - 1.704 570 
1.00 -0.000000 0.000000 -0.000000 - 1.193606 - 2.807 419 - 1.701774 

TABLE II. Effect of elastic element and frequency parameter on velocity and skin friction for l' = 0.3. 

Velocity profile Skin friction 

S 1'=0.3 1'=0.3 

'1/ liJ=4O liJ=60 liJ= 80 liJ=4O ti1'=60 liJ=80 

0.00 0.2 0.843854 0.660 317 0.424179 - 1.290 131 - 1.106554 -0.870456 
0.10 0.759451 0.594267 0.381 743 - 1.290095 - 1.106558 -0.870420 
0.20 0.675047 0.528217 0.339307 - 1.289988 - 1.106451 -0.870313 
0.30 0.590644 0.462168 0.296871 - 1.289810 - 1.106273 -0.870135 
0.60 0.337434 0.264019 0.169564 - 1.288847 - 1.105 310 - 0.869172 
0.90 0.084224 0.065870 0.042257 - 1.287244 - 1.103708 - 0.867 570 
1.00 0.000000 0.000000 0.000000 - 1.286568 - 1.103031 - 0.866 894 

0.00 0.8 0.834854 0.660 317 0.424179 - 2.218 422 - 2.034 885 - 1.798747 
0.10 0.759413 0.594230 0.381706 - 2.218 312 - 2.034 775 - 1.798637 
0.20 0.674973 0.528 143 0.339233 - 2.217 982 - 2.034445 - 1.798307 
0.30 0.590 532 0.462056 0.296759 - 2.217 433 - 2.033 896 - 1.797758 
0.60 0.387210 0.263795 0.169340 - 2.214468 - 2.030931 - 1.794794 
0.90 0.083889 0.065535 0.041921 - 2.209 532 - 2.025 995 - 1.789857 
1.00 0.000000 0.000 000 0.000 000 - 2.207 449 - 2.023 912 - 1.787775 

0.00 1.4 0.843854 0.660 317 0.424179 - 2.458 080 - 2.274 543 - 2.038 405 
0.10 0.759404 0.554220 0.381696 - 2.457 931 -2.274414 - 2.038 276 
0.20 0.674953 0.528 124 0.339213 - 2.457 564 - 2.274027 - 2.037889 
0.30 0.590503 0.462027 0.296731 - 2.456 919 - 2.273 382 - 2.037 244 
0.60 0.337152 0.263737 0.169282 - 2.453 436 - 2.269.900 - 2.033 763 
0.90 0.083802 0.065448 0.041835 - 2.447 641 - 2.264103 - 2.027 966 
1.00 0.000000 0.000000 0.000000 - 2.445195 - 2.261658 - 2.025 520 

and where 

C= -A. Al = [a2(a2 + Sm2) - (a~ + m2)] /rm2(a~ + m2). 

00 

W*(1], r) = (1 -1])cos m r + 2 L a1[A I cos m r 

The shearing stress at the plate is given by 

Txy= aw +S azw . (14) 
a1] ara1] 

Using definition (7) and simplifying we get 

m=l 

+ B sin m r + C e -a,T] sin m1T1], (13) 
Taking the Laplace transform ofEq. (14) and assuming that 
Txy =Owhen r= 0, we get 
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TABLE III. Effect of elastic element and frequency parameter on velocity and skin friction for T = 0.5. 

S Velocity profile Skin friction 

T=0.5 T=0.5 

0)=40 0)=60 0)= 80 0)=40 0)=60 0)= 80 

0.00 0.2 0.408082 0.154251 -0.686938 -0.572 252 -0.318442 0.502759 
0.10 0.367267 0.138820 -0.600251 -0.572 243 -0.318429 0.502773 
0.20 0.326452 0.123388 -0.533504 -0.572 239 -0.318390 0.502812 
0.30 0.285638 0.107556 -0.466876 -0.572 200 -0.318824 0.502878 
0.60 0.163 193 0.061661 - 0.266 815 -0.572 134 -0.317970 0.503232 
0.90 0.040 749 0.015386 -0.666753 - 0.571780 - 0.317 380 0.303821 
1.00 0.000000 0.000000 0.000000 -0.571196 -0.317131 0.504070 

0.00 0.8 0.408082 0.154251 -0.666938 - 1.478599 -1.224770 -0.403580 
1.10 0.367231 0.138783 -0.600287 - 1.478513 - 1.224684 -0.403494 
0.20 0.326380 0.123315 -0.553637 - 1.478257 -1.224497 -0.403237 
0.30 0.285528 0.107847 -0.466986 - 1.477829 -1.224000 - 0.402 810 
0.60 0.162975 0.061442 -0.267033 - 1.475520 - 1.221691 - 0.400501 
0.90 0.040421 0.Ql5038 -0.067081 - 1.471 676 - 1.217846 - 0.396 656 
1.00 0.000000 0.000000 -0.000000 - );470064 - 1.216225 -0.395035 

0.00 1.4 0.408082 0.154251 -0.666938 -1.807420 - 1.553590 -0.732401 
0.10 0.367218 0.138770 -0.600301 -1.807308 - 1.553478 -0.732289 
0.20 0.326353 0.123289 -0.553663 - 1.806 973 - 1.883 143 -0.731953 
0.30 0.285488 0.107807 -0.467025 -1.806414 - 1.852584 -0.731394 
0.60 0.102895 0.061363 -0.367113 - 1.803396 - 1.549566 -0.728378 
0.90 0.040303 0.014920 -0.067129 - 1.798370 - 1.544 540 -0.723351 
1.00 0.000000 0.000000 0.000000 - 1.796250 - 1.542420 -0.721231 

- diiJ 
Txy=(1 +Sp)-. 

d1/ 
(15) 

Taking the Laplace transform ofEq. (13) and then dif-

velocity occur shifts towards the stationary plate normally. 
The velocity of the fluid increases as time increases to a limit 
for ll) = 40, 80, and beyond this limit for time an opposite 
effect is observed. For frequency ll) = 60 the velocity of the 
fluid decreases as time increases. 

ferentiating with respect to 1/, we get 

diiJ _p 00 

-= 2 2 +2 I 1rmal 
d1/ p + ll) m= I 

[ 
AIP + Bll) + _C_] cos m1r'Tf. 

p2 + ll)2 p2 + ll)2 P + a2 
(16) 

Substituting Eq. (16) into (15) and inverting we get 
00 

Txy = - COSll)7" + 2 I 1r m a l [A 2 COSll) 7" 
m=1 

where 
A2 = A I + B S, B2 = - A Ill) S + B, C2 = C. 

The skin friction S I and S2 at the plates can be obtained by 
putting 1/ = 0 and 1/ = 1 in Eq. (17), respectively. 

III. DISCUSSION 

An examination of Tables I-III shows that for 7" = 0.1 
the velocity at any point increases as the frequency param
eter increases to a limit, but beyond this limit for frequency 
an opposite effect is observed. It is also observed that at 
1/ = 0, the velocity is not affected by the elastic parameter in 
each and every case. The same velocity is observed both for 
Newtonian and non-Newtonian fluid. The effect of the vis
coelastic parameter is to decrease the velocity profile. For 
7" = 0.3 and 0.5 the velocity at any point decreases as the 
frequency parameter increases. 

The effect of elasticity is to decrease the velocity of the 
fluid particle. The value of 1/ for which minimum values of 
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The skin friction of the fluid is decreased due to the 
elasticity of the fluid. The skin friction of the fluid is de
creased at any point up to a limit but beyond this limit an 
opposite effect is observed for ll) = 40. For higher values of 
frequency (60,80) the shearing stress increases as frequency 
increases and as time increases, too. Elasticity of the liquid 
decreases the shearing stress at the wall. For higher values of 
the frequency, the shearing stress always increases. For 
smaller values of frequency, the shearing stress first de
creases for the viscoelastic parameter and then increases. 
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We point out a class of nonlinear wave equations which admit infinitely many conserved 
quantities. These equations are characterized by a pair of exact one-forms. The implication that 
they are closed gives rise to equations, the characteristics and Riemann invariants of which are 
readily obtained. The construction of the conservation laws requires the solution of a linear 
second-order equation which can be reduced to canonical form using the Riemann invariants. 
The hodograph transformation results in a similar linear equation. We discuss also the symplectic 
structure and Backlund transformations associated with these equations. 

I. INTRODUCTION 

Among the important successes of the inverse scatter
ing method is the result that certain nonlinear wave equa
tions admit infinitely many conserved quantities. 1

,2 Indeed, 
the construction of these conserved quantities is immediate 
once a nonlinear evolution equation has been cast into the 
framework of the inverse scattering method.3 However, 
there exist some nonlinear partial differential equations 
which do not fit into this general framework but nevertheless 
give rise to an infinite sequence of conservation laws. The 
equations governing long surface waves on shallow water are 
case in point. It is well known that they admit infinitely 
many conserved quantities4

•
5 but in spite ofthe simplicity of 

these equations it has not been possible so far to formulate 
them as an inverse scattering problem. Thus we are led to the 
possibility that these equations may be a realization of a new 
general mathematical structure whereby a class of nonlinear 
partial differential equations can be shown to admit infinite
ly many conservation laws. In this paper we shall find that 
there is indeed such a structure and present an algorithm for 
constructing the conservation laws. The class of nonlinear 
wave equations which can be handled by this method turns 
out to be surprisingly large. It includes the nonlinear wave 
equations of Euler6 and Poisson7 describing the propagation 
of finite-amplitude waves in gases and fluids, large-ampli
tude string waves,8 and Nambu's relativistic string and its 
massive version.9 Our approach to these equations will be 
based on our earlier treatment of shallow water waves. 10 

II. GENERAL FORMALISM 
We shall consider a class of nonlinear wave equations 

which can be written in the form of a continuity equation 

/, + gx =0, 

where 

(2.1) 

(2.2) 

are arbitrary differentiable functions of their arguments. 
These equations will be linear and homogeneous in the sec
ond derivatives 

a( tPt' tPx) tP" + 2h (tPt, tPx) tPtx + b (tP" tPx) tPxx = 0, (2.3) 

with the nonlinearities entering through the coefficients 
a,b,h, which are obtained from f, g above. The variational 
principle {)J = 0 , 

1= f L (tPt' tPx)dx dt, (2.4) 

where the Lagrangian depends solely on the first derivatives 
of tP, provides an important, but by no means the only source 
of physically interesting equations of this type. Equations 
derivable from a variational principle must further satisfy 

f;x = g;, ' (2.5) 

which is not necessary for our purposes. Among the illustra
tive examples we shall discuss in this paper the Euler equa
tion (3.1) satisfies Eq. (2.5), whereas the Poisson equation 
(4.1) does not. 

A. First-order system 

Our approach to Eq. (2.1) is based on the introduction of 
a new variable r/I so that we may express this second-order 
partial differential equation as the integrability condition of 
a pair of coupled first-order equations. Thus we consider the 
system 

r/lx = f(tPt,tPx), r/lt = -g(tPt,tPx) , (2.6) 

and note that an arbitrary function of x and another one of t 
could have been included on the respective right-hand sides 
of Eqs. (2.6) consistent with the requirement that Eq. (2.1) 
should result as their integrability condition. But these func
tions can be removed by a redefinition of r/I and therefore it is 
not necessary to consider them except in the discussion of 
Backlund transformations in the sequel. 

Equation (2.1) is not the only integrability condition of 
the first-order system. Provided Eqs. (2.6) can be inverted, 
we can write 

tPx = p( r/I" r/lx), tPt = - q( r/I" r/lx) , (2.7) 

and this will result in another integrability condition 

Pt + qx =0, (2.8) 
which is a second-order nonlinear partial differential equa
tion for r/I. 
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B. Exact one-forms a,li) 

We were led to the first-order system because of our 
interest in its integrability conditions and now we shall con
sider a framework which a priori gives rise to such a system. 
For this purpose we first define 

u = tPx, v = rPx , (2.9) 

and suppose that the first-order equations (2.6) can be solved 
for the remaining variables 

tPt = U(u,v) , 
(2.10) 

rPt = V(u,v) , 
in closed form. Alternatively, in Eqs. (2.9) and (2.10) we find 
four equations for two unknowns u,v which are consistent by 
virtue of Eqs. (2.6). 

Now comes the key step in our approach: We introduce 
the one-forms 

a= udx + Udt, 
(2.11) 

(jJ = v dx + V dt , 
and note that the conditions for them to be exact, 

a = dtP, (jJ = drP , (2.12) 

are simply Eqs. (2.9) and (2.10). Henceforth d will denote the 
exterior derivative and /\ the exterior product. Since a ,(jJ are 
exact, they must also be closed 

da = 0, d(jJ = 0 , 
and this results in the equations 

Ut - Uuux - Uvvx =0, 

vt - Vuux - Vvvx =0, 

(2.13) 

(2.14) 

which are the integrability conditions of Eqs. (2.11). Having 
cast the problem into the form of Eqs. (2.14) we are now 
ready to consider the solution of Eq. (2.1). There is a formal 
symmetry of Eqs. (2.14) under the simultaneous interchange 
of u, U with v, V which will carry throughout the general 
formalism to be developed below. But this symmetry is only 
a formal one and disappears completely when we consider 
particular examples because U, V are, in general, different 
functions of u,v. 

C. Characteristics and Riemann Invariants 
Equations (2.14) are partial differential equations which 

are linear and homogeneous in the first derivatives. We shall 
apply Riemann's methodll

•
12 of characteristics to this sys

tem of equations. The characteristics of Eqs. (2.14) are given 
by 
X,2 + (UU + Vv)x't' + (UU VV - Uv Vu)t,2 = 0, (2.15) 

where prime denotes differentiation with respect to a param
eter running along the characteristics and 

VuU,2 + (VV - Uu!u'v' - UvV,2 = 0 (2.16) 

is the equation satisfied by the Riemann invariants. We can 
solve Eq. (2.15) 

dx - = C(U,V;E) , 
dt 

where 

with 

1238 

c = - !(uu + Vv) + E[ !(uu - Vv)2 + Uv Vu r /2 , 
(2.17) 
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E= ± 1, (2.18) 

and define the directional derivative 

a a DE=_+C(U,V;E)-
at ax 

(2.19) 

along the characteristics. Finally, Eqs. (2.16) are first-order 
ordinary differential equations 

..!!!:....= ~Vu-l{Uu - Vv +E[(Uu - Vv)2+4UvVu]1/2} , 
du 

(2.20) 

and we shall let 

R E(U,V) = const , 
(2.21) 

S=R+, 1]=R-

stand for its integrals. These are the Riemann invariants. 
Both ofthese invariants satisfy an equation which is equiva
lent to Eq. (2.16): 

Uv;~ + (VV - Uu);u;v - Vu;~ =0, (2.22) 

where; is either 5 or 1] depending on the choice of roots for 
this quadratic equation. Then Eqs. (2.14) are simply given by 

DER E = 0, (2.23) 

which is Reimann's canonical form. 

D. Hodograph transformation 

A qualitative picture of the solutions emerges from a 
knowledge of the characteristics and Riemann invariants. It 
is, however, possible to obtain the exact solution of Eqs. 
(2.14) with the help of the hodograph transformation 

{t,x} ++ {u,v} , 

interchanging the roles of dependent and independent varia
bles. Using the standard hodograph relations 

ut = -J-1xv, ux=J-1tv , vt=J-1xu' 

(2.24) 
Vx = - J-1tu, J = Xu tv - xvtu #0, 

we find that Eqs. (2.14) are transformed into the linear equa
tions 

Xv + Uutv - Uvtu =0, 
(2.25) 

Xu - Vutv + Vvtu = 0, 

which can be decoupled to yield second-order equations for 
either x or t. These linear equations can be used to construct 
exact solutions. But we shall not discuss them any further 
here because they are similar to the equations we shall next 
obtain for the conservation laws and can be handled with 
similar techniques. 

E. Conservation laws 

We shall consider the conditions for Eqs. (2.14) to admit 
conservation laws of the form 

F, +Gx =0, (2.26) 

where F,G are function of u,v but do not depend on x,t expli
citly. Then from Eqs. (2.14), we find that Eqs. (2.26) results in 
the linear equations 
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Gu + UuFu + VuFv = 0 , 

Gv + UvFu + VvFv = 0, (2.27) 

which are to be compared to Eqs. (2.25). Decoupling these 
equations we find 

VuFvv + (Uu - Vv)Fuv - UvFuu = 0, (2.28) 

and G satisfies an equation which is identical to this except 
for the presence of additional terms involving its first deriva
tives. The characteristics ofEqs. (2.27), (2.28), and (2.25) all 
satisfy Eq. (2.16) and therefore consist of the Riemann invar
iants (2.21) of Eqs. (2.14). With a transformation of the co
ordinates from u,v to 5,1] given by Eqs. (2.21), these equa
tions can be brought to the canonical form 

Y s" +m(s,1])Ys +n(s,1])Y" =0, (2.29) 

where Y stands for an element of the set {F,G,t,x J and the 
functions m,n are determined in each case. The reduction to 
canonical form suffices to construct the exact solution in 
particular examples. The solution ofEq. (2.29) will in general 
involve two arbitrary functions of two variables and there
fore the conserved quantities 

[i)J = J F dx (2.30) 

will be infinite in number. 

F. Symplectic structure 
Among the class of equations which can be written in 

the form of Eq. (2.1) there is a subclass which admits a sym
plectic structure. These equations will satisfy Hamilton's 
equations 

u, + [H,u] = 0, v, + [H,v] = 0, (2.31) 
where H is the Hamiltonian function and the square bracket 
stands for the Poisson bracket. The phase space will consist 
of infinitely differentiable functions of u,v and the Poisson 
bracket of two functions P,Q of these variables is defined by 

[P,Q] = f VPJVQdx, (2.32) 

where V is the gradient in function space 

v=(!,:J, 
and 

(0 1) a 
J= - 1 0 ax 

is the Hamiltonian operator. Equations (2.14) will be in the 
form ofEqs. (2.31) provided 

Hu = - V, Hv = - U, (2.33) 

which requires 

Uu - Vv = 0 , (2.34) 

and thereby the existence of the exact one-form 

U dv + V du = - dH (2.35) 

is a necessary and sufficient condition for these equations to 
admit a symplectic structure. 

G. Backlund transformations 

We had earlier mentioned that the first-order system 
(2.6) can be regarded as a Backlund transformation between 
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the second-order partial differential equations (2.1) and (2.8). 
More properly, these equations define a Bianchi transforma
tion because they do not involve any arbitrary parameters. 
We can introduce such parameters by letting 

f/!--f/! + rx - st , (2.36) 

where r,s are arbitrary constants. This modification of Eqs. 
(2.6) is not significant for only a single set of transformations. 
However, it becomes meaningful when we consider the 
Backlund diagram in Fig. 1, which involves a succession of 
such transformations. In this diagram we have labeled the 
fields and accompanying parameters which enter into these 
transformations and it is important to note that not all the 
parameters r I,r 2,s1 ,sZ can be eliminated by a redefinition of 
f/!. 

Starting from a solution of Eq. (2.1) we can obtain an
other one by combining two transformations as in Fig. 1. 
Thus we can eliminate f/! and obtain relations of the form 

- - 1 2 1 -2 tP, = tP,( tP" tPx,r - r ,s - s-) , 
(2.37) 

- - 1 2 1 -2 tPx = tPx(tP"tPx,r -r ,s -s-), 

where only the differences between the two pairs of param
eters have proved to be significant. Equations (2.37) are the 
auto-Backlund transformations of Eqs. (2.1). 

We have now presented the general formalism for deal
ing with equations of the type (2.1). In order to illustrate the 
usefulness of our approach we shall apply this formalism to 
the nonlinear wave equations of Euler and Poisson in the 
next two sections. We shall employ the same notation in 
discussing both of these equations as there is going to be no 
overlap between them. 

III. EULER EQUATION 

Euler's nonlinear wave equation for finite-amplitude 
wave propagation in an ideal gas is given by 

tPt, -e2(1 + tPx)-(I+rl tPxx =0, (3.1) 

where tP is the particle displacement in a Lagrangian descrip
tion of motion and r,e are constants standing for the ratio of 
specific heats and the ordinary sound velocity, respectively. 
Of particular interest is the case r = 1, which describes the 
propagation of sound waves in fluids and, as we shall find 
presently, sometimes requires separate treatment. 

Euler's equation is the integrability condition of the 
first-order system 

tP, + e2r-If/!x = 0 , 

f/!, - (1 + tPx)-r + 1 = 0, (3.2) 

where we have introduced a new field f/! as in Eqs. (2.6). 
Another integrability condition of Eqs. (3.2) is 

(3.3) 

which appears to be of physical interest as well. 
The exact one-forms a,w of Eqs. (2.11) are in this case 

, , 
r • s 

FIG. 1. Backlund diagram. 
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a = u dx - C2r- IV dt , 

(J) = vdx + [(1 + u)-r - l]dt, 

that is, from Eqs. (2.12) 

u = (Ix, U = - c2r- Iv = (I, , 

V = !/lx, V= (1 + u)-r - 1 = !/l" 

(3.4) 

(3.5) 

and Eqs. (3.2) follow from the elimination of u,v from these 
equations. The implication that a,{J) are closed gives rise to 

u, + c2r- Ivx = 0, 
(3.6) 

V, +r(1 + u)-I-rux =0, 

which are the integrability conditions ofEqs. (3.5) and corre
spond to Eqs. (2.14). The characteristics ofEqs. (3.6) satisfy 

x' = Ec(1 + u) -(I + r1/2t' , (3.7) 

and 

D£=!....+ EC a (3.8) 
at (1 + U)(I + y)/2 ax 

is the directional derivative (2.19) along the characteristics. 
Depending on the value of r it is necessary to distinguish two 
cases for the Riemann invariants. We find 

R £ = ECV + (2r/(1 - r))(1 + u)(I-rI/2 , 

for r=l-l and 
R ~ = ECV + lnll + ul , (3.9) 

for the exceptional case r = 1. Equations (3.6) are cast into 
Riemann's canonical form (2.23) through the use ofEq. (3.8) 
and either one of Eqs. (3.9) depending on the value of r. 
These results are due to Riemann and Earnshaw who, how
ever, did not base their discussion on the simple system (3.6) 
(cf. Rayleigh13

). 

From a knowledge of the characteristics and Riemann 
invariants we can obtain solutions, in particular Fubini's so
lution l4 of the Euler equation. However, exact solutions can 
be readily constructed using the hodograph transformation 
(2.24). The first-order equations (2.25) are now given by 

c2tu + rxv = 0 , 

rtv +(1 +U)I+rxu =0, (3.10) 

and they result in decoupled second-order linear equations. 
On the other hand, the requirement that Eqs. (3.6) ad

mit conservation laws of the form (2.26) leads to 
c2Fu -rGv =0, 

rFv - (1 + U)I + rGu = 0, 
(3.11) 

which are the same as Eqs. (3.10) with the identification 
F = t, G = - x. From these equations we obtain 

Fvv - c2r-2(1 + U)I +rFuu = 0, 
Gvv - c2r-2[(1 + U)I + rGu] u = 0, (3.12) 

and we shall transform them to canonical form using the 
Riemann invariants. 

Let us first consider the case r=l- 1 and use the Riemann 
invariants as new coordinates. Then Eqs. (3.12) are trans
formed into the form 

the familiar Euler-Darboux-Poisson equation. The Rie
mann-Green function for these equations is given byl2 

(s + 1]t ( ~(S,1]; So' 1]0) = (~ t P ±v 1 
0+ 1]0 

+2 (S- So)(1]- 1]0)), (3.14) 
(S + 1])( So + 1]0) 

where P stands for the Legendre function. With the help of 
the Riemann-Green function we can construct solutions sa
tisfying appropriate boundary conditions. 

The case r = 1 turns out to be even simpler because 
Eqs. (3.13) can then be transformed into the form of a two
dimensional Klein-Gordon equation with unit mass. The 
solution is given by 

F= J [A (,u)(1 +u)-~+B(,u)(1 +U)~+I] 

X [C (,u)etv - D (,u)e - AV]A d,u , 

G = J [ -,uA (,u)(1 + u) -1-'-1 + (,u + 1)B(,u)(1 + u)l-'] 

X [C (,u)et" + D (,u)e - Av]c2 d,u , (3.15) 

A = c[ ,u(,u + 1)] 1/2, 

and A, B, C, D are arbitrary functions of,u which must be 
chosen to suit given boundary conditions. In particular, the 
specialization of these relations to the form 

F= J AA(,u)[(1+ (lx)-~-(I+ (lx)I-'+I] 

X sinh(A(I,I c2)d,u , 

G = c2 J A ( ,u) [ ,u( 1 + (Ix) - ~ - I + (,u + 1)( 1 + (Ix) 1-'] 

X cosh(A(I,/c2)d,u (3.16) 

enables us to construct quantities which involve an arbitrary 
function A (,u) and vanish in the limit (lx.......o, (1,.......0. With 
these expressions for F,G it can be directly verified that the 
continuity equation (2.26) results in the Euler equation (3.1). 

Euler's equation admits a symplectic structure. From 
Eqs. (3.4) we find that Eq. (2.34) is satisfied, and integrating 
Eq. (2.35) yields the Hamiltonian 

H = (c2/2r)v2 - [1/(1 - r)](1 + u)l-r + u, 

for r=l- 1 and 

HI =! cV -lnll + ul + u, (3.17) 

in the remaining case r = 1. It is also possible to formulate a 
variational principle for Euler's equation as Eq. (2.5) is ful
filled in this case. We find that the Lagrangian for Eq. (3.1) is 
given by 

.2"= !(I;+[c2/r(l-r)](I+ (lx)l-r, 
(3.18) 

.2" I = ~ (I; + c2 Inl1 + (Ix I , 
for r=l-l and r = 1, respectively, while for Eq. (3.3) the La
grangian is (S + 1])FSTJ -v(Fs +FTJ)=O, 

(s + 1])GSTJ +v(Gs +GTJ)=O, 

v = ~(1 + r)/( 1 - r) , 

(3.13) .2"'= !c2tfx - [r/(I-r)](l + !/l,)I-lIr , 

(3.19) 
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where again we distinguish the cases Yi= 1 and Y = 1. There 
is a variational principle underlying Eqs. (3.6) as well. The 
Lagrangian now involves both variables 

.:£'" = ¢tr/lx + r/lt ¢x + e2y-lf/?;, - 2(1 + ¢x)-r, 

(3.20) 

and this form is the most suitable one for passing to a Hamil
tonian formalism via Dirac's theory of constraints. 10 

Backlund transformations of Euler's equation can be 
obtained after modifying the first-order system (3.2) accord
ing to Eq. (2.36). Then Eq. (3.3), which is the Backlund com
panion of Euler's equation, is changed by the addition of Sl,2 

to the terms enclosed by parentheses there. The result of 
performing two such transformations is 

~t = ¢t -r, 

~x = [(1 + ¢x)-r +s] -I/r - 1·, (3.21) 

where r = e2y-1 (rl - r), s = Sl - ~. In particular for y = 1 
the latter ofEqs. (3.21) becomes the linear fractional trans
formation 

~x = (-s + (l-s) ¢x)/(1 +s +s¢x)' 

The Euler equation (3.1) is invariant under the transforma
tions (3.21). 

IV. POISSON'S EQUATION 

We shall now discuss the nonlinear wave equation of 
Poisson 

(4.1) 

which is derived from an Eulerian description of fluid mo
tion, and ¢ denotes the velocity potential. Once again we 
shall introduce a new potential r/l whereby Poisson's equa
tion can be obtained as the integrability condition of 

¢t - r/lx + ¢; = 0 , 

(4.2) 

which is the required first-order system. It is not possible to 
obtain a simple equation for r/l as the integrability condition 
of these equations since the latter ofEqs. (4.2) is cubic in ¢x' 
With the help of the continued fraction 

T(z) = 1 - + [ 1 _ !(ZI;1 _ ... ))2 r' 
we can write this equation in the form 

3T( r/lt) r/ltt + 6r/lt r/ltx + [2rf;; - 3T3
( r/ltl] r/lxx = O. 

(4.3) 

The first-order system of equations (4.2) are the condi
tions for the one-forms 

a = u dx + (v - u2)dt , 

{j) = v dx + (1 - -i u2)u dt , (4.4) 

to be exact because they result as a consequence of the rela
tions 

u = ¢x, u = v - u2 = ¢t , 

V = r/lx. V = u -! u3 = r/lt , (4.5) 
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which follow from Eqs. (4.3) and (2.12). The first part ofEqs. 
(4.5) is the definition of the fluid velocity u. Once again. a 
and OJ are closed one-forms and we find 

(4.6) 
vt - (1 - u2 )ux = 0 , 

as the integrability conditions ofEqs. (4.5). These equations 
correspond to Eqs. (2.14) and they will form the basis of our 
discussion of the conservation laws and the solution of Pois
son's equation. 

The characteristics of Eqs. (4.6) are given by 

x' = (u + E)t', (4.7) 

so that 

D"=(u +E)~+i., ax at 
and the Riemann invariants are 

R " = l (v - ! u2 
- EU) • (4.8) 

With these expressions Eqs. (4.6) are cast into Riemann's 
canonical form (2.23). 

The hodograph transformation leads to the linear equa
tions 

Xu - (1 - u2 )tv = 0 • 
(4.9) 

and 

tuu + 2utuv - (1 - u2 )tvv + 2tv = 0, 

xuu + 2uxuv - (1 - u2 ).xvv + [2ul(1 - u2 )]xu = 0, 
(4.10) 

are the resulting decoupled second-order linear equations. 
Equations (2.27) for the conservation laws are now given by 

Gu -2uFu +(I-u2 )Fv=0, Gv+Fu=O. (4.11) 

and they yield 

Fuu + 2uFuv - (1 - u2 )Fvv = 0, 

Guu + 2uGuv - (1 - u2 )Gvv 

+ [2/(1 - u2 )1[ uGu + (1 + u2 )Gv] = 0, (4.12) 

which are no longer similar to Eqs. (4.10), unlike the situa
tion in Euler's equation. The first one of Eqs. (4.12) reduces 
to a Klein-Gordon equation when we transform it to canoni
cal form using Eqs. (4.8) as new coordinates, and its solution 
yields 

F = f [A (Il)e[ 1'/(1 - 1")Ju + B (Il) e - [1'/(1 - I")]U] 

X [C (Il)e[ 1"/(1 - I")](v - u'/2) 

+ D (Il)e - [1/(1 - I")](v - u'/2)]dll , 

(4.13) 

which through Eq. (2.30) gives the conserved quantities for 
Poisson's equation. Finally, the Backlund transformations 
for Eq. (4.1) are given by 

¢t - ~t + ¢; - ~; = r , 

( ¢x - ~x) [I - ~( ¢; + ¢x ~x + ~; l] = s, (4.14) 
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where r,s are arbitrary parameters. Poisson's equation does 
not admit a symplectic structure as Eqs. (2.34) are not satis
fied for the results ofEqs. (4.5). 

v. CONCLUSION 

We have considered a class of nonlinear partial differ
ential equations in two dimensions. By introducing a new 
potential these equations were expressible as a first-order 
system which we have then formulated as the conditions for 
a pair of one-forms a,OJ to be exact. The implication that 
these differential forms are closed gave rise to a set of homo
geneous first-order partial differential equations ideally suit
ed to an application of Riemann's method of characteristics. 
We have shown that with the help of the hodograph trans
formation these equations can be turned into linear equa
tions and thereby solved exactly. Furthermore the require
ment that these equations admit conservation laws led, once 
again, to linear second-order equations, the characteristics 
of which are the Riemann invariants. The solution of these 
linear equations has enabled us to construct infinitely many 
conserved quantities. We have obtained the necessary and 
sufficient conditions for a nonlinear wave equation which 
belongs to this class to admit a symplectic structure. Finally, 
we have discussed the interpretation of the first-order system 
as a Backlund transformation. We have illustrated this for
malism using the equations of Euler and Poisson which play 
prominent roles in the theory of nonlinear acoustics. 15,16 

Immediate generalizations of this method which will 
enable us to handle a larger variety of nonlinear wave equa
tions consist ofthe following: We shall consider a family of 
fields 

if> i, i = 1,2, ... ,n , . (5.1) 

and given functions 
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A. '(x,t), l = 1,2, ... ,m , (5.2) 

the field equations for which will be in the form of continuity 
equations (2.1), where 

Ii = P( if> ~, if> ~,A. K) , 

i = i( if>~, if>~,A. K) (5.3) 

are arbitrary differentiable functions of the indicated argu
ments. The examples of Refs. 8 and 9 are of this type and a 
discussion of these nonlinear wave equations will be present
ed later. 
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Lagrangian field theories of geometric objects are the most natural framework for investigating 
the notion of general covariance. We discuss here geometric theories of interacting fields, 
dep~nding on Lagrangians of arbitrary order, and we give general definitions of energy flow, 
partial energy flows, energy-momentum tensors, and stress tensors. We also investigate the role 
which energy-momentum tensors and stress tensors play in formulating the natural conservation 
laws associated with the second theorem of Noether. Examples of application may be found 
elsewhere. 

I. INTRODUCTION 

One of the principal bases of any reasonable physical 
field theory consists of what physicists call the principle of 
general invariance (or also general covariance or relativistic 
invariance). Many formulations of this fundamental princi
ple may be found in the literature, but all of them essentially 
amount to requiring that the differential equations govern
ing the dynamics of fields (i.e., the field equations) have the 
same form for all observers, i.e., for all frames of reference in 
space-time. Differential calculus over manifolds tells us that 
this happens if and only if field equations have tensorial 
character, a property which was known since the formula
tion of Einstein's theory of general relativity. What seems to 
be relatively less understood is that general invariance does 
not require all fields to be tensor fields over space-time, but 
merely the much less stringent requirement that fields may 
be Lie-dragged along the flow of any vector field in space
time. Again, differential calculus over manifold tells us that 
this happens only if the fields are fields of geometric objects, 
which, roughly speaking, amounts to requiring that changes 
of coordinates in space-time define uniquely the transforma
tion laws of the objects themselves. Lagrangian field theories 
depending on geometric objects and having generally invar
iant field equations will be called here geometric field theor
ies; space-time will be generically denoted by M. 

Geometric field theories are important for several rea
sons. To our understanding, the main feature of this class of 
theories consists in the fact that they are the natural frame
work for defining and investigating the physically funda
mental concept of energy. In fact, for any generally invariant 
Lagrangian if and any vector field X on M we can uniquely 
define a vector density Ei(if;X), called the energy flow of 
if along X, such that its divergence vanishes along all solu
tions to the relevant field equations (namely, the Euler-La
grange equations of if). According to this property, Stokes' 
theorem implies that the integral of E i( if ;X) is zero over 
any closed (i.e., compact without boundary) hypersurface of 
M; this justifies the physical interpretation of E i itself as the 
flux of energy associated with all fields. The vanishing of the 
divergence of E i expresses then the conservation of energy. 

As is well known, the physically most significant theor
ies are those which describe the interaction of several fields, 
or, even better, the dynamics of a single field which unifies 
more than one elementary field. According to a standard 

viewpoint, when dealing with theories of interacting fields 
one tends to select some of the fields involved and to inter
pret them as the basic fields, considering the remaining ones 
as sources for the basic fields. Widely known examples are 
provided by the relativistic theories of gravitation (see, e.g., 
Ref. 1) and by gauge theories of elementary particles inter
acting with fundamental forces (see, e.g., Ref. 2). More gen
erally, one may envisage situations in which the fields are 
split into more than two groups. 

In all these cases, it is either assumed a priori or ob
tained by some trick (such as, e.g., partial Legendre transfor
mation, spontaneous symmetry breaking, etc.), that the La
grangian governing the theory splits into a suitable number 
of partial Lagrangians if (al' Each partial Lagrangian if (al 

is then interpreted as the basic Lagrangian for one or more of 
the fields. Physically meaningful interpretations of these 
partial Lagrangians are in fact available only if some addi
tional requirement is made on the splitting, like, for example, 
the so-called minimal coupling conditions. 

When dealing with interacting fields, it is a classical 
procedure to describe the details of their interaction through 
suitable tensorial or pseudotensorial objects, called stress 
tensors or stress pseudotensors, which roughly speaking ex
press the response of some of the fields when the remaining 
ones are subjected to deformations induced by changes of 
coordinates in space-time. Again we see, just from this naive 
definition, that geometric field theories constitute the natu
ral framework for defining and discussing the notion of 
stress tensors. In this paper, we shall deal with geometric 
theories of interacting fields, with the aim of providing a 
general framework suited to investigate energy, conserva
tion laws, and stress tensors for any Lagrangian theory of 
geometric fields, no matter how many fields are involved and 
how many of their derivatives enter the Lagrangian. 

II. GENERALITIES 

In this section we shall discuss some generalities con
cerning the global structure of higher-order calculus of var
iations. We shall assume that the reader is familiar with the 
main concepts from the theory of fibered manifolds, jet pro
longations, and bundles of geometric objects. All manifolds, 
mappings, and objects considered here are assumed to be 
smooth (in the C 00 sense). Further details and deeper discus
sions of these general concepts may be found, for example, in 
Refs. 3-5. 
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A. Flbered manifolds and jet prolongations 

Let M be a di1ferentiable manifold, with dim(M) = m. 
The following standard notation will be used throughout: 
di1f(M) denotes the set oflocal di1feomorphisms of Minto M; 
T(M) denotes the tangent bundle of M; and A ~(M) [resp. 
S ~ (M)] is the vector bundle of p-contravariant and q-covar
iant skew-symmetric (resp. symmetric) tensors over M. In 
particular, the bundle A ~(M) coincides with theqth exterior 
power A q [ T *(M)] of the cotangent bundle of M. 

Let then B = (B,M,{J) be a fibered manifold over the 
manifold M. We shall adopt the following notation: aut(B ) is 
the set of all local automorphisms of the fibered manifold B; 
C 00 (B) is the set of local sections of class C 00 of B; and 
V(B) = (V(B ),B,vB ) denotes the vertical bundle of B. As is 
well known, V(B) is a vector bundle over B, whose sections 
are called vertical vector fields over B. 

The k th-order jet prolongation of a fibered manifold B 
(where k is any positive integer) will be denoted by 
J k (B ) = (J k (B ),M,{J k); we agree that the zeroth-order pro
longation of B coincides with B itself. We recall also that for 
any h:> k there is a canonical projection f3 Z from J h (B ) onto 
J k (B), such that JZ (B ) = (J h (B ),J k (B ),{J Z) is a fiber bun
dle; in particular, we know that J % + I (B ) is an affine bundle. 
Furthermore, if Z = (Z,J k (B ),' ) is a fibered manifold and h 
is any integer larger than k, the pullback If3 Z )*(Z) is a bundle 
over J h (B ); accordingly, any fibered morphism/:J h (B J-Z 
over the projection f3 Z may be canonically identified to a 
section of the pullback bundle If3 Z )*(Z) over J h (B ). 

We consider now the following family of vector bundles 
overJk(B): 

A ~(M)® AP{ V*[Jk(B)] J, 
where (q,p,k ) are three non-negative integers, which will of
ten enter our next considerations on higher-order calculus of 
variations. Given any integer h:>k, one can use the canonical 
projections f3 Z and f3 h to identify, by pullback, the bundle 
above with a vector subbundle of A ~ + q [J h (B )] which will 
be denoted by 4>~If3Z). Accordingly, any fibered morphism 
/:Jh(B)_A~(M)® AP{V*[Jk(B)]J, over the projection 
f3 Z, may be canonically identified to a section of the bundle 
4>~If3Z),i.e., to a suitable (p + q)formonJh(Q). Clearly, this 
applies also to local fibered morphisms, which give rise to 
local (p + q) forms. 

Let us now give some local coordinate notations. In any 
local chart (U;Xi) of the manifold M, we define the following 
(local) forms: 

ds(x) = dx l Adx2 A ···Adxm, 
(2.1) 

a a 
dSh ... h (x) = -- J ... J -- J ds(x). 

" aXh, aXh, 

The m form ds(x) defines a basis of the vector bundle A ~ (U), 
while the (m - I) forms (dsl(x), .. ,dsm(x)) constitute a basis 
for the vector bundle A ~ _ I (U). 

Now, let B be a fibered manifold over M. In the sequel, 
we agree to consider only charts (W;z") of B, with 
a = 1 , ... ,dim(B ), which are fibered over the charts of an atlas 
of M; these charts will be shortly called fibered charts of B. 
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The corresponding coordinates, called fibered coordinates, 
will be generally denoted by (Xi~), with j = I, ... ,m and 
A = 1, ... ,dim(B) - m, where (Xi) stands for any system oflo
cal coordinates in the open subsetf3(W)~M. 

For any fibered chart (W;Xi ~) of B there exists an in
duced fibered chart (V(W);xi~,zr4) of V(B), where 
V( W) = (VB )-I( W), which is called the natural fibered chart 
of V (B ) (induced by the fibered chart Wof B ). Moreover, any 
fibered chart (W;Xi~) of B induces (uniquely) natural fi
bered charts in each one of the bundles J k (B), V [J k (B )], 
and J S [ T (M)]. The domains of these charts will be denoted 
by Jk(W), V[Jk(W)], and P[T(W)], respectively, while 
the corresponding local coordinates will be denoted, respec
tively, by 

(X'~ ~h ,···,yAk·-j.)' 

(Xi~ ~h '···~id.;zr4,zr4h ,···,zr4id.l, 
(Xi;Xi,xi ) 

h··-js· 

We finally recall that for any fibered manifold B and 
any integer k (k:>O) there exists a canonical isomorphism 
jk:J k [ V (B )] _ V [J k (B )] . For any local di1ferentiable func
tion/:Jk(W)_R, where W~B is the domain of a fibered 
chart, we shall denotebydi(f):Jk+ I(WJ-R theformalpar
tial derivative of/with respect to the coordinate Xi. 

B. Linear connections and tensorlzatlon procedures 
We shall recall here the well-known procedure which 

allows us to replace the partial derivatives of the components 
of a vector field, having nontensorial character, with a suit
able set of tensors constructed using the symmetrized covar
iant derivatives of these components with respect to an arbi
trary (linear) connection. 

Let C be any linear connection on a differentiable mani
fold M. As it is well known, the connection C induces a linear 
isomorphism 

, 
r.bc:J'[T(M)]- Ell S!(M), 

p=o 
having the following local representation: 

(xh ,xh,x;, , ... ,x;""i,Hxh,xh,Vi,Xh, ... ,Vu, ... VJ,)X h), (2.2) 

where V denotes the covariant derivative with respect to C. 
Notice that we can also define a dual isomorphism for any 
pair of non-negative integers (q,r) 

~c:[A ~_q(M)] ® {J'[T(M)] J* 

_[A ~_q(M)] ® L~o S)(M)], 

by setting 

<, ~'(X) = <~c~ )Ir.bc [{(X)]), (2.3) 

for any point, in [A ~_q(M)] ® {J'[T(M)] J* and any 
vector field X. 

Let ( i h, ... h. h, ... h.,i, h, ... h.,i'''-j,) d (i Z h, ... h. 
x ,zi ,zi , .. ·,zi an x 'i , 

Z:, .. ·h.,i', ... ,Z~, .. ·h.,i, .. J,) now, respectively, be natural fibered 
coordinates in the two vector bundles 
[A ~_q(M)] ® {J'[T(M)]}* and [A ~_q(M)] 

® L ~ oS)lM)]. In these local coordinates ~e can describe 

as follows the action of the dual morphism r.bc. We first rep-
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resent the point t and its image ¢dt) as follows: 

(t [j"(X) = J.- dSh ... h (X)(Zh .... h·[j"(X), 
q! '. 

- 1 
(1fJdt )11fJc [l(X)]) = ,dsh""h.(X) 

q. 
<Zh, ... h·l1fJc [j"(X)]), 

we can describe as follows the action of the dual morphism 
¢c' We first represent the point t and its image ¢dt) as 
follows: 

(t vr(x) = J.-, dSh, ... h (x)(l,···hqV'(X), 
q. q 

- 1 
(1fJdt)l1fJc[j"(X)]) = ,dsh""hq(X) 

q. 
X (Z h, ... hql1fJc [j"(X)] ), 

where (l,···hqvr(x) and (Zh, ... hql1fJcll(X)]) are the (skew
symmetric) tensor densities defined by the following expan
sions: 

(Zh, ... h.[j"(X) = Z~,···h.Xi + Z~,···h.j'XJ, 
+ ... + l""h~"':i,X ~ . (2.4) 

l Jt"-j,.' 

and 

(Zh, ... h·l1fJc [l(X)]) = Z~,···h·Xi + Z~""h~'Vj,Xi 
Z h""h~"':i,V V Xi + ... + i lj,... j,) • 

(2.5) 

The explicit relations between the coefficients z and Z may 
be thus obtained by applying (2.3), i.e., by equating the right
hand sides of expressions (2.4) and (2.5). 

C. Bundles of geometric objects and Lie derivatives 

As it was already remarked in the Introduction, the 
correct setting for dealing with generally invariant field the
ories is the framework of bundles of geometric objects (of 
finite order), also known as natural bundles. In fact, in the 
formulation of physical field theories it is unavoidable to 
introduce nontensorial entities, like, for example, jet prolon
gations of tensor fields and linear connections. We shall here 
assume that the reader is familiar with the notion of bundles 
of geometric objects and we shall limit ourselves to recall its 
role in the definition of Lie derivatives. Further details and 
references may be found in Refs. 5-7. 

Let B = (B,M,p) be a bundle of geometric objects (of 
finite order) over a manifold M. A functorial mapping is then 
defined as 

( )B :diff(M j-aut(B ), 
which lifts any local diffeomorphism cP ofthe basis M into a 
(unique) local automorphism CPB (over cp) of the bundle B; 
this automorphism is called the natural lift of cp. Well-known 
examples of bundles of geometric objects over a manifold M 
are the following: the tangent bundle T (M), with the lift given 
by cp-+T(cp); all tensor bundles over M, with the natural lift 
defined by the push forward of tensors; and the bundle C (M) 
of linear connections over M, with the lift defined by the 
natural action of ditf(M ) on connections, etc. Recall also that 
for any bundle of geometric objects B = (B,M,p ) the tensor 
bundles (T ~ (B ),M ,p0T';), the bundle (V (B ),M ,po VB ), and all 
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the jet prolongations (J k (B ),M,p k) are bundles of geometric 
objects over M. 

LetX:M-+T(M) be a vector field onM. Using ( )B we 
can associate to X a unique vector field X B:B-+ T (B ), which 
is called the natural lift of X to the bundle B. The vector field 
X B is defined as follows: for any b E B one sets 

d 
XB(b) = dt [(cpt)B(b)) It=o, 

where CPt denotes the (local) flow in M generated by X. The 
mapping 

( )B:C 00 [T(M))-+C 00 [T(B )), 

defined by X-+XB' is linear and satisfies the following prop
erties: (i) for any vector field X over M one has 
T1,f3 )oXB = X0{3; and (ii) for any pair (X,Y) of vector fields on 
M,onehas([X'Y))B = [XB,YB). 

Now, let O'be a local section ofB, i.e., O':U-+B, andXbe 
a vector field over U. We can define a local section 
Lx(O'):U-+V(B) of the bundle (V(B),M,.80vB) by setting 

Lx(O') = T(O')oX -XBoO'. (2.6) 

The local section Lx (0') is called the Lie derivative of 0' along 
the vector field X and it satisfies the following property: 
vBoLx(O') = O'. We now recall that for any positive integer 
k>O there exists a canonical isomorphism from V [Jk(B)] 
to J k [ V (B ) ). It is then easy to show that the following 
holds: 

Lx [l(O')] =/ [Lx(O')) , 
for any (local) section 0' of the bundle B and for any (local) 
vector field X over the basis manifold M. Moreover, the fol
lowing properties hold. 

(i) For any vector field X over M, the mapping O'-+L x (0') 
is a first-order quasilinear differential operator. 

(ii) For any local section 0' of B, the mapping X-+Lx(O') 
is a linear differential operator, having as order the order S of 
B as a bundle of geometric objects. 

From (i) and (ii) above it follows that the local represen
tations of Lx(O') have necessarily the following form: 

xioLx(O') = xioO', yAoLx(O') = yAoO', 

zrCoLx(O') = XYi oU1(O')) + bAi(X,y0O')Xi 

+ bAj'i(X,yoO')X~, 
+ ... + b Aj,..-j'i(X,yoO')XJ~ ... ; , 

) J JlI 

where (xi,yA,zrC ,yAi) are natural fibered coordinates and the 
coefficients bAi(X,y) and bAj,..-jPi(X,y) (with l..;;p";;s) are func
tions of (Xi,yA) which depend on the choice of the fibered 
chart in B but do not depend on the particular section 0' 
chosen. 

We finally recall from Ref. 8 that a bundle of geometric 
objects is said to be of differential type if it admits (at least) 
one natural atlas whose fibered charts (Xi,yA) are such that 
the coefficients bAi(X,y) vanish identically, while the coeffi
cients bAj,-':ipi(x,y) (l";;p,,;;s) depend only on the fiber coordi
natesyA. We remark that, to our knowledge, all the bundles 
of geometric objects which enter the formulation of physical 
field theories are precisely of this type. Accordingly, in the 
following we shall restrict our attention only to this class of 
bundles. 
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D. Calculus of variations on flbered manifolds 

We now have to recall some concepts we need from the 
geometric formulation of the calculus of variations on fi
bered manifolds, as it was developed in Refs. 9-11. In these 
papers the reader may find more details and further refer
ences, also concerning alternative viewpoints. 

According to Ref. 9 a variational problem of order k is 
defined by assigning the following: (i) a fibered manifold 
Q = (Q,M,1T) over a differentiable manifold M of dimension 
m and (ii) a morphism 2':J k (Q l---+A ~ (M) of fibered mani
folds over M. The fibered manifold Q is called the configura
tion space and its local sections represent the physical fields. 
The fibered morphism 2' is called the Lagrangian density of 
the variational problem; it defines the action functionals 
2' D:coo-.R by 

2' D(O') = JD 2'0/(0'), 

where D ~M is any compact domain. Solving the variational 
problem consists thence in finding the critical sections of the 
action functionals, i.e., those (local) sections oeC OO(Q) 
which make stationary all functionals above when D ranges 
through all compact domains of M. 

We remark that there exists the following canonical iso
morphism of vector bundles over J k (Q ): 

(~)*[A ~(M)]=A ~(M)® t\ O{ V*[JkQ)]J. 

Therefore, according to the remarks of Sec. II A, the La
grangian 2' can be canonically identified to a (global) sec
tion tP (2') of the vector bundle tP~ [Jk(Q I], i.e., to a (glo
bal) m form over Jk(Q). The form tP(2') is, in fact, a 
horizontal m form of J k (Q ). 

Then, let 2':J k (Q l---+A ~ (M) be a Lagrangian (of order 
k) over the configuration space Q = (Q,M,1T) and let 
2' = ds(x) ® L be its local representation with respect to any 
system of natural fibered coordinates. Restricting T(2') to 
the vector subbundle V [J k (Q )] of T [J k (Q )] and taking 
into account the linearity of the tangent map, we may define 
uniquely a fibered morphism over the identity of M, 

p(2'):Jk(Ql---+A ~(M)® V*[Jk(Q)]. 

According to Sec. II A, the morphismp(2') can also be in
terpreted as a (global) section tP [0(2')] of the vector bundle 
tP ~ [J k (B )] over J k (B ), i.e., as a (global) (m + 1) form over 
Jk(B). It is easily seen that the (m + 1) form tP [0(2')] so 
defined is in fact the exterior differential dtP (2') of the m 
form tP (2') which is canonically associated to the Lagran
gian 2' itself. The action over V [J k (Q )] of the morphism 
p( 2') may be represented as follows for any system of natural 
fibered coordinates: 

(p(2')lv) = ds(x)(P(L )Iv) 

= ds(x) (p A (L )~ + P /'(L )~i' (2.7) 
j""A(L)~ ] +'''+PA j.-"A ' 

where we have set 
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PA(L) = -, 
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(2.8) 

As is well known, the critical sections 0' of our vari
ational problem satisfy the Euler-Lagrange equations, 
which, although being generally written in coordinates, are 
globally and intrinsically well-defined over M (see, e.g., Ref. 
12). In fact, these equations may be represented as follows: 

e(2')o/k(O') = 0, (2.9) 

where 

e(2'):J2k(Q)-.A ~(M)® V*(Q) 

is a (global) morphism of fibered manifolds over M. The ac
tion of e(2') over V(Q) is defined, for any natural fibered 
chart, by the following local expressions: 

(e(2')lv) = ds(x) (e(L )Iv) = ds(x) [eA (L )~ ], (2.10) 

with 

e A (L ) = PA (L ) - di , [p /'(L )] 

+ ... + ( - l)kdik ... dj , [p /,":lk(L )]. (2.11) 

This morphism is commonly known as the Euler-Lagrange 
operator associated to the Lagrangian 2' (see, e.g., Refs. 10 
and 12). We remark that it can be canonically identified to a 
(global) section tP [e(2')] of the vector bundle tP ~ [J2k(Q)], 
i.e., to a (global) (m + 1) form over J2k(Q). 

E. First variation formula and the Polncar8-Cartan 
forms 

We conclude this section with a short discussion about 
the role which the so-called Poincare-cartan form plays in 
the formulation of the first variation formula in higher-or
der variational problems. The results developed here will be 
of great use for a precise definition of stress tensors and ener
gy-momentum tensors, which will be investigated in Secs. 
III and IV. 

Let 2':Jk(Q)-.A~(Ml be a Lagrangian (of order k) 
over the configuration space Q = (Q,M,1T). It is possible to 
show that there exists (at leastl one global morphism/(2') of 
fiber bundles over J k - l(Q ) 

/(2'):J 2k - I(Q)-.A ~_ dM)® V*[Jk-I(Q)], 

such that the following holds: 

(p(2')o/(O'llr(v) = (e(2')o/k(O'llv) 
+ d </(2')o/k-I(O')lik- I(V), 

(2.12) 

where v:U-.V(Q) is any (local) section and O':U-.Q is the 
(local) section of Q defined by 0' = vQov. Integrating (2.12) 
over any compact domain D~ U, we recover the well-known 
first variation formula (over D ) for the Lagrangian 2'. Ac
cording to Sec. II A, also in this case the global morphism 
/(2') can be canonically identified to a global section 
tP [((2')] of the vector bundle tP ~_I [J2k-I(Q)], i.e., to a 
global m form on J 2k - I(Q). The action of the global mor
phism/(2') on the vector bundle V [Jk-I(Q)] is defined, in 
any natural fibered chart, by the following local expression: 

</(2')lv) = ds/(x)<P(L llv) 
= dsi(x) ViA (L )~ + jij'A (L )~j, 

+ ... + /i...:Jk-'A (L l~J...:Jk_' ]. (2.13) 

Moreover, rewriting (2.12) in a natural fibered chart we find 
the following local expression: 
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(P(L )o/(ull/(v) = (e(L )Ofk(U)lv) 
+ d;<P(L )ofk-l(UJVk-l(V), 

(2.14) 

which is more significant than (2.12) itself, since, roughly 
speaking, it amounts to decomposing the first variation of 2' 
into field equations plus a (formal) total divergence. From 
the physical viewpoint, the divergence appearing in (2.14) 
will allow us to define the so-called Noether's conserved cur
rents (see Sec. III). 

As far as the uniqueness of the morphisms e(2') and 
i(2') is concerned, we remark the following. 

(i) In general, there exists a whole family of (global) mor
phismsi( 2') which satisfy the properties above. In any case, 
no matter which one of them is chosen, the morphism e(2') 
such that (2.12) holds is uniquely defined. This property is 
commonly known as the unicity of the Euler-Lagrange op
erator (see e.g., Ref. 12). 

(ii) The morphismi(2') is uniquely defined if the order 
of the Lagrangian is 1, no matter which is the dimension m of 
thebasisM (i.e., m> 1, k = l)(seeRef. 13). It is also uniquely 
defined if the basis manifold M is one dimensional, no matter 
which is the order k of the Lagrangian (i.e., m = 1,k> 1) (see 
Ref. 14). 

(iii) However, when m>2 and also k>2, the m?rphism 
i( 2') is globally but not uniquely defined. In fact, letfl (2') be 
a global morphism which satisfies the required properties; 
then, if we consider any (global) fibered morphism over 
Jk-2(Q) 

h:J2k-2(Q)-+A ~_2(M) ® V*[Jk-2(Q)]' 

and we denote by 

div(h ):J2k-l(Q)-+A ~-l (M)® V*[Jk-l(Q)] 

its formal divergence, we easily see that the (global) mor
phism 

i2(2',h) =il(2') + div(h) 

satisfies the required properties, too (see Ref. 10). For exam
ple, as was shown in Refs. 15 and 16, from any such mor
phism one can generate a whole family which depends on a 
couple of connections. 

(iv) We finally remark that in the particular case !!,>2 
and k = 2, there exists a canonical global morphismf(2') 
satisfying the required properties, which is defined, in any 
natural fibered chart, by the following local expressions: 

PA(L) =iA(L) - djpijA(L), fijA(L) =pijA(L). (2.15) 

Let us now remark that, taking into account the meth
ods discussed in Sec. II A, to any k th-order Lagrangian and 
to each global morphism F:J 2k - l(Ql-A ~_ dM) 

A 

® V* [Jk - l(Q)] there corresponds a global m forme (2' ,F) 
over J 2k - l(Q ), defined by the following prescription: 

A A 

e(2',F) = (~k-l)*<P(2') + <P(F). (2.16) 

According to the terminology used by Krupka,1O when the 
morphismFis anyone of the morphismsi(~) which satisfy 
Eq. (2.14), the corresponding m form e [2" /(2')] is said to 
be a (global) Lepagean equivalent of the Lagrangian 2'. Any 
such m form can be assumed as a Poincar6-Cartan form 
associated to the Lagrangian 2'. According to our remarks 
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above, we see thus that the following hold: (i) the Poincare
Cartan form is uniquely defined if the order of the Lagran
gian is one, no matter which is the dimension m of the basis 
M(i.e., m>l,k = 1), as well as if the basis manifold Mis one 
dimensional, no matter which is the order k of the Lagran
gian (i.e., m = 1, k>l); (ii) when m>2 and also k>2, there 
exists a whole family of (global) Poincare-Cartan forms, 
which locally differ by a formal divergence (for example, one 
can generate a family of global Poincar6-Cartan forms 
which depend on a couple of connections); and (iii) in the 
particular case m>2 and k = 2, there exists however a ca
nonical Poincare-Cartan form. 

III. GEOMETRIC FIELD THEORIES AND NATURAL 
CONSERVATION LAWS 

As was already remarked in the Introduction, in this 
paper we are mainly concerned with Lagrangian field theor
ies which are based on the jet prolongations of bundles of 
geometric objects. This, in fact, is the natural framework for 
introducing the concept of natural conservation laws, which 
will be discussed below. 

A. Generallnvarlance, geometric field theories, and 
energy flow 

As it is well known, one of the fundamental require
ments of physical field theories over space-time is the invar
iance of their field equations with respect to any change of 
(local) coordinates in the space-time manifold itself; this re
quirement, which has been generally accepted since the early 
developments of Einstein's general relativity theory, is com
monly known as general invariance (or relativistic invar
iance, or also as general covariance). However, when dealing 
with Lagrangian field theories one usually makes a stronger 
assumption; namely, one requires the general invariance of 
the Lagrangian itself. Requiring the general invariance of 
the Lagrangian allows us then to apply the so-called second 
theorem of Noether and to generate, as a consequence, a 
whole family of natural conservation laws, i.e., those conser
vation laws which are naturally associated with the dragging 
of physical fields along the flows generated by vector fields 
over the basis. We shall assume here that the reader is famil
iar with the fundamental concepts and ideas of this theory; 
for a detailed and comprehensive account of them we refer to 
Refs. 17-19 (and references quoted therein). 

We are now in position to give the following definition: 
A k th-order Lagrangian theory is called a geometric field 
theory if the following two conditions are satisfied. 

(i) The configuration space Q = (Q,M,1T) is a bundle of 
geometric objects of order s. 

(ii) The Lagrangian 2' governing the dynamics of fields 
is generally invariant. 18 The order s of the bundle Q will be 
called the geometric order of the theory, while the sum 
r = k + s - 1 will be called the differential degree of the the
ory. This terminology will be clarified later. 

According to standard results,18 requiring the general 
invariance of the Lagrangian 2' in a geometric field theory 
implies that 2' should satisfy the following relation: 

T(2")o/ [Lx(u)) =Lx [2'o/(u)], (3.1) 
where X is any vector field over the basis manifold M and u is 
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any (local) section of the bundle Q. Since .J."o/'(O') is a scalar 
density, the following holds: 

Lx [.J."o/(O')] = di {Xi[Lo/(O')] jds(x). 

As a consequence, relation (3.1) can be rewritten as follows: 

T(L)o/[Lx(O')] = di{Xi[LO/(O')] j. (3.2) 

We can now apply the general relation (2.14) to obtain the 
following result: for any vector field X over M and any local 
section 0' of Q we have 

di [Ei(L;X,O')] = - (e(L )ofk (0') ILx(O'), (3.3) 

where the vector density E i(L;X,O') is defined by 

Ei(L;X,O') = (fi(L )ofk-I(O'Wk- 1 [Lx(O')]) 

-Xi[Lo/(O')]. (3.4) 

Ifwe restrict the above relation (3.3) to any local section 
0' of Q which satisfies the Euler-Lagrange equations 
elL )Ofk (0') = 0, we find 

di [Ei(L;X,O')] = 0, VXECoo [T(M)]. (3.5) 

Relations (3.5) express the so-called (weak) natural conserva
tion laws associated with the Lagrangian .f/' (see, e.g., Refs. 
17 and 20). 

Remarks. (i) We can also define a (local) (m - 1) form 
E (.J." ;X,O') on the basis manifold M by setting 

E(.J.";X,O') = Ei(L;X,O')dSi(X). 

This form is called the energy flow of the Lagrangian .J." 
along the vector field X and the (local) section 0' of Q. Using 
the energy flow E (.J." ;X,O'), the natural conservation laws 
(3.5) are turned into the well-known equivalent expression 

d [E(.J.";X,O')] = O. (3.6) 

Using the Stokes theorem, Eq. (3.6) implies in tum the fol
lowing relation: 

f E (.J." ;X,O') = 0, 
aD 

where aD denotes the (m - 1 I-dimensional boundary of any 
regular domain D ~ dom(O') ~M. This last relation expresses 
the natural conservation laws in their integral form. 

(ii) If one eliminates the arbitrary vector field X and the 
arbitrary section 0' from the relation (3.1) [or, equivalently, 
from (3.2)], one obtains a set of first-order partial differential 
equations in the unknown Lagrangian .J.". These equations 
characterize the whole family of generally invariant k th-or
der Lagrangians over Q (i.e., depending on the given fields 
together with their derivatives up to the order k ). See Refs. 19 
or 21 for examples of application. 

B. Energy momentum tensors associated to a generally 
Invariant lagrangian 

In this section we shall investigate in detail the energy 
flow defined above. Recalling that the geometric order of the 
theory is s, from Eq. (3.4) we see that the energy flow 
E (.J." ;X,O') satisfies the following properties. 

(i) For any (local) section O'ofthe configuration space Q, 
the mapping X ~E (.J." ;X,O') is a linear differential operator of 
order equal to the differential degree r = k + S - 1. 

(ii) For any vector field X on M, the mapping 
O'~E (.J." ;X,O') is a (generally nonlinear) differential operator 

1248 J. Math. Phys., Vol. 26, No.6, June 1985 

of order 2k - 1. From these two properties we infer the exis
tence of a morphism of fibered manifolds 

E(.J."):J2k-I(Q)~[A ::'-1 (M)] ® {J'[T(M)] j*, 

such that the following holds: 

Ei(L;X,O') = (Ei(L )Ofk-I(O')~'(X) 

= (Ei(L W'(X)ofk-I(O'), (3.7) 

where 0' is any (local) section of Q, X is any vector field over 
M and Ei(L) denotes the ith component of E(.J."), i.e., 
A . 

E(.J.")=dsi(x)®E'(L). Representing the relation (3.7) in 
any natural fibered chart we obtain the following expansion: 

Ei(L;X,O') = [eih(L )Ofk-I(O')]X h 

+ [ei\(L)Ofk-I(O')]Xhj, 

+ ... + [ii'··\(L )ofk
- 1(0') ]X~".:i,' (3.8) 

h ( h,xh,xh ,xh ) d ( h i ij, ij, .. :i, ) d were x j, ,... j, .. :i, an x ,e h,e h,···,e h e-
note, respectively, the natural fibered coordinates in the vec
tor bundles J'[T(M)] and [A::'_ JIM)] ® {J'[T(M)])*. 
Let us now remark that the sections of these vector bundles 
are fields of geometric objects over the basis manifold M, but 
in general they do not have tensorial character. Therefore, 
also the coefficients (eih (L ),eij'h (L ), ... ,eij,··\ (L)), which are 
symmetric with respect to the upper indicesj, are not tensors 
over M; they are called energy-momentum pseudotensors 
associated with the Lagrangian .J.". This clarifies the mean
ing of the differential degree r: it is in fact the maximum 
order of derivatives of X which appear in the expansion 
above. In other words, for any theory of differential degree r 
there are exactly r + 1 energy pseudotensors. 

Using the general procedure described in Sec. II B, we 
can reexpand the energy flow E (.J." ;X,O') by means of tensor
ial coefficients, rather than with the pseudotensors above. 
Let us then consider any linear connection C over the basis 
manifold M, together with the linear isomorphism 

r 

t,bc:Jr[T(M)]~ ED S;(M) 
p=o 

and the dual isomorphism 

iic:[A::'_ JIM)] ® {J'[T(M)]) * 

~[A ::'_I(M)] ® [p~oS1(M)] 
(defined above). Equation (2.3) then gives 

(E(.f/'wr(x) = (iiclE(.J.")]liicU'(X)), (3.9) 

from which follows immediately the equivalent expansion 

(Ei(L Hj'"(X) = Eih(L;C)Xh + Eij'h(L;C)Vj,X h 

+ .,. + Eij'··\(L;C) Vv,···Vj,)X h. 
(3.10) 

The coefficients (E ih (L;C ),E ij'h (L;C ), ... ,E ij, .. \ (L;C)), 
which appear in (3.10), are tensor densities, symmetric with 
respect to their upper indicesj. They are called the energy
momentum tensors (of the Lagrangian .J.") associated with 
the connection C. 

We can now insert the explicit expansion (3.8) into the 
natural conservation laws (3.5) and eliminate the arbitrary 
vector field X from the resulting expression. Owing to the 
linearity of the differential operator X ~E (.J." ;X,O') and to the 
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Leibniz rule for the formal derivative di , it turns out also that 
the quantity di [E i(L;X,u)] may be expanded as a linear 
combination of the quantities X h and X\"-}p' with 
l<p<r + 1 = k + s. Therefore, eliminating X amounts to 
setting all the coefficients in this expansion equal to zero, 
which gives rise to the following set of (first-order) linear 
differential equations in the pseudotensors eih(L) and 
eV"'\(L): 

ew,··-j')h(L) = 0, 

eU,j,··-jp)h(L)+di[eW,h··-jP)h(L)] =0 (l<p<r), (3.11) 

di[eih(L)] =0. 
These equations, which are completely equivalent to the sin
gle equation (3.5), take often the name of conservation laws 
for the energy-momentum pseudotensors. 

It is clear that an equivalent set of natural conservation 
laws may be obtained also for the energy-momentum tensors 
(associated with any connection C). To obtain these equa
tions, which are rather more complicated than Eq. (3.11) 
(and therefore will not be written here explicitly), there are at 
least two possible ways. A first method consists in inserting 
directly into Eq. (3.11) the explicit expressions of the energy-

momentum pseudotensors (eih (L ),ei\ (L ), ... ,ev",,\ (L)) in 

terms of the tensors (Eih(L;C),EV'h(L;C), ... ,Ev'··,\(L;C)) 
and the appropriate jet prolongation of the connection C 
itself; the resulting equations may be further simplified by 
taking suitable linear combinations which are directly sug
gested by their very structure. 

The second approach, on the contrary, does not require 
us to express explicitly the pseudotensors in terms of the 
corresponding tensors (which, as we said above, is not always 
a simple matter). The method consists first in reexpressing 
the natural conservation laws (3.5) by means of the formal 
covariant derivative with respect to the connection C cho
sen; one finds 

di [Ei(L;X,u)] = Vi [Ei(L;X,u)] + T""i(C)Ei(L;X,u) = 0, 
(3.12) 

where T"bi(C) denotes the torsion ofC. Then the expansion 
(3.10) should be inserted into Eq. (3.12) and the resulting 
expression should be rewritten as a linear combination of the 
components X h and their symmetrized covariant derivatives 
Vv, .•• Vjp)Xh, with 1<p<r[thisis, of course, possible, in virtue 
of the linearity of the differential operator X _E (::t' ;X,u) and 
of the bundle morphism f/!c]. Finally, the appropriate set of 
first-order differential equations for the energy-momentum 
tensors (E ih (L;C ),E v, h (L;C ), ... , E v,··\ (L;C)) is obtained by 
setting equal to zero all the coefficients of the resulting linear 
combination. We remark that, owing to the well-known 
commutation rules for iterated covariant derivatives, the 
equations so found will contain explicitly the Riemann cur
vature tensor and the torsion of the connection C, together 
with their covariant derivatives up to the order at most 
r - 2. These equations may be further simplified by using 
Bianchi identities and all the existing symmetries of the Rie
mann tensor. 
C. Interacting fields of geometric objects 

As it was already remarked in the Introduction, phys
ical field theories are mainly aimed to describe the dynamics 
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of interacting elementary fields, both in the case of theories 
describing previously existing free fields which are allowed 
to interact, or in the case of already unified theories. In the 
first case, each one of the free fields is conveniently described 
as a section of an appropriate configuration space Qlal' and 
the total configuration space of the interaction theory is as
sumed to be the fibered product Q = X ~ = I Q(a)' In the case 
of unified theories, on the contrary, it is assumed that a single 
field can be conveniently split to define a number of elemen
tary interacting subfields in such a way that the free dynam
ics of the unified field is equivalent to the interaction dynam
ics of its subfields. In this case, a single configuration space 
Q I is assigned, and breaking the unified theory into the equi
valent interaction theory will produce a new configuration 
space Q (possibly nonisomorphic to Q I itself), which is the 
fibered product of a number of spaces Q(a) , which are inter
preted as the configuration spaces of the elementary sub
fields themselves. According to this viewpoint, we shall limit 
ourselves to consider here only the case of interacting fields. 
We shall moreover assume that all fields are fields of geomet
ric objects, in order to be able to define the energy flow. 

Let Q(a) = (Q(a),M,1T(a))' with l<a<n, be bundles of 
geometric objects over the same basis M and let us denote by 
Q= X~=IQ(a) = Q(1)XM"'XMQ(n) their fibered product. 
In physical applications, M will be the space-time manifold 
(or possibly the real line or some other physically meaningful 
basis), each bundle Q(a) will be the configuration space of an 
elementary field u(a) :M-Q(a) ' and Q will be the total config
uration space of the total field u:M_Q defined by 

u(x) = (U(I) (x), ... ,u(n) (x)). (3.13) 

Lagrangian theories of interacting fields of geometric 
objects assume that the dynamics is governed by the Euler
Lagrange equations of a suitable total Lagrangian ::t', which 
is a generally invariant Lagrangian, depending on all the 
fields u(a) together with their partial derivatives 

::t':J k (Q )_A :!. (M). (3.14) 

We remark that in all main physical applications the order k 
of the Lagrangian is either 1 or 2 and in ::t' only geometric 
fields of order 1 or 2 appear; in any case, the theory will be 
developed here for all orders, since no conceptual simplifica
tion would occur in requiring those orders to be equal to 2. 

We remark also that each field u(a) may enter the La
grangian ::t' through its derivatives of order at most k(a) , 
with k(a) <k (possibly different from field to field) and 
k = max(k(1) , ... ,k(n)); more precisely, this amounts to assum
ing that the Lagrangian ::t' is the pullback to J k (Q) of a 
fibered morphism from the product J k, [Q(I) ] X M'" X M 

XJkn[Q(nd into A :!.(M). In this case, each integer k(a) is 
called a partial order of ::t' (relative to the field u(a)) and k is 
called the total order of ::t'. 

Moreover, in most cases it is assumed from the begin
ning that there exists some physically meaningful splitting of 
the Lagrangian ::t' into the sum of n generally invariant La
grangians ::t'(a); the summands ::t'(a) are called partial La
grangians and their sum ::t' is called the total Lagrangian of 
the theory. In this case, the ath Lagrangian ::t' (a) is assumed 
to depend explicitly at least on the k(a) th-order jet of the 

M. Ferraris and M. Francaviglia 1249 



                                                                                                                                    

corresponding ath field ural and possibly also on all the re
maining fields (while the remaining partial Lagrangians 
2' (fJ)' withP =/=a, may depend on lower-order derivatives of 
the ath field u(a))' Such an assumption is dictated by the hope 
that each partial Lagrangian should represent the dynamics 
of the corresponding field; we stress, however, that under the 
most general assumptions above the dynamics of the various 
fields are highly interacting, because the physically relevant 
object is in fact the total Lagrangian itself. We finally recall 
that the so-called minimal coupling prescription amounts to 
requiring instead that the ath Lagrangian 2'(a) will not de
pend on the derivatives of the fields other than the ath one. 
In this case, each partial Lagrangian 2'(a) governs the dy
namics of the corresponding field ural when the remaining 
(n - 1) fields are kept fixed. We remark that further split
tings of the total Lagrangian may be prescribed (like, for 
instance, the usual decompositions in free Lagrangians plus 
interaction Lagrangians); in any case, these further splittings 
can always be reelaborated to fit into the scheme above. 

As a final remark, we should mention that in some cases 
only the total Lagrangian is given and no splitting a priori is 
assigned (this is a fortiori true if one is dealing with a unified 
theory). We stress that in such cases it is always possible to 
perform suitable (partial) Legendre transformations which 
introduce momenta as new variables and allow us to split 
conveniently the transformed Lagrangian (which actually 
becomes a sort of Routh function). 

D. Partial energy flows and work in geometric field 
theories 

Let us consider a k th-order Lagrangian field theory 
over the bundle of geometric objects Q = X ~ = I Q(a) 
= Q(I) XM"'XMQ(n), governed by a total Lagrangian 
2' = 2'(1) + ... + 2'(n)' of partial orders (k(II'".,k(n))' as in 
the previous section. If u(x) = (u(1) (x), ... ,u(ndx)) is a (local) 
field over M, then we have the following: 

2'ol(u) = 2'(1) O(/'lll(u(I)),,,./lnl(u(n))) 

+ '" + 2'(n) O(;klll(U(I) ),,,./Inl(u(n)))' (3.15) 

From the assumption that the configuration space Q of 
the theory is a fibered product, it follows immediately that 
!here exist partial fibered morphisms P(a) (2'), e(a) (2'), and 
.l(a) (2'), 

P(a) (2'):Jk(Q )~A ::. (M) ® V* [Jk1al(Q(a))] ' 

era) (2'):J 2k (Q ~A ::. (M) ® V*(Q(a)), 

f;a)(2'):J2k-I(Q)~A ::'-1 (MW* [Jklal-I(Q(a))]' 

(with a = 1,,,.,n), such that we have .0(.2") = p(ld2') 
A+'" + ~(n)(2'), e(~) = e(l) (2') + ... + e(n) (.2"), and 
f(2') =.1(1)(2') + ... + .l(n)(2'), and moreover the following 
holds: 

(P(a)(L )Ol(u)I/'a[ Lx(u(a))]) 

= (e(a)(L )ofk(u)ILx(u(a))) 

+ di(fi(adL )ofk-I(u)[/',al- I [Lx(u(a))])' (3.16) 

for any vector field X over M and any (local) section u of Q. In 
particular, the morphisms era) (2') are the partial Euler-La-
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grange morphisms, which define the field equations of each 
single field, while the morphisms f;a) (2') define the partial 
Poincare-cartan forms. 

Using the fact that the total Lagrangian 2' splits into 
the sum of n generally invariant Lagrangians .2" (a)' we can 
now define the n partial energy flows E i(a) (2' ;X,u) by setting 

Ei(adL;X,u) = (F(a)(L )Ofk-l(u)[/"al-I[Lx(u(a))]} 

-Xi[L(a)oj"(u)]. (3.17) 

It then follows that 

Ei(L;X,u) = Ei(I)(L;X,u) + ... + Ei(n) (L;X,u). (3.18) 

Let us now define for each couple of indices (a,/3 ) a hori
zontal n form W(a)(fJd2';X,u) = W(a)(fJ) (L;X,u) ds(x) by set
ting 

W(a)(fJ) (L;X,u) = (P(a) (L(p) )ol (u)l/,Ial [Lx(u(a))]) 

- (P(fJ)(L(adol(u)[/'IPI[ Lx(u(fJ))])' 
(3.19) 

The density W(a)(fJ) (L;X,u) measures the work which is per
formed over the ath field when the P th field is Lie-dragged 
along the flow of the vector field X. The sum 

W(a) (L;X,u) = W(a)(l) (L;X,u) + ... + W(a)(n) (L;X,u) 
(3.20) 

measures then the total work which is performed over the 
ath field. From the definition (3.19) it follows immediately 
that the sum of all the total work vanishes, i.e., 

W(I) (L;X,u) + ... + WIn) (L;X,u) = o. (3.21) 

Calculating then the formal divergence of each partial 
energy flow, we find 

di [Ei(a)(L;X,u)] = - (e(adL )ofk(u)ILx(u(a))) 

+ Wla) (L;X,u), (3.22) 

along any section u of the bundle Q. In particular, along 
sections u which make era) (L ) vanishing (i.e., along solutions 
of the ath field equations), the work performed is equal to the 
divergence of the corresponding energy flow. Accordingly, 
we have the following system of n partial natural conserva
tion laws: 

di [ E ira) (L;X,u)] = W(a) (L;X,u), 

VXeC""[T(M)), (3.23) 

where u is any solution of the field equations of the theory. 
The system of conservation laws (3.23) follows from the total 
conservation law (3.5) when taking into account the splitting 
ofthe Lagrangian. In fact, from (3.18), (3.21), and (3.23) one 
obtains immediately 

di [ E i(l) (L;X,u)] + ... + d; [ E i(n) (L;X,u)] = 0, (3.24) 

which merely reasserts that the total energy flow is con
served along solutions of the field equations. 

E. Energy momentum tensors and stress tensors for 
interacting fields of geometric objects 

Our considerations of Sec. III B can now be extended to 
the case of total Lagrangians .2" of the form (3.15), describ
ing the interaction of n fields of geometric objects ural' Fol
lowing the terminology of Sec. III A, we give first the follow-
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ing definitions: the order sIal of the ath field will be called the 
ath partial geometric order of the theory; the sum 
rIa) = k(a) + SIal - 1 will be called the ath partial differential 
degree of the theory; the supremum S = max(s(1l'""s(n)) is the 
total geometric order; and the supremum r = max(r(1) , ... ,r(n)) 
is the total differential degree of the theory. 

From strict analogy with Sec. III B also, the partial en
ergy flows E \a) (L;X,u) may be expanded as linear combina
tions of partial derivatives of the components X h. In fact, 
from Eq. (3.17) it turns out immediately that the assignment 
X_Ei(a)(L;X,u) defines a linear differential operator, whose 
order equals the (a)th partial differential degree r(a)' There
fore, one finds expansions of the following kind: 

E i(a) (L;X,u) = [e~ (L )o/k - I(U)] X h 

+ [eK'(L )o/k-1(U)]X\ 

+ ... + [e~"'-jrla)(L)r - I(U) ] X \.'-jrlaJ , (3.25) 

where the coefficients (e~ (L ),e%'(L ), ... ,e~,··-jrla)(L )), which are 
symmetric with respect to the upper indicesj, are called par
tial energy momentum pseudotensors of the ath field, asso
ciated with the Lagrangian ::t'. Equivalent sets of ath partial 
energy-momentum tensors, which are denoted by 

(E ~ (L;C ),E %'(L;C ), ... ,E ~,..-jrla)(L;C)), can then be obtained 
by choosing any linear connection C and applying the stan
dard tensorization procedures. We remark that all these par
tial (pseudo) tensors are uniquely defined by the total La
grangian::t' itself, no matter which splitting (3.15) is chosen, 
apart from the first ones e~ and E ~ : looking in fact to (3.17), 
one realizes immediately that the splitting chosen affects ex
plicitly only the term inXh. 

An analogous expansion procedure can now be applied 
to the partial works Uia)(l1) (L;X,u) and to the total works 
Uia) (L;X,u). Leaving aside the explicit expansions of the par
tial works, which have no interest here (but may have some 
interest in investigating the inner details of the energy ex
change), we shall discuss here only the proper expansions of 
the total works Uia) (L;X,u). 

From the definition (3.19) and the definition of partial 
geometric orders, we see first that the assignment 
X-Uia)(P) (L;X,u) defines, for each couple (a,/3), a linear dif
ferential operator of order w(a)(p) = max(r(al'r(p)) + 1. Ac
cordingly, representing the density Uia) (L;X,u) in natural 
fibered coordinates, we find an expansion of the following 
kind: 

Uia)(L;X,u) = [sh(L )o/(u)]X h + [~(L )o/(u)]X~, 
+ ... + [Jr-jr+1 (L )o/(u)]X\"-jr+I' 

(3.26) 
where r is the total differential degree of the theory. We 
stress that it is the total degree r, rather than the partial one 
rIa) , which enters this expansion: this is in fact a direct conse
quence of the definition of the ath total work itself. Choosing 
any linear connection C over the basis manifold M, we can 
also expand as follows the total work as a linear combination 
of symmetrized covariant derivatives of X: 

<W(a)(L )lir(x) = Sh(L;C)Xh +S~(L;C)Vj,Xh 

Sj,··-j + I(L C)V V X h + ... + h r ; (I, ••• jr+ I) • 

(3.27) 
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The coefficients (Sh (L ),i,: (L ), ... ,s'{:lr+ I(L)), which are sym
metric with respect to the upper indices j, are called stress 
pseudotensors of the ath field, associated with the total La
grangian ::t' and with its splitting (3.15). The coefficients 
(Sh(L;C),s~(L;C ), ... ,s~··-jr+ I(L;C)) have the same symmetry 
properties; they are tensor· densities and take the name of 
stress tensors of the ath field, associated with ::t' and corre
sponding to the connection C. We remark that, contrary to 
the energy-momentum (pseudo) tensors, the stress (pseudo) 
tensors of ::t' will depend explicitly on the splitting of ::t' 
itself into the sum of n partial Lagrangians. This should not 
be surprising, because the stress tensors account explicitly 
for the way in which interaction dictates how one field acts 
as a source for the others (and vice versa). 

To end this section, it is important to remark that field 
dynamics establishes explicit differential relations between 
the energy-momentum (pseudo) tensors and the stress (pseu
do) tensors of an interaction theory. In fact, one can insert 
the (local) expansions (3.25) and (3.26) into the partial natural 
conservation laws (3.23) and eliminate the arbitrary vector 
field X from the resulting expressions. In this way, first-or
der linear partial differential equations are obtained, which 
express the stress pseudotensors in terms of the energy-mo
mentum pseudotensors together with their first derivatives. 
Explicitly, one finds 

e~,··-jr)(L ) = s~,··-jr(L ), 

;~jdp(L ) + d i [e~,jdp(L )] = J;,j,··-jP(L ), 

di [e~(L)] = sh(L), 

(3.28) 

with 1 <.p<.r. Clearly, analogous (but, owing to commutation 
relations, fairly more complicated) differential relations can 
be obtained between the corresponding tensors. 

F. Conclusions 

We have therefore shown that with each Lagrangian 
theory offree fields of geometric objects one can always asso
ciate, in a unique way, a whole set of energy-momentum 
(pseudo) tensors, which allow us to express in a convenient 
form the natural conservation laws associated with 
Noether's theorem. This result provides a unique and ca
nonical way to define partial energy-momentum tensors for 
theories of geometric fields in interaction; the number of 
these objects grows with the order of the theory (i.e., the 
number of derivatives of fields it involves) and with the geo
metric order of the fields themselves (Le., the number of de
rivatives of local diffeomorphisms which enter their trans
formation laws). Considering interaction as a way for some 
of the fields to act as sources for the others opens the possibil
ity to define, again in a unique and canonical way, the con
cept of work. We have also shown that each preferred way to 
split the total Lagrangian into the sum of a suitable number 
of partial Lagrangians allows one to define uniquely and can
onically a whole set of stress tensors, which express the re
sponse of fields under deformations of their sources. In addi
tion, the number of these objects grows with the different 
orders of the theory and the geometric fields involved. We 
have finally shown that the natural conservation laws may 
be expressed as relations between those two families of ob-
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jects, a fact which is often misunderstood in the physical 
literature. The machinery developed in this paper is applica
ble to all geometric theories, no matter how complicated 
they are. 

Clearly, the long series of definitions and equations 
which have been discussed above would be meaningless 
without providing explicit examples of applications. We 
shall not give here any example: the reader will find some, 
concerning the theories of geometric fields interacting with a 
gravitational field, in Ref. 21, where the simpler case of two 
interacting fields was described in lesser details. A more 
thorough discussion of stress tensors in geometric theories of 
gravitation will be contained in a forthcoming monograph.22 
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We express the logarithm of the thermal density matrix PH,p(X,x')== (X Ie-PH IX'), where 
H = Ho + V, as a cumulant expansion in powers ofthe perturbation V, by associating with 
{ H 0' IX ) , IX ') J a stochastic process. If the ground state of Ho is isolated, this stochastic process is 
of finite memory; it then follows from the properties of cumulants that the above expansion ofln P 
is nonsecular as{3-oo (all its terms -{3), and is thus usable down to zero temperature, unlike the 
direct expansion ofp in powers of V, whose nth term -{3". To determine explicitly the low
temperature behavior, we apply an analysis familiar in the theory of relaxation, and obtain the 
form InpH,p(X,x') = h (X,x',{3) + a(X) + a(X')t - b{3, where a,b,h are cumulant expansions in 
powers of V; a(X), b are independent of {3; and h (X,x' ,{3 )-0 as {3-00. Comparing with 
p_(X ItPo)e-PEo(tPoIX') as{3-oo, where tPo and Eo are the ground state and energy of H, we 
deduce Eo = b, In (X I tPo) = a(X), i.e., the Rayleigh-SchrOdinger perturbation series for Eo and 
In (X I tPo) (with (tPo I tPo) = 1) emerge as cumulant expansions. In the case of a many-body system, 
the properties of cumulants immediately imply linked cluster theorems for In P, as well as for Eo 
and In (X I tPo). 

I. INTRODUCTION 

A fundamental quantity in equilibrium statistical me
chanics is the density matrix 

PH,p(X,x') = (Xle-PHIX'), (Ll) 

where {3 -1 is the temperature, H the Hamiltonian, and 
IX), IX') are (arbitrary) quantum states of the system consid
ered (these states are often taken as position eigenstates). 
Usually, PH cannot be calculated exactly, and approxima
tions must be found. In cases that 

H=Ho+ V, (1.2) 

whereHo is such thatpH
o 

is known exactly, and Vis small in 
some sense, the natural procedure is to expand 

PH,P(X,x') = (Xle-P(Ho+ V)IX') (1.3) 

in powers of the perturbation V. However, as may be guessed 
from inspecting (1.3), such an expansion is essentially in 
powers of {3v, i.e., it is "secular" (nth term -{3") as {3-00, 
hence useless as an approximation scheme at low tempera
tures. 

The situation is similar to that met in the theory of re
laxation, 1,2 where one usually finds that the direct expansion 
of the time correlation function considered, C (t ) say, in pow
ers of some perturbation V, is secular, hence useless at large 
times. However, if instead one expands In C(t) in powers of 
V, one obtains a cumulant expansion, 1,2 which, provided the 
stochastic processes causing the relaxation have a finite 
memory, is free of secularities (all terms -t) due to the spe
cial properties of cumulants3

; one thereby gets a perturba
tion expansion which stays usable at large times. 

We here apply a similar procedure to PH: we first asso
ciate with {Ho,IX),IX') 1 a stochastic process which has a 
finite memory, provided the ground state of Ho is isolated 
(i.e., there is a finite energy gap between the ground and 
lowest excited states). By expanding In PH in powers of V, we 
obtain a cumulant expansion whose terms all increase linear-

ly with {3 as {3-00, i.e., we get a perturbation expansion 
usable down to zero temperature. 

In relaxation theory, analysis of the cumulant expan
sion of In C (t ) naturally leads to the decomposition 1,2 

InC(t)=a-bt+h(t), (1.4) 

where h (t)---+O as t-oo, and a,b are crucial (complex) con
stants which govern the large-time (exponential) decay of 
C (t ). In the present case, we similarly obtain 

InpH,p(X,x') = a(X) + a(X')t - b{3 + h (X,x',{3), (1.5) 

where h (X,x',{3)-o as {3-00. On the other hand, we also 
have 

i.e., 

n 

_(X I '/10) e- PEo ('/IoIX'), as{3-oo, 
(1.7) 

InpH,p(X,x')-ln(XI'/Io) +In('/IoIX') -{3Eo as {3-00 , 
(1.7') 

where '/In and En are the eigenstates and energies of H (the 
index 0 referring to the ground state), Comparing with (1.5), 
we deduce 

Eo = b, In(X ItPo) = a(X). (1.8) 

Since band a(X) are cumulant expansions in powers of V, 
Eqs. (1.8) are just the Rayleigh-SchrOdinger (RS) perturba
tion series for Eo and In (X ItPo), in cumulantform. Note that 
tPo in (1.8) is normalized, (tPoltPo) = 1 (whereas the usual RS 
series is for ~o=tPoI(¢oltPo), satisfying (¢ol~o) = 1, where 
¢o is the ground state of HO).4 

Conceptually, it is satisfying that the density matrixp H' 

and the ground state energy and wave function, have struc
turally similar, closely interrelated, perturbation series. 
From a practical point of view, the cumulant form of the 
perturbation series may often be especially convenient, be-
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cause of the well-known statistical meaning and properties 
of cumulants. In particular, in the case of a many-body sys
tem, the basic property of cumulants (vanishing whenever 
their arguments separate into two or more statistically inde
pendent subsets) immediately implies linked cluster theo
remss for In p, as well as for Eo and In (X 11/10) . 

The above features seem to indicate that the perturba
tion series of In (X 11/10) is more "primitive" than that of 
(X 11/10)' Let us mention in that respect that Aharonov and 
Au6 have recently studied the perturbation expansion of 
In(X 11/10) in the case where IX) are position eigenstates (call
ing it a "logarithmic perturbation expansion"), and found it 
to have attractive computational advantages. 

In Sec. II, a stochastic process is associated with 
{ H 0' IX ) , IX ') 1, and its properties studied. In Sec. III, the 
cumulant perturbation expansion of InpH,.B(X,x') is con
structed. The low-temperature (Iarge-"time") behavior of 
that cumulant expansion is exposed in Sec. IV, leading to the 
logarithmic Rayleigh-Schrooinger perturbation series for 
the ground state of H, in Sec. V. In Sec. VI, the case of a 
many-body system is considered, and linked cluster theo
rems deduced. We conclude with a brief discussion in Sec. 
VII. Two appendices contain the more technical details. 

Notation: The eigenstates and energies of Ho are de
noted tPn,En: 

HoltPn) = En ItPn)' 

Those of H are denoted 1/1 n ,En : 

H l1/1n) = En l1/1n)' 

II. STOCHASTIC PROCESS ASSOCIATED WITH Hf}X,X' 

Multiplying and dividing by PHo.P(X,x'), we rewrite 
(1.3) as 

X.O( (( ))X,.T 
R(X,x',T) = exp - Jo dtv(t) , 

where we have set 

v==V Iii, 
introduced the "time" 

T 131i, 
and denoted 

A (t )=e - IHoI" Ae'HoI" 

(2.1) 

(2.2) 

(2.3) 

for any operator A; the "stochastic average" X.T «( ... )X'.T' is 
defined by 

(X leTHoI"T ( ••• )e - T'HoI"IX') 
X.T ( )X'.T' - (2 ( ... ) = (Xle-(T'-TlHoI"IX') , .4) 

where T _ orders operators such that their time arguments 
increase from left to right (T _ is part of the averaging oper
ation). We used 

(2.5) 
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The stochastic process defined by (2.4) is not stationary 
[no time translation invariance inside X,T «( ••• )X"T'], because 
of the fixed times T and T' on which it depends. We have, 
however, for any t, 

X.T( )X,.T' X.T+ I ( )X .. T' + I 

I}A;(t;) = I}A;(t/ + t) . (2.6) 

Also, since (2.3) implies A (t)t =A t( - t), 

[
X.T( )X,.T.]t x'. - T'( )X. - T 

I}A;(t;) = I} Ai( - t;) . 

(2.7) 

We henceforth assume that the ground state of Ho is 
isolated, i.e., that (see the end of Sec. I for notation) 

1':=Ii/(E) - Eo) is finite. (2.8) 

We then have (dropping Ii's for simplicity) 

e- tHo = L ItPn)e - '''. (tPn 1---+ltPo)e - '''o(tPol as t---+oo. 
n 

(2.9) 

For discussion purposes, let us assume more specifically that 
the limit is essentially reached when t is larger than some 
time 1'>1', i.e.,7 

Consider now (assuming T,t),t2 .. ·,tn ,T') 

X.T (V(td V (t2 ) .. • V(tn )X'.T' 

(2.10) 

_ (X Ie - (I, - T)HoVe - (I, - 1,)Ho ... Ve - (T' - I·)H°IX') 

- (Xle-(T'-T)HoIX') 

1ft) - T>1', whence also T' - T>1', we have 
(X Ie -II, - T)Ho _ (X ItPo)e -II, - T)"o(tPol 

(X Ie -IT' - T)Ho (X ItPo)e -IT' - T)"o(tPol 

= (tPOle-"Ho 

(tPol e - T'Ho 

(2.11) 

(2.12) 

A similar near equality holds if T' - tn > 1'. Insertion into 
(2.11) yields 

X.T (V(t))"'9\: - 00 (V(td ... , if t) - T> 1', 

... V(tn)X·.T·~ ... V(tn)OO ifT'-tn >1', 

where) 00 and - 00 ( are defined by 

I
. X.T«( )X·.T' (tPol T _ ( ... )e - T'HoIX') 
1m .. , = --------

T_ - 00 (tPol e - T'HoIX') 

== - 00 «( ... )X'.T·, 

lim X.T «( ... )X'.T' = (X leTHoT _( .. ·)ltPo) 
T'-oo (X leTHoltPo) 

:=X.T «( ... ) 00, 

lim X.T «( ... )X·.T· = (tPol T _ ("')ltPo) 
T_- 00 

T'_oo 

=-00«( ... )00. 

(2.13) 

(2. 14a) 

(2. 14b) 

(2.14c) 

The near equalities (2.13) become exact as T---+ - 00 andlor 
T'---+oo. Observe that the stochastic average - 00«( ... )00 is 
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stationary, i.e., we have the time translation invariancell 

- co (~A;(t;))"" = - co(~A;(t; + tl)"". (2.15) 

Suppose now that tj + I - tj > 7, whence also 
T' - T>r,insertingthenEq. (2. 10) with t = tj+ I - tj in the 
numerator of (2.11), and with t = T' - T in the denomina
tor, we get 

X.T (V(tl} ... V(tj)V(tj+ I } ... V(tn })X"T' 

g,:X.T (V(ttl ... V(tj) co - co (V(tj + I}'" V(tn }}X'.T· 

g,: (X.T (V(ttl ... V(tj)}X'·T') e·T (V(tj+ d ... V(tn)X·.T,), 

(2.16) 

the last line in view of (2.13) and the fact that tj+ I - tj > 7 

implies tj + I - T, T' - tj > 7. The above near equalities be
come exact as tj + I - tr" 00. Equation (2.16), stating that 
interactions V(t;) become statistically independent when 
separated in time by more than 7, characterizes the stochas
tic process X.T ( }X'.T· as of finite memory g,: 7. 

The stochastic process introduced here, and the asso
ciated notion of a "quantum memory" 7, become very intu
itive when IX) are position eigenstates, and the density ma
trices (Ll) are represented as path integrals.9 

III. CUMULANT PERTURBATION EXPANSION OF THE 
DENSITY MATRIX 

By expanding the exponential in (2.2), we obtain the 
(direct) perturbation expansion ofpH,,8(X,x') in powers of V: 

I 

PH,,8(X,x') =PHo..B(X,x'){1 _1;-1 LTdtX.O(V(t)}X .. T 

+ I;-z LTdtz ['dt , x.O( V(tl)V(tZ)}X'·T + .. 1 
(3.1) 

However, this expansion is useless as an approximation 
scheme at low temperatures (large T), because the term of 
nth order in V diverges like Tn as T _ 00; this follows from 
the fact that when Tis very large (T>n7), then 

x.o (iII V(t;) r··T 
g,: ;iI, x.o( VIti )}X'.T g,: ;iIl -co (V(O)} co 

(3.2) 

within the bulk of the integration volume Sld nt not in the 
vicinity of hyperplanes with two or more t;'s equal, or near 
boundaries (one or more t; near 0 or T) [the first equality in 
(3.2) holds if the t; are all well separated from each other, by 
(2.16), and the second near equality follows from 
x.O( V(t )X,T g,: - co (V(t)} co = - co (V(O) co except in the vi
cinity oft = 0 and t = T, by (2.13) and (2.15)]. 

The situation here is quite similar to that met in the 
theory of relaxation,l,z and the same solution obtains, viz., 
expand InpH rather than PH' Le., perform the cumulant 
expansion3 of (2.2). Doing so, we get 

PH,,8(X,x') =PHo..B(X,x,)~(x.x',T), (3.3) 

where 

X.O( (iT ) )X .. T K (X,x',T) = In R (X,x',T) = exp - ° dt v(t) - 1 C 

= _ LTdtX,O(V(t)X',T + iTdtz ['dt, x.O(v(ttlv(tZ)};·,T + .... (3.4) 

The cumulants (VI Vz• .. ) c' whose explicit expressions are3 

(VI)c = (VI)' (VIVZ)c = (VIVZ) - (VI}(VZ), 

(VIVZV3 }c = (VIVZV3 ) - (VIVZ)(V3 ) - (VIV3 }(VZ) - (V2 V3 )(VI) + 2(VI)(V2 }(V3 }, .. ·, (3.5) 

have the fundamental property of vanishing whenever their 
arguments separate into two or more statistically indepen
dent subsets.3 Thus, because of the finite memory property 
(2.16), X,O(IIj=,v(tj);',T vanishes if there is a gap 
tj - tj _ 1 > 7, i.e., the cumulants in (3.4) are nonzero only if 
the times in them are clustered together; this implies that all 
the terms in the expansion (3.4) grow like Tas T-oo, so that 
this expansion stays a usable approximation scheme even as 
the temperature goes to zero. 

IV. LOW-TEMPERATURE (LARGE-"TIME") BEHAVIOR 

Asjust argued,K (X,x',T) - Tas T -00; we want to de
termine more precisely this asymptotic behavior. For this 
purpose, we adapt a procedure used in the theory of relaxa
tion 1,2 [the fact that here the averaging operation x,o «( ... ) }X'.T 
depends on T and is not stationary introduces a slight com
plication]. We first rewrite (3.4) as (see Appendix A) 
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where 

C~:{' (tl,tZ) 

(4.1) 

X,T (V(t tlexp ( _ f' dt v(t ))V(t2 ) f' T·. (4.2) 

The clustering property of cumulants implies that C~.6T 
(tl,tZ) vanishes as tz - t1-00 (it being always understood 
that O<t,<tz<T). For discussion purposes, let us assume 
more specifically that C~,6T (t 1,tZ) is negligibly small when 
t z - t I is larger than some time 7': 

C~,6T (tl,tZ)g,:O, if tz - tl > 7'. (4.3) 

Note that if v is sufficiently small, then 
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C X·.T (t t) "",X.O(V(t )V(t )X·.T X.O I' 2 - I 2 c , 

so that 1" et. l' in view of (2.16); but in general, 1" can be quite 
different from the memory 1'. We also have, on account of 
(2.13), 

Ci.;{(tl ,t2)et.C .. (t2 -t1), if1'<t l <:t2 <T-1', (4.4) 

where 

Coo (u)=C ~ "" (O,u) = - '" (v(o)exp ( - [ dt V(t))V(U)r 

(4.5) 

[because of (2.15), C ~ 00 (t 1,t2 ) = C ~ '" (0,t2 - ttl depends 
only on t2 - t I]' The form of relations (4.3) and (4.4) suggests 
that we introduce relative variables 

O=! (t l + t2)}~{tl = 0 - u/2 , 
~ (4.6) 

u = t2 - t1 t2 = 0 + u/2 

whereby (4.3) and (4.4) become 

Ci.6T(O;u) 

{
O, if u> 1" , 

et. Coo (u), if1'<O - u/2<0 + u/2< T -1', 

(4.3') 

(4.4') 

where we use the notation (note the semicolon) 

Ci.'!' (O;u)=Ci,'f' (0 - u/2,8 + u/2). (4.7) 

When expressed in terms of 0, u, the double integral in 
(4.1) naturally breaks up into two pieces (corresponding to 
the two integration regions R 1 and R2 shown in Fig. 1), sim
ply related to one another, and leading to the convenient 
decomposition (see Appendix B) 

K(X,x',T) = K(X,x',T) + K(X',x,T)t. (4.8) 

where 

L
TI2 

K(X,x',T) = - 0 dtx.O(v(t)X'·T 

+ 1T12 dO f9 duCi.6T(8;u) (4.9) 

[the double integral in (4.9) is over the regionRl in Fig. 1; the 

T tl 

e 

TA=-------

~~-------T-(J' 

FIG. 1. The integration regions 
for the double integrals in Eqs. 
(4.1), (4.9), and (4.140), in the 
(1,,12 ) coordinates in (a), in the 
(e,u) coordinates in (b) (the small 
square, triangle, circle and cross 
serve to identify corresponding 
points in the two coordinate sys
tems; the regions R, and R2 are 
the triangles delimited by solid 
lines). The case 1'>1' + 1" is de
picted. The dashed lines are 
I, = e - 0/2 = l' and 
12 = e + a/2 = T - 7', the dot
ted line is 12 - I, = a = 7". In 
view of Eq. (4.3), Ci,;{ is sizable 
only inside the hatched regions, 
and, on account of (2. 13), essen
tially equal to C ~ in the horizon
tally hatched part, to C;'o in the 
lower vertically hatched part, 
and to C~'~ in the upper verti
cally hatched part. 
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integral of Ci6T over R2 yields the similar term in 
K(X',x,T)t). When T is large, (4.3) and (4.4) imply that 
Ci,6T (0;u) is essentially equal to Coo (u) within most of the 
region (inside R 1) wherein it is sizable (see Fig. 1); since the 
latter region is of area - T /2, we conclude that as T --+ 00 , the 
second term of (4.9) grows like (T /2)SO' duG", (u). We also 
have 

x.O(v(t )X·.T et. - '" (V(/) oo~ - 00 (v) "', if l' < t < T - l' 

(4.10) 

[ - 00 (v(t) 00 is independent oft, by (2.15)], implying that the 
first term of (4.9) grows like -(T/2)-OO (v)"" as T_a':J. 
Hence, the dominant large-time behavior of (4.9) is 

K(X,x',T)-! bT as T-a':J, (4.11) 

where 

b= - -"'(v)'" + 1'" duC",,(u) (4.12) 

- 00 {v(o)exp (_ i oo 
dl V(t)) r (4.12') 

[the second line from using (4.5) and performing the integra
tion over u]. 

Let us now examine the difference 

K (X,x',T) -! bT~ + B + D, 

where 

(12 
A = - Jo dt [x.O(v(t)X·.T - - "'(v)""], 

l T12 ioo 
D = - d8 du C'" (u). 

o 29 

(4.13) 

(4. 14A) 

(4. 14B) 

(4. 14D) 

[We broke up the part S'6 /2 dO Sa du Coo (u) of!bTinto two 
pieces by setting So' du = S~9 du + Sr6 du, and included the 
first piece in B, D being the rest. Note that the integration 
region is R. in (4.14B), and R; in (4.14D), shown in Fig. 
l(b).] We show that A, B, andD tend to finite limits as T-oo 
(we denoteA oo ~limT~",A, etc.): Let Tbe large (1'>1' + 1"). 

Then, the integrand in (4. 14A) is sizable only for 1<1' [since 
x.O(v(t )X·,T ~ - '" (v) 00 if1' <t<T /2 with T> 21'], and more
over x.O(v(t )X·.T et.x.O(v(t) 00 there, by (2.13), whence 

A", = - 100 

dt [X,O(v(t)'" - - co(v)co]. (4.15) 

Also, in (4. 14B), CiY - Coo is sizable only for u<1" and 
0<7+1"/2 [see Fig. 1 (b)], and moreover Ci.{et.Cx.o 
there, by (2.13), whence 

f'" 129 

Boo = Jo dO 0 du[ C x.o (O;u) - C", (u)]. (4.16) 

Finally, in (4. 14D), Coo (u) is sizable only for u < 1", whence 

D", =.AI, (4.17) 

where 

Loo ioo 1 i'" .AI = - d8 du C co (u) = - - u du Coo (u) 
o 26 2 0 

(4.18) 
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(we used So dO Si9 du = So du S~/2 dO ). 

Combining (4. 13H4. 18), we get 

K(X,x',T)=!bT+a(X)+ff +k(X,x',T), (4.19) 

or, in view of (4.8) [denoting k(X,x',T) == k(X,x',T) 
+ k(X',x,T)t], 

K(X,x',T)=bT+a(X) +a(X')t + 2Y +k(X,x',T), 
(4.20) 

where 

(4.21) 

and 

k(X,x',T)=..:1A+..:1B+..:1D-<l asT---+oo, (4.22) 

where..:1A ==A - A 00 , etc., i.e., rearranging slightly, 

..:1A = - iTI2 dt [x.O(v(t )X'.T _ x.O(v(t) 00] 

+ roo dt [x.O(v(t)oo _ - oo(v)oo], (4.23A) 
JTI2 

..:1B = iTI2 dO fl1 du[ Ci.6T - C;,o] 

_ {"" dO (211 du[C;'o - C~ 00]' 
JTI2 Jo 

(4.23B) 

..:1D= dO duC",,(u)=- uduC",,(T+u) i
oo 

l"" 1 L"" TI2 211 2 ° 
(4.230) 

(in the last line, we used SI'I2 dO Si9 du = SI' du s1A dO). 

The form (4.19) and (4.20) should be a convenient start
ing point for getting low-temperature approximations. In 
particular, it yields, in the limit T ---+00, the perturbation ex
pansions for the ground state of H, as we now see explicitly. 

V. LOGARITHMIC RAYLEIGH-SCHRODINGER 
PERTURBATION SERIES 

Observing, in view of (2.9), that 

PHo.P(X,x'j---+(X ItPo) e-P'-o(tPoIX ') as/3---+oo, (5.1) 

we may set 

InpHo.p(X,x') = In (X ItPo) + In (tPoIX') 

-/3Eo+ho(X,x',{3f1), (5.2) 

thereby defining ho(X,x',T)-<l as T---+oo. Combining (3.3), 
(4.20) and (5.2) we obtain Eqs. (1.5) and (1.8) with 

h (X,x',T) = ho(X,x',T) + k(X,x',T)-<l as T---+oo, 
(5.3) 

In (X 1"'0) = a(X) = In (X ItPo) + a(X) + ff, (5.4) 

Eo=b=Eo-b 

= Eo + - 00 (v(o)exp ( - i"" dt V(t))):, (5.5) 

with [in view of(4.21), (4.18), (4.5)] 

a(X) = t~Ddx.O(exp( - iT dtV(t))): 

(5.6) 
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ff = - ~ i oo 
udu.- 00 (v(o)exp ( - r dt V(t))V(U)): 

(5.7) 

[in going from (4.21) to (5.6), we reverted to the variables t l ,t2 

in (4.16), and performed the integrations; each term in (5.6) 
diverges as T ---+00, but their difference stays finite]. 

Equations (5.4H5.7), which are, of course, to be under
stood as expanded out in powers of v, are the Rayleigh
Schrooinger perturbation series for the ground state of H. 
Note that "'0 given by (5.4) is normalized, 

("'01"'0) = 1, (5.8) 
as is clear from (1.7). By setting IX) = ItPo) in (5.4) [in which 
case x.O( = - "" (], we find lO 

ff = In(tPol"'o)' (5.9) 

Thus, the state ~o defined by 

(X l~o)=(X l"'o)/(tPol"'o) = (X ItPo) ea(X) (5.10) 

is normalized to 

(5.11) 

It is usually the expansion of ~o in powers of V which is 
constructed, and referred to as Rayleigh-Schrodinger se
ries.4 

By expanding out the cumulants in (5.4H5.7), and in
serting 1 = l:n ItPn) (tPn I between every pair of operators 
v(t;), one easily recovers, in the first few orders, the standard 
textbook form of the RS expansions4 [for In "'o(X), or for 
~o(X)ifonefurtherexpandsea(X) in (5. 10)]. But the cumulant 
form has definite operational and conceptual advantages, in 
view of the properties and statistical meaning of cumulants. 
In particular, it immediately leads to linked cluster theo
rems5 in the case of a many-body system, as shown in the 
next section. 

VI. MANY-BODY CASE-LINKED CLUSTER THEOREM 

Let the physical system considered consist of N (not 
necessarily identical) particles in a volume 'Y, and 

N 

Ho = I hj' v= I V;j' (6.1) 
j= 1 ;<j 

We choose the states IX) as products of single particle states, 
N 

IX) = IT IXj )ul, (6.2) 
j=1 

where I) U) belongs to the Hilbert space of the jth particle. 
Here, we do not take account of quantum statistics [i.e., (6.2) 
is not (anti)symmetrized with respect to identical particles]. 

Consider now Eq. (2.2), with V given by (6.1). Defining 
(Mayer trick 11) 

fij = exp ( - iT dt Vij(t)) - 1, (6.3) 

where 

(t) - tHo tHo - t(hi + hj) t(hi + hj) vij = e vije = e vije , (6.4) 

we have 

exp( - ( dt V(t)) - 1 = flY + fijI - 1 Jo I<J 

(6.5) 
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= "iJij + I !;j;k + ... 
i<j i<j<k 

=Irf. (6.6) 
r 

In the last line, the sum is over all Mayer graphs II consisting 
of 2,3, ... ,N vertices (i.e., black dots representing particles) 
with zero or one edge (representing/i) between every pair of 
vertices [see Fig. 2(a)], and we denote 

r f
= II !ij' (6.7) 

(iJ)er 

the product being over all edges of r. Equation (2.2) thus 
becomes 

x.o I )X .. T 
R (X,x',T) = 1 + \~ r f 

. (6.8) 

Because the averaging operation ( ) contains the time
ordering operation, the!ij in (6.8) are, of course, to be under
stood as ultimately expanded in powers of vij' One may 
therefore prefer to use alternative, more detailed, diagram
matic representations. Thus, if one expands the 1 hs of (6.5) as 

exp ( - iT dt V(t)) - 1 

i
T 1 iT iT = - dt v(t) + - dt2 dt l v(t2)V(tl) + ... , 

o 2 0 0 

(6.9) 

then, on substituting (6.1), one gets terms like 

iT dt3 iT dt2 iT dtl v\2(tdv23(t2)vdt3), (6.10) 

which may be represented by multigraphs (i.e., graphs with 
possibly more than one edge between each pair of vertices), 
wherein each particle is again represented by a vertex, and 
each edge, drawn as a dashed line, represents an interaction 
vij [akin to Feynman diagrams, 12 see Fig. 2(b)]. Or, if instead 
one uses the explicitly time-ordered form 

exp ( - iT dtV(t))-1 

= - iT dtv(t) + iT dt2 1" dt l V(tl)V(t2) +"', (6.11) 

then one will obtain terms like 

iT dt3 1" dt2 1" dt l vdtdv23(t2)vdt3), (6.12) 

which may be represented by a time-ordered graph (akin to 

(a) 

(b) 

(e) 

1258 

2 

/\ 
1 3 

FIG. 2. The three kinds of diagrams used. The 
labeled fat dots and vertical lines (vertices) rep
resent particles 1,2, and 3. In graph (a), repre
senting/12.h3' each edge (dark line) stands for a 
factor /'r In the multigraph (b), representing 
(6.10), and in the time-ordered graph (c), repre
senting (6.12), each edge (dashed line) represents 
an interaction uij' In (c), time runs upwards, and 
the diagram is drawn three dimensionally; its 
projection onto the horizontal plane (defined by 
the three "feet") yields the multigraph (b). 
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Goldstone diagrams l2
) wherein time flows upwards, each 

particle is represented by a vertical line (which may be called 
a "vertex"), and the interaction vij(tn ) is drawn as a dashed 
horizontal line ("edge") at level tn' connecting lines i andj 
[see Fig. 2(c)]. We then have, as more detailed versions of 
(6.8), 

R (X,x ',T) = 1 + x.O(sum of v multigraphs)X"·T (6.13) 

= 1 + x.O(sum of time-ordered graphs)X"·T. 
(6.13') 

Although they must be understood as ultimately expanded 
out in terms of time-ordered graphs, the Mayer! graphs in 
(6.8) are much more compact and convenient to work with 
(each! graph standing for an infinite number of v multi
graphs or time-ordered graphs). 

Let us now introduce (6.6) into the cumulant expansion 
(3.4), i.e., 

X.O( )X .. T 
K(X,x',T) = Ir f , 

r cluj 

(6.14) 

where the argument { v J is a reminder that the cumulants are 
built with the interactions vij (not with the/;j). 

A diagram is said to be connected if the set ofits vertices 
(or "vertices") cannot be partitioned into two or more sub
sets such that there are no edges connecting vertices belong
ing to different subsets. The connected subdiagrams of a dia
gram are called its connected components. Let the graph r 
have n>2 connected components r l ,r2, ... ,rn ; then, in view 
of(6.2) and (6.7), 

(6.15) 

i.e., the different connected components (and the interac
tions they contain) are statistically independent. It then fol
lows from the basic property of cumulants (vanishing if their 
arguments are independent) that 

x.O(rf)X'.T = 0 if ris not connected (6.16) 
cluj ' • 

Hence, Eq. (6.14) reduces to 

K(X,x',T) 
conn 

= X.O( I rf)~'~r 
r 

= X.O(sum of connected v multigraphs)~~r 

= X.O(sum of connected time-ordered graphs)~~r ' 
(6.17) 

where l:~nn sums over only connected Mayer graphs. Thus, 
the cumulant expansion gets rid of both time secularities and 
disconnected diagrams. 

Equation (6.17) is a "linked cluster theorem." It, of 
course, carries over to each individual term in the decompo
sition (4.20), in particular to the energy Eo = b, implying that 
the latter is proportional to the number of particles N. 13 The 
linked cluster theorem for Eo was first proven in the first few 
orders of perturbation theory by Brueckner,S(a) and in gen
eral by Goldstone, SIb) for particles obeying quantum statis
tics. The present general proof for the case of Boltzmann 
statistics seems to be new. Quantum statistics may also be 
incorporated in the present treatment by using the methods 
of Ref. 14; this shall be discussed elsewhere. 
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VII. CONCLUSION 

The cumulant expansion ofln P Ho + V.!3 (X,x') in powers 
of the perturbation V was shown to provide an approxima
tion scheme which stays usable even as the temperature goes 
to zero. In that limit, P H.P becomes expressible in terms of 
the ground state energy and wave function of H, whence 
emerge the Rayleigh-Schrodinger perturbation expansions 
of these quantities, in cumulant form. 

It is conceptually pleasing to see a common, statistically 
meaningful structure, cumulants, underlie the perturbation 
treatments of such diverse objects as time correlation func
tions, 1.2 partition functions, 14 thermal density matrices, and 
quantum eigenstates and energies. 

The cumulant forms of the RS perturbation expansions 
of Eo and In f/!o(X) seem to be new. The way they were arrived 
at in the present paper is not the most direct (our principal 
object of interest here being PH , not Eo and f/!oper se); other, 
more natural derivations, also adaptable to the case of (non
degenerate) excited states, will be given in a separate paper 
dealing specifically with the cumulant perturbation expan
sions of Eo and In f/!o(X) and their properties. 

In dealing with the case of a many-body system, we 
used three types of diagrams, analogous to Mayer, Feyn
man, and Goldstone diagrams. Although they must be un
derstood as ultimately expanded in "Goldstone" diagrams, 
the Mayer diagrams are the more compact and easier to 
work with; in particular, they prove to be by far the more 
convenient when one considers the ground state energy Eo in 
the thermodynamic limit (N, r -+ 00 , keeping the density N / 
r fixed), and constructs its expansion in powers of the den
sity, as will be discussed elsewhere. 

APPENDIX A: PROOF OF EQ. (4.1) 

Equation (4.1) follows from the identity 

d:;Texp( - IT dSV(S)) = -V(t)exp( - IT dSV(S))V(T) 

(AI) 

and the following lemma. 
Lemma: ForanyfunctionF(t,T) of two time arguments, 

F(t,T) = F(t,t) + IT dt l r(tl,ttl 

(A2) 

where 

F'(tl,t2)==~F(tl,t2)' 'F(tl,t2)=~F(tl,t2)' etc. 
dt2 dt l 

Proof' Denote by G (t,T) the rhs of (A2). To prove that 
F =G, it suffices to show that as functions of T (for any fixed 
t ), F and G are equal at T = t and have equal first derivatives. 
That F(t,t) = G (t,t) is obvious; there remains to show that 
F'(t,T) = G '(t,T), where 

G '(t,T) = F'(T,T) - IT dtl 'F'(tl,T). (A3) 

Considering F' and G' as functions of t (T fixed), we clearly 
have F'(T,T) = G'(T,T) (equal initial values) and 
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'G '(t,T) = 'F'(t,T) (equal first derivatives), whenceF'=G'. 
Q.E.D. 

APPENDIX B: PROOF OF EQ. (4.8) 

Under the change of variables (4.6), Eq. (4.1) becomes 

K(X,x',T) = - iT dtX.O(v(t)X'·T 

+ II dOduCX"T(O'U) x,o " (Bl) 

where the integration regions R I and R2 are shown in Fig. 1, 
i.e., 

II (12 (28 
dO dO' = Jo dO Jo dO', 

II 
((2IT-8) 

dO du== JTI2 dO Jo dO'. (B2) 

R, 

We now note that 

C X'.T (O'#?) - C X.O ( _ O'u)t - C X.T (T - O'u)t X,D ,v - X', - T ,- x',a " 
(B3) 

the first equality by (2.7) and the second one by (2.6). There 
follows 

Ii iT i2IT-8) 
Ci.;{ = dO dO' C},:o (T - O;u)t 

R, TI2 ° 
(12 (28' 

= Jo dO' Jo dO' C},:o ·(0 ';u)t 

= [I L. C},:o r (B4) 

(we set 0 ' = T - 0 ). Likewise, we have 

x.O(v(t )X'.T = [X', - T (v( _ t )x.O] t = [X',O(v(T _ t )X.T] t, 

(B5) 

again by (2.7) and (2.6). Then, 

( dtX,O(v(t)X',T = ( dt [X'.O(v(T_ t)X.Tp 
JTI2 JTI2 

= [iT12 
dt' X',O(v(t ')X.T r (B6) 

(we set t' = T - t). Equation (4.8) follows immediately from 
(B4) and (B6). Note that K(X,x',T)t =K(X',x,T); but 
K (X,x " T) does not satisfy a like relation. 

I R. Kubo, in Fluctuations, Relaxation and Resonance in Magnetic Systems, 
edited by D. ter Haar (Oliver and Boyd, Edinburgh, 1962); J. Math Phys. 
4, 174 (1963). 

2A. Royer, J. Math. Phys. 24, 380 (1983). 
JR. Kubo, J. Phys. Soc. Jpn. 17, 1100 (1962). 
'See any textbook on quantum mechanics, e.g., G. Baym, Lectures on 
Quantum Mechanics (Benjamin, Reading, MA, 1969), pp. 225-230. 
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'The time T should be more precisely defined as r:=Max r(x,X '), where 
r(x,X ') is defined by 

(xlr tH'lx') "" (xl(,6o)r t<'«,6olx'), for t> r(x,X'), 

and the maximum is taken with respect to a set of states relevant to the 
problem considered; thus, strictly speaking, T depends on the states IX) 
and IX '), unless the particle (or particles) is (are) confined by sufficiently 
steep potential walls, in which case T can be defined in an absolute manner 
(see Appendix E of Ref. 9 for a more detailed discussion). At any rate, the 
memory T is introduced only to facilitate discussion and understanding, 
and is not essential for the validity of the final results. 

"Note that inside X.T «( ... )X'.T·, we can time translate freely to the extent 
that we keep away from the end times T and T', i.e., (for 

X.T( IT V(t;))X .. T' "" X.T( iI V(t
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+ t ))X .. T', 
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In«,6olr/iHI(,6o)eP" 

=In -~(exp( - f dtV(t)))~ 
= bT + 2ff + 2.<1D. (*) 

This could also be obtained by applying directly to the cumulant expansion 
of the left hand side exactly the same analysis as in Sec. 3B of Ref. 2, since 
- ~ «( ... ) ~ = «,601( .. ·)1(,60) is stationary. Equation (*) above, and the ex
pressions ofb,f, and.:lD [Eqs. (4.12), (4.18), and (4.230)), are identical in 
form to Eqs. (3.27), (3.24), (3.28), and (3.29) of Ref. 2. 

"J. E. Mayer, J. Chern. Phys. 5, 67 (1937); J. E. Mayer and M. G. Mayer, 
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Mechanics (Wiley, New York, 1963). 
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involves [see Eq. (5.5)] the operation - ~«( ... )~ = «,601("')1(,60), which 
averages over a uniform distribution of the N particles throughout the 
volume Y, so that each particle interacts, on average, with only a small 
number of neighbors, whence a total interaction energy - N. This argu
ment, however, does not apply to In(X Ilbo) and In PH (X,x ') (even though 
these contain only connected diagrams), because they involve the averages 
X.O«( ... )~ orx.O«( ... )x·.Twhere IX), IX') are arbitrary (e.g., they may 10-
cate all the particles near each other, whence a total interaction energy 
_N 2

). But if we let IX) = IX') = 1(,60)' then the argument applies, i.e., 
In«,6ollbo) and In«,6olr/iH 1(,60) are proportional toN [as is clear from the 
fact that, like Eo, they are then expressible in terms of C ~ (u), see Eqs. 
(4.12), (4.18), (4.230) and (5.9), and Eq. (*) in Ref. 10]. 

14A. Royer, J. Math. Phys. 24, 897 (1983). 
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A perturbation theory-based procedure for calculating mean values of quantum electrodynamic 
operators is proposed. Analytical solutions to similar electrodynamic problems are used as zero
order approximations for the above approach. 

I. INTRODUCTION 

Models relying on the interaction between a quantum 
system and an external field are widely used in quantum 
theory. In particular, this kind of external field approxima
tion or, in other words, the semiclassical approach, proves to 
be extremely useful in laser physics,! laser spectroscopy,2 
relativistic particle radiation theory, 3 etc. Recently, great in
terest has been focused on optical effects that seem to require 
a more detailed quantum treatment. For example, it is gener
ally assumed that strong fields satisfying the classical Max
well equations represent the asymptotic case of the complete 
quantum description. However, the quantum theory calcu
lation gives rise to insurmountable difficulties that do not 
allow the use of the higher-order perturbation theory. 

The present paper reports a new perturbation theory 
based procedure for calculating mean values of Heisenberg 
operators in quantum electrodynamics. There exist a few 
analytical solutions to the problems of the quantum-system 
behavior in an external field. These solutions provide the 
basis for the zero-order approximation of the proposed per
turbation theory. The required mean Heisenberg operators 
are obtained as a power series of the coupling constant. 

For illustration purposes the operator properties de
fined in terms of the semiclassical representation4 are briefly 
discussed in Sec. II. Further, the basic formula for calculat
ing mean values of operators is derived. Finally, in Sec. IV 
the above calculation is illustrated by estimating the mean 
energy of the two-level atom interacting with the quantum 
field. It is shown that fairly good agreement with the com
plete quantum theory is achieved as low as the first-order 
perturbation theory. 

II. SEMICLASSICAL REPRESENTATION METHOD 

The semiclassical representation method has already 
been studied in sufficient detai1.4

,5 Here we discuss only the 
algebraic aspects of the above approach. 

Consider the creation 0+ and annihilation 0- opera
tors, which obey the following Bose commutation relation: 

[0-,0+] = 1. (1) 

The operators 0 ± are defined in a Hilbert space H. Let the 
operator 0- be represented as the sum of the two operators 
ao and .1a as follows: 

0- =ao+.1a. (2) 

However, this definition gives rise to numerous ambiguities 

which can be removed provided certain restrictions are im
posed on the summands in Eq. (2), viz., 

[ao,ao+] = [.1a,ao] = 0; [.1a,ao+] = [.1a+ ,.1a] = 1. 
(3) 

Consider the interrelation between the operators ao±, 

.1a ± and the operators 0 ± . One can readily see the relation
ship between them in the case where ao± and.1a ± are de
fined in the Hilbert space W = H ® H, where ® is the sign 
of the direct product. 

It has been shown4 that Eqs. (3) are fulfilled provided 
the operators ao± , .1a ± satisfy the relations 

o it = 0 ± ® I, oo± = 0 ± ® I + I ® 0 =F , 

.1a± = -I ® 0=F, 

where I = 1. 

(4) 

The density matrix R defined in the Hilbert space W is 
the direct product of the initial density matrixp and a vacu
um state projector6 

R =p ® 10)(01. (5) 

There are two interesting features of the operator func
tion F (ao± ,.1a ±). These are manifested in the fact that Eqs. 
(6) and (7) below are obtained using Eqs. (4) and (5) and a 
vacuum state vector property 

Tr RF(ao±) = TrpFA(o±), (6) 

where FA (0 ± ) is an antinormally ordered operator, 

Tr R.1aF(ao±,.1a ±) = Tr RF(ao±,.1a ± )Lla+ = O. (7) 

These features permit the calculation procedure of the pro
posed perturbation theory to be simplified significantly. 

III. PERTURBATION THEORY 

Convergence of the perturbation theory series is known 
to depend on the proper choice of a zero-order approxima
tion. It is proposed to choose analytical solutions to semi
classical electrodynamic problems as a zero-order approxi-, 
mation for solving similar quantum electrodynamic 
problems. 

Using the semiclassical representation method, the 
Schrodinger evolution operator equation, 

.z: au _ H (A ± ) U 
In- - int a ,)C,t , at 

can be reduced to the coupled equations of the form 

iii ac = Hint (ao± ,x,t )C, at 

(8) 

(9) 
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(10) 

Here the evolution operator U = CQ, Hint (a ± ,x,t ) is the in
teraction Hamiltonian in the interaction picture; x are quan
tum subsystem variables (e.g., atoms, particles, molecules, 
etc.). 

Due to the commutativity of ao± , Eq. (9) is assumed to 
describe the quantum subsystem dynamics in the external 
field with amplitudes a~. Therefore, its solution will be em
ployed as a zero-order approximation or, in other words, as 
the basic formula for finding mean values of quantum elec
trodynamic quantities using the perturbation theory under 
consideration. 

To calculate any operator in the Heisenberg picture, an 
integral equation may be used 

(11) 

Without loss of generality, let us consider, e.g., the in
teraction Hamiltonian linear in the field amplitUde. To sim
plify the calculation, the operator F H (t) in Eq. (11) can be 
ordered as follows: 

F H(t) = FO(ao± ,x,t) + ilaF lO(ao±,.1a ± ,x,t) 

(12) 

UsingEqs. (6), (7), and (12) yields the mean valueofFH to the 
second order in the coupling constant 

Tr R FH(t)~Tr R (Fo(ao±,x,t) +0i
t 
dr [Fo,HQ(r)] + ~it dr[dr'[ [Fo,HQ(r)],HQ(r')]) 

1ft ° (1ft) ° ° 
=TrR {Fo+0it dr F(r,t) +~it driT dr'[[ F(r,t),H~(r')] + [Fo,H~(r)] H~(r') 

1ft ° (1ft) ° ° 
-H~(r')[Fo,H~(r)] + :Ja H~(r')[Fo,H~(r)] - [Fo,H~(r)] :Ja H~(r')+H~l(r'):Ja F(r,t) 

~ ~o ~o 

-~ F(r,t).H~(r') +~ [Fo,H~l(r)] ~H~(r') -~H~(r')~ [Fo,H~(r)]]}. 
aao+ aao+ aao aao+ aao 

Here F(r,t) is defined as 

F(r,t) = [FO(t),H~(r)] +H~(r)a~(t) _ a~O!) H~(r). 
° UUo 

(14) 

IV. EXAMPLE 

To illustrate this method we estimate the mean energy 
of a two-level atom interacting with a quantized plane wave. 
This problem has been chosen for two reasons. First, it al
lows for analytical solutions to the evolution operator both 
for the case where the atom is subject to an external field7 

and that of its interaction with a quantized wave. 2 Second, it 
does not require any cumbersome analytical computations. 

The dynamics of a two-level atom interaction with a 
plane monochromatic wave is determined by the relation 

·z ac 1 Z( jEt) (15) ITI- = /1,(UoTl arP +e + C.c. , 
at 

whose solution has the following form 

C = - it ao sin !1t exp ( i;t ) u + 

weJ.. +. n (-iEt) 2i( n' Et -n ao SlDHt exp -2- u_ + cos~f,tsm2 

- {Jsin!1t cos Et)u z + cos!1t cos Et + {J sin!1t sin Et. 
2 2 2 

(16) 

Here u ± ' U z are Pauli spin matrices for the atom of interest, 

{J = E/W, E = (Uo - (U;!1 = JA 2(U~atao + c/4 is the Rabi 
frequency, A is the coupling constant, and (U, (Uo are the inci-
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(13) 

I 
dent field and atomic frequencies, respectively. The opera-
tors Hint and HQ in Eqs. (9) and (10) are defined as 

Hint (ao± ,U ± ,t) = AWo(arP +ejEt + C.C.), 
(17) 

HQ(ao±,.1a ± ,t) = AWoC +(t )(ilau +ejEt + C.C.)C (t). 

Ordering HQ as in Eq. (12) yields for its terms 

H~(t) = - iA 2(U~ft 

X [f drC+(r)u_C(r)C+(t)u+C(t~t-7j - c.c.]. 

(18) 

H~= (H~)+ = AWoC+(t)u+C(t). 

The two-level mean energy is calculated under the assump
tions that the initial atomic density matrix p has only diag
onal nonzero elements and that the initial state of the field 
can be described by the n-photon wave function. 

Thus using Eqs. (13) and (18), one obtains 

Wo Tr Ruz = wo(Tr pUz {1- (1 - {J2)(1 - cos Wt)) 

- (A 2(U~ /211 2)({J 2( 1 - cos Wt) 

+ (1 - {J 2)t!1 sin Wt )(Tr pUz + !J). 
(19) 

To eliminate the secular term which appears in Eq. (19), one 
can make use of the Lindschtedt procedure.8 Thus the field 
amplitude ao can be renormalized as 

0'0 = ao(1 + A 2A2 + A 4A4 + ... ). (20) 

Then, retaining the terms proportional to the square of the 
coupling constant A 2, one can rewrite Eq. (17) and recalcu-
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late the mean energy. In doing so, there appears another 
secular term 

(U 2(()~ao+ aclfl 2) [i~(1 - cos 2nt) + (1 - ,82)tiisin 2nt ]A2. 
(21) 

Let the constant A2 satisfy the following relation: 

A2 = (Tr pCTz + W4ao+ ao Tr pCTz • (22) 

Then the factor immediately preceding the secular term van
ishes. Hence, the expectation value of the mean energy is 
determined up to the square of the coupling constant A 2 giv
en by the relation 

Wo Tr RCTz = w o(1 - (1 - ,82)(1 - cos Wt)) Tr PCTz ' 

(23) 

where,8 = €/2n, n = JA 2(()~(n + 200+ a0-42) + c/4 is the 
renormalized Rabi frequency. It should be noted that our 
result agrees fairly well with the one obtained by using the 
quantum field approach.9 

V. CONCLUDING REMARKS 

It has been shown that mean values of operators in 
quantum electrodynamics can be derived from the relevant 
data obtained in the semiclassical formalism. The above pro
cedure is found to be conveniently performed in terms of the 
semiclassical representation. In this case the equation for the 
evolution operator may be separated into two coupled equa-

1263 J. Math. Phys., Vol. 26, No.6, June 1985 

tions. One of the resultant relations describes the dynamics 
of a quantum system in an external field, while its analytical 
solution serves as a zero-order approximation for solving the 
other relation, where quantum properties of the electromag
netic field are taken into account. The reported perturbation 
theory suggests the feasibility of the calculation procedure 
under consideration for a wide spectrum of problems per
taining, e.g., to the intermolecular interaction and to the 
quantum theory of angular momentum. 5 
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A general theoretical framework is developed for the treatment of a class of quantum field theories 
that are explicitly exactly solvable, but require the use of C·-algebraic techniques because time
dependent scattering theory cannot be constructed in anyone natural representation of the 
observable algebra. The purpose is to exhibit mechanisms by which inequivalent representations 
of the observable algebra can arise in quantum field theory, in a setting free of other complications 
commonly associated with the specification of dynamics. One of two major results is the 
development of necessary and sufficient conditions for the concurrent unitary implementation of 
two automorphism groups in a class of quasifree representations of the algebra of the canonical 
commutation relations (CCR). The automorphism groups considered are induced by one
parameter groups of symplectic transformations on the classical phase space over which the Weyl 
algebra of the CCR is built; each symplectic group is conjugate by a fixed symplectic 
transformation to a one-parameter unitary group. The second result, an analog to the Birman
Belopol'skii theorem in two-Hilbert-space scattering theory, gives sufficient conditions for the 
existence ofM0ller wave morphisms in theories with time-development automorphism groups of 
the above type. In a paper which follows, this framework is used to analyze a particular model 
system for which wave operators fail to exist in any natural representation of the observable 
algebra, but for which wave morphisms and an associated S matrix are easily constructed. 

I. INTRODUCTION 
This study treats simple model quantum field theories 

that illustrate mechanisms by which nonstandard represen
tations of the algebra of observables arise in the solution of a 
field theory. The discussion deals with field-theoretic ana
logs to systems with finite numbers of degrees of freedom 
that are solvable by transformation to normal modes. 

The point of view is different from that in other treat
ments of representation theory for quantum field theory, be
cause the discussion is not concerned with the problem of 
how to specify a dynamical law. Rather, from the start, the 
dynamics is given by well-defined automorphism groups on 
a C· algebra for a quantum field, and the analysis concerns 
the scattering of the associated particles. With this frame
work it is possible to study representation-theoretic ques
tions involved in the formulation of scattering theory, in the 
absence of other problems commonly encountered in the 
specification of dynamics for general quantum field theories. 

Even in this simple setting, a C·-algebraic viewpoint is 
essential for time-dependent scattering theory, because usu
al (second-quantized) wave operators generally fail to exist in 
any natural representation of the observable algebra, while 
unitary S matrices with conventional physical interpretation 
can be constructed via a representation-independent frame
work. This class of model theories is thus of pedagogical 
value, and illustrates some aspects of the C·-algebraic ap
proach to quantum field theory. 

The theories describe nonrelativistic systems involving 
the linear interaction of a quantum field with other systems, 
such as classical external potentials, other quantum mechan
ical systems, or other quantum fields. These theories are al
gebraically exactly solvable by a technique analogous to 
transformation to normal modes; their salient feature is that 
the "diagonalization" morphism need not be implementable 
in a given representation of the CCR algebra. 

In each model, both the interacting and free time devel
opments are given by prescribed one-parameter automor
phism groups on the Weyl algebra of the CCR, so the proper 
dynamical law for the system is unambiguous. For each of 
the two automorphism groups, there is an explicit invariant 
state on the algebra determining a representation in which 
the automorphism group is implemented by a strongly con
tinuous unitary group with positive generator. 

Given this situation, several questions immediately 
arise. Are the two representations determined by the invar
iant states unitarily equivalent? Ifnot, can the two automor
phism groups be concurrently unitarily implemented in ei
ther representation? In any representation? Do M0ller wave 
operators exist in a given representation? Can representa
tion-independent M0ller wave morphisms exist and define a 
scattering morphism? If a scattering morphism exists, in 
what representations is it implementable? What is the rela
tionship among the states invariant under the two automor
phism groups and the state(s) invariant under the scattering 
morphism? 

To answer these and other questions for this class of 
models, we develop a general theoretical framework which is 
independent of any specific model. The framework is com
prised of two sets of results which address two main issues. 
The first issue concerns the conventional approach to scat
tering theory, the construction of wave operators on the car
rier space of a fixed representation. The results deal with 
automorphism groups of the CCR algebra which are in
duced by symplectic groups on the underlying classical 
phase space, and their unitary implementability in quasi-free 
representations. In particular, we develop necessary and suf
ficient conditions for a representation symplectically related 
to the Fock representation to admit concurrent unitary im
plementation of both free and interacting automorphism 
groups. 
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The second issue concerns the alternative algebraic ap
proach to scattering theory, the construction of wave mor
phisms on the CCR algebra. The results deal with mor
phisms which are induced by partial symplectic 
transformations (the real-linear analogs of complex-linear 
partial isometriesj on the classical phase space. In particular, 
we establish conditions sufficient to ensure the existence of 
wave morphisms, and we introduce the notion of the partial
isometric implementation of a partial symplectic transfor
mation, and determine necessary and sufficient conditions 
for such implementability. This algebraic framework allows 
the extension of the wave operator formalism to situations 
not previously treated. 1-9 

In a paper which follows,IO henceforth referred to as 
[II], we illustrate the general results with a specific one-pa
rameter family of model systems consisting of a quantum
mechanical oscillator interacting linearly with a massless 
scalar field, roughly modeling an atom interacting with 
light. It is found that for a range of physically reasonable 
couplings, the bare vacuum and interaction vacuum are ine
quivalent. This turns out to have the consequence that al
though the free and interacting time developments can be 
concurrently unitarily implemented in either representation 
determined by the two vacua, wave operators do not exist in 
these representations. Nevertheless, wave morphisms on the 
CCR algebra do exist and define a scattering morphism 
which is implementable in one of the representations. 

More specifically, the topics discussed here are as fol
lows. Section II establishes terminology. 

In Sec. III, the class of models under study is character
ized precisely. The idea that there exists a transformation to 
normal modes is embodied by the assumed form of the inter
acting dynamical automorphism group. This group is in
duced by a one-parameter symplectic group on the classical 
phase space over which the Weyl algebra is constructed. The 
symplectic group is conjugate by a fixed symplectic transfor
mation (which induces the "diagonalization" morphism) to a 
one-parameter unitary group (which induces the "free" time 
development of the "normal modes"). Also in Sec. III, there 
is an outline of time-dependent scattering theory for this 
class of models. 

In Sec. IV, the main mathematical results are summar
ized in Theorems 1 and 2. Theorem 1 gives necessary and 
sufficient conditions for a representation symplectically re
lated to the Fock representation to admit continuous unitary 
implementation of an automorphism group of the above 
type. This theorem is a summary of the results established by 
Theorem 4 (Sec. VI) and Theorem 5 (Sec. VII). Theorem 2 
establishes sufficient conditions for the existence and com
pleteness of the Mlhller wave morphisms associated with the 
dynamical automorphism groups. It is analogous to the Bir
man-Belopol'skii theorem in two-Hilbert-space scattering 
theory I I; in Theorem 2, however, the "identification map" is 
a (real-linear) symplectic transformation. 

Section V relies on the work of Shalel2 to obtain the 
necessary and sufficient condition for the implementability 
of a single partial-symplectic morphism in a representation 
symplectically related to the Fock representation. The cen
tral result is presented in Theorem 3. 
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Section VI presents the core of the results in Theorem 1, 
Theorem 4, which can be roughly paraphrased in the follow
ing way. Let S be a self-real-adjoint invertible symplectic 
transformation, and let Vt be a one-parameter unitary group 
with positive self-adjoint generator H. Then [S, Vt ] is a Hil
bert-Schmidt operator for all real t if and only if there exists 
an m > 0 such that both Pm (S - I) and [S,i(1 - Pm )H] are 
Hilbert-Schmidt operators, where Pm is the spectral projec
tion for H onto spectral values larger than m. The impor
tance of this theorem is that it translates information 
couched in terms of "all time" into specific readily verifiable 
conditions. Section VI also includes the application of 
Theorem 4 to the determination of the necessary and suffi
cient conditions for the unitary implementability of an auto
morphism group of the aforementioned type in a representa
tion symplectically related to the Fock representation. 

There is also a discussion in Sec. VI of the important 
special case when the generator H of the unitary group Vt 

has a spectrum bounded away from zero. This situation has 
the physical interpretation that there are no massless excita
tions in the theory, and it is shown that in this case the inter
acting dynamical automorphism group can be implemented 
unitarily only in the representations interchangeable with 
the representation induced by its invariant state. These facts 
lead later to the observation that the nontrivial behavior in 
the models studied here is an infrared-like phenomenon, pre
dicated on the existence of massless particles in the theories. 

Section VII presents Theorem 5, which asserts that 
whenever a symplectic automorphism group of the type 
specified has a unitary implementation in a representation 
symplectically related to the Fock representation, then the 
family of implementing unitary operators can be chosen to 
be a continuous unitary group. Thus there always exists a 
second-quantized Hamiltonian in the representations admit
ting unitary implementation of the time development. 

Section VIII discusses the conditions a representation 
symplectically related to the Fock representation must sa
tisfy if it is to admit concurrent unitary implementation of 
two automorphism groups, the free (uncoupled) time devel
opment, and the interacting time development. 

Section IX compares the representation-dependent and 
the algebraic constructions of a scattering operator. It is in
dicated that even for the linear models treated here, the latter 
is essential. 

Finally, Sec. X presents the proof of Theorem 2. 

II. SYMPLECTIC MORPHISMS OF THE WEYL ALGEBRA 
AND THEIR IMPLEMENTATION 

Before specifying the class of models under study more 
precisely, it is convenient to fix some tenninology concern
ing the Weyl algebra of the CCR and its morphisms. 

The representations of the CCR which occur naturally 
in the study of the systems in question are of the type known 
as quasifree representations. 13

.
14 The manifestation of the 

interesting features of the systems does not however depend 
on the use of completely general quasifree representations, 
and for simplicity the considerations here are restricted to 
the following framework. 

Let K be a separable complex Hilbert space, also re-
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garded as a real symplectic space with (nondegenerate) sym
plectic form equal to the imaginary part of the inner product. 
Let Y(JY) be the boson Fock space over the complex space 
K, that is, Y(JY) = Ko Ell KI EIlK2 E1l"" where 
Ko = {cll Ic E C} is one dimensional, KI is isomorphic to 
K, and K" is the n-fold symmetrized tensor product of K 1 

with itself. 
The Fock space Y(JY) carries the standard irreducible 

representation (by unitary operators) of the Weyl group 
W:K -fg (Y(JY)) over K in which 

W(f)W(g) = exp( - iB(f,g)l2)W(f + g), 

where B is the symplectic form, and in which 
(W(f)J1lfE KJ is total in Y(JY). The abstract Weyl C'" 
algebra 'fr generated by the Weyl groupl5.16 is the algebra of 
the CCR under study. Throughout the following, the ab
stract Weyl algebra is identified with its standard faithful 
representation on Fock space. 

Linear transformations on K which preserve the sym
plectic form B are of interest because they leave invariant the 
Weyl group structure. The following definition is well suited 
to the analysis here. 

A symplectic transformation S:K -K is a bounded 
real-linear transformation such that B (Sf ,sg) = B (f,g) for 
allf,g E K, and such that SK is a complex subspace of K. 
Note that it is not assumed that S maps K onto K; the 
models to be treated require that the range of S is not all of 
K. In the models studied here, though, it is natural for the 
symplectic transformations which occur to have ranges 
which are complex subspaces of K. Since much of the subse
quent analysis simplifies in that case, the condition is incor
porated into the definition from the start. 

Denote by A the operation of multiplication by the 
complex number i on the Hilbert space K. (Real-linear 
transformations do not, in general, commute with A.) For 
Q:K _K an arbitrary bounded real-linear transformation, 
the bounded real-linear transformation Q +:K -K defined 
by Q + ==A "'Q "'A, with Q '" the real adjoint of Q, satisfies 
B (Q + f,g) = B (J,Qg), for allf,g E K. From the fact that B is 
nondegenerate on K, it follows that a bounded real-linear 
transformation S preserves B if and only if S + S = I. It is 
furthermore easy to show that if SK is a complex subspace 
then SS + and (I - SS +) are complex-linear self-adjoint or
thogonal projections, with SK = SS + K. 

Some of the following discussion requires consideration 
of transformations which are symplectic between proper 
subspaces of K. Let S:K -K be a bounded real-linear 
transformation whose kernel and range are complex sub
spaces of K. Then S will be said to be a partial symplectic 
transformation if B (S J,Sg) = B (f,g) for allf and g in the or
thogonal complement (ker S)' of the kernel of S. If S is a 
partial symplectic transformation, it follows (see Appendix 
B) that S + Sand SS + are complex-linear self-adjoint projec
tions onto the closed complex subspaces (ker S)' and (ran S), 
respectively. 

A partial symplectic transformation S induces a mor
phismO'on the Weylalgebra by the action oi W(f))= W(S f). 
Such a morphism 0' (or, loosely speaking, the transformation 
S ) is said to be implementable by partial isometry in a repre
sentation 11" of the Weyl algebra if there exists a partial iso-
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metry U on the carrier space of 11" such that U1T{W(f)) 
= 1T{oiW(f))) U =1T{W(Sf))U, forallfE K. If the trans
formation Sis invertible (maps K onto JY), then S + = S - I, 

and 0' is an automorphism. Such an automorphism 0' is said 
to be unitarily implementable in a representation 11" of the 
Weyl algebra ifthere exists a unitary operator On the carrrier 
space of 11" such that U11" (W (f)) U - I 

= 1T{oiW(f)))==1T{W(Sf)), for allfE K. 
The representation 11" R of 'fr induced via the Gel'fand

Naimark-Segal construction by the state E R on 'fr given by 

ER(W(f)) E](W(Rf)), 

whereRisasymplectictransformationandE](A )=(Il IAIl ) 
is the Fock vacuum state, is said to be symplectically related 
to the Fock representation. Without loss of generality the 
Hilbert space carrying the representation 11"R may be identi
fied with the Fock space Y(JY). Then with the convention 
that the representation symbols are dropped for the Fock 
representation, 11" R (W (f)) = W (R f). It is useful to classify 
representations according to their capacities for implemen
tation of symplectic transformations. Let 11"1 and 11"2 be two 
representations ofthe Weyl algebra, and let O's be the auto
morphism of 'fr induced by the invertible symplectic trans
formation S:K -K. The representations 11"1 and 11"2 will be 
said to be interchangeable if for each invertible symplectic 
transformation S, 0' S is unitarily implementable in 11"1 if and 
only if O's is unitarily implementable in 11"2' Thus two repre
sentations are interchangeable if they both admit unitary 
implementation of exactly the same set of symplectic auto
morphisms. 

It is convenient to introduce one further piece of ter
minology which is a natural generalization of the notion of 
unitary equivalence. Two representations 11"1 and 11"2 of 'fr 
are said to be isometrically equivalent if there exists an iso
metric operator U from the carrier space of 11" 1 to the carrier 
space of 11"2 such that U11"I(A) = 11"2(A )U, for alIA E 'fr. 

III. THE CLASS OF MODELS UNDER STUDY 

The algebra 'fr of the CCR is regarded as the algebra of 
observables for a system having the real symplectic space K 
as classical phase space. In the case of a scalar quantum field 
interacting with a quantum mechanical oscillator, for exam
ple, K is the direct sum of the "one-particle" Hilbert space 
(classical solutions of the wave equation), with the harmonic 
oscillator phase C; the Weyl algebra has the corresponding 
product structure. 

Scattering theory for the system is formulated in terms 
of two different one-parameter automorphism groups on 
'fr, the uncoupled (free) time development /3 ~ and the inter
acting time development /3, . 

The uncoupled dynamical automorphism /3~:'fr-'fr 
is induced by the free unitary time development on the phase 
space K:/3~(W(f))=W(v~f), with V~ a strongly contin
uous unitary group on K. /3 ~ is implemented in the Fock 
representation of 'fr by a strongly continuous group of uni
tary operators U~ on Y(JY): U~W(f)U~· =/3~(W(f)). 

The interacting dynamical automorphism /3,: 'fr - 'fr 
is, for the models under study, induced by the one-parameter 
group of invertible symplectic transformations T + V, T on 
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$":{:1t(W(f))=W(T+ v t Tf), where T:$"_$" is a sym
plectic transformation and Vt is a continuous one-parameter 
unitary group on T$". (In particular, Vt commutes for all t 
with the projection TT + onto T$", insuring that T + Vt Tis 
an invertible symplectic transformation; see Appendix B. 
Without loss of generality Vt can be defined to be I on the 
orthogonal complement to the range of T.) This situation 
embodies the idea that there exist "normal-mode" variables 
W'(f)=W(T+f)for f inT$"whichdevelopfreelyaccord
ing to Vt , namely 

.Bt(W'(f)) =.Bt(W(T+f)) = W(T+ VtTT+f) = W'(V J). 
The symplectic transformation Ton$" gives the "diagonali
zation" morphism on 'Jr, and Vt specifies the time develop
ment of the normal modes. Note that Vt is, in general, differ
ent from V~, just as the normal mode frequencies of coupled 
oscillators are, in general, different from their uncoupled 
natural frequencies. It is assumed, though, that both genera
tors H and HOof the strongly continuous unitary groups Vt 
and V~ have nonnegative spectra. Note also that the com
plex structure on $" plays a role in the specification of the 
"normal-mode variables"; the condition that Vt be unitary 
expresses the idea that the normal modes develop freely in 
time. 

Now,.B may very well not be unitarily implementable in 
the Fock representation, but there is always a representation 
symplectically related to the Fock representation in which.B 
has a unitary implementation. This interaction-vacuum rep
resentation is simply the representation 'lTT' Since 
'lTT(.8t(W(f))) = 'lTT(W(T+VtTf)) = W(TT+ VtTf) 
= W (Vt TT + T f) = W (Vt T f), and since every unitary 

group Vt on$" has a unitary implementation Ut W/gJUr 
= W(Vtg) in the Fock representation of 'Jr, it follows that 

'lTT(.8t(W(f))) = Ut W(TfJUr = U,'lTT(W(f)JUr·Thus.Bis 
unitarily implemented in'lTT' 

For a conventional quantum-mechanical system with 
free and interacting time developments given by unitary 
groups U~ and Ut acting on a Hilbert space ofstate vectors, 
time-dependent scattering theory is formulated in terms of 
MtSller wave operators W ± =s-lim,_ ± 00 U _ t U ~E ~, 
where E ~ is the projection onto the absolutely continuous 
subspace of the generator of the group U~. For the systems 
described in the algebraic fashion here, it is not generally 
true that the time developments.B ~ and.B, have a concurrent 
implementation in a given representation of 'Jr, and it is 
natural to consider the algebraic analog of wave operators, 
MtSller morphisms. 

To motivate the signs in the following definition, sup
pose temporarily that the automorphisms.B~ and.Bt each 
have a unitary implementation, by r (f3~) and r (.8,), respec
tively, in the Fock representation of 'Jr. That is, 

r(.8~)W(f)F(.8~)· =.B~(W(f)) = W(v~f), 

with a similar formula for r (.8,). The time developments.B ~ 
and.B, are then represented on Fock space vectors by the 
unitary operators 

and 
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Ut r(.8,)· = r(.8 - t), 

respectively. So the MtSller wave operators on Fock space are 
partial isometries W ± given by the limits 

W ± "'= lim U _tU~"'= lim r(.8t)r(.8°_t)"', 
t_± CXl t_± 00 

which we assume for purposes of illustration to exist for'" in 
the subspace E~Y(£'). Thus for "'I and "'2 in E~cY(£'), 
we have 

(W ± "'IIW(f)W ± "'2) 

= lim (r(.8t)F(f3 0- ,)"'11 w(f)r(f3t)r(f30_ t)"'2) 
I __ ± 00 

= lim ("'IIP~(f3 -t(W(f)))"'2) 
t_± 00 

= lim ("'IIW(v~ T+V_,Tf)"'2)' 
t_± 00 

These expressions suggest the definition 

fJ± =s-lim T+VtTVO_, p~, 
t_± 00 

where P~c is the projection onto the absolutely continuous 
subspace of the generator Ir' of the strongly continuous uni
tary group V~. If the indicated strong limits fJ ± exist and 
are partial symplectic transformations on $", and if the mor
phisms T ± induced by (fJ ± ) + are implemented by partial 
isometries r (T ± ) on Y(£,), then the partial isometries 
r (T ± ). are precisely the MtSller wave operators, because 
then for "'I and "'2 in r (T ± )Y(£,), we have 

(r(T ±). "'IIW(f)F(T ±). "'2) 
= ("'liT ± (W(f))r(T ± )r(T ± )·"'2) 

= ("'II W((fJ ± )+f)"'2) 

= lim ("'IIW(P~ V~T+V_tTf)"'2)' 
1 __ ± 00 

Henceforth we write V,==e'AH and V~==etAHO, whereH 
and HO are non-negative self-adjoint operators defined on 
domains dense in $". 

Weare thus led to study the strong limits 

whose putative implementation in a representation of$" are 
the usual MtSller wave operators. Note that the convergence 
ast- ± 00 oftheautomorphisms.B, po_, (on the Weylalge
bra over P~£') which is implied by the above strong limit 
on$"is rather weak. We will see in [II] that requiring con
vergence of such limits in the C· norm, for example, is too 
restrictive for even simple physical model theories. 

Given this framework, two sets of questions arise. First, 
an alternative way to formulate time-dependent scattering 
theory would be to seek a representation of$" in which the 
two automorphism groups.B and.B ° were each implemented 
by unitary groups, and then to construct wave operators di
rectly on the Hilbert space carrying the representation. With 
this in mind, we may ask whether the two representations 
determined by the states invariant under the two automor
phism groups are isometrically equivalent. If they are, then 
either admits concurrent unitary implementation of both 
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groups, and the existence of the limits defining "second
quantized" wave operators can be studied. If they are not, 
can the two automorphism groups be unitarily implemented 
in either representation? In any representation? 

These questions are answered by work which follows. 
In Sec. V, we establish the necessary and sufficient condi
tions for the isometric equivalence of the representations de
termined by the invariant states. In Sec. VIII, we establish 
the necessary and sufficient conditions for a representation 
1TR to admit concurrent unitary implementation of both au
tomorphism groups. We find that it is possible for both /3 and 
/3 ° to have concurrent implementation despite the inequiva
lence of the representations determined by their invariant 
states. We will see in [II], however, that in this alternative 
"second-quantized" formulation, the expressions defining 
the wave operators may not converge, even though wave 
morphisms exist, induced by partial symplectic transforma
tions [J ± . 

The second set of questions has to do with the limits 
[J ± on K. We would like to know if these limits exist, and, if 
so, whether they are partial symplectic transformations. Can 
these transformations, moreover, be implemented in either 
of the natural representations of 'lr? In what representa
tions can the resultant scattering morphism be implemen
ted? What is the relationship among the states invariant un
der the two automorphism groups and the state(s) invariant 
under the scattering morphism? 

Two of these questions are answered by Theorem 2, 
which gives sufficient conditions for the limits [J ± to exist 
and to be partial symplectic transformations. The remaining 
questions are answered in [II] for the specific models dis
cussed there. 

IV. THE MAIN RESULTS 

One central result used in the analysis of the model sys
tems is the following theorem, which gives necessary and 
sufficient conditions for the unitary implementability of the 
automorphism group/3, induced by the one-parameter sym
plectic group T + V, T in a representation 1TR symplectically 
related to the Fock representation. 

Recall that A denotes multiplication by the complex 
number i. 

Theorem 1: Let K be a separable complex Hilbert 
space, and let 'lrbe the Weyl C * algebra over K regarded as 
a real Hilbert space with inner product equal to the real part 
of the complex inner product, and symplectic form equal to 
the imaginary part. Let 1TR be the representation of 'lr in
duced by the symplectic transformation R:K _K, and let 
T:K -K be another symplectic transformation. 

LetH:D (H)_TKbeanon-negative, self-adjoint, com
plex-linear transformation with domain D (H) dense in T K, 
and for m > 0, let Pm be the spectral projection for H onto 
spectral values larger than m. Let V,==e'AH be the one-pa
rameter group generated by H, and let /3, : 'lr _ 'lr be the 
automorphism induced by (the invertible symplectic trans
formation) T + V, T: 

/3,(W(f)) = W(T+V,Tf), for all fin K. 

Then the automorphism/3, is unitarily implementable in the 
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representation 1T R of 'lr for all real t if and only if for some 
m>0,bothPm(IRT+1 2 -/)and[IRT+1 2,A (I - Pm)H]are 
Hilbert-Schmidt operators on TK. 

In particular, if His bounded away from zero then.o, is 
unitarily implementable in 1T R for all real t if and only if 1T R is 
interchangeable with the representation 1TT' 

Furthermore, if.o, is unitarily implementable in 1T R for 
all real t, then the one-parameter family of implementing 
unitary operators can be chosen to be a strongly continuous 
unitary group. 

Remark:Here IQ 1
2=Q *Q, withQ * the real adjoint ofQ, 

and the trace in the definition of the Hilbert-Schmidt norm 
is defined in terms of the real inner product on K. 

The proof of Theorem 1 follows directly from Theo
rems 4 and 5 to follow, and from the reasoning in Secs. V
VII. For a proof of Theorem 1 in the special case that R = I 
and Tis an invertible symplectic transformation, see Ref. 17. 

The second central result is the following theorem, 
which establishes sufficient conditions for the existence and 
completeness of the MIIIller wave morphisms associated with 
the automorphism groups .0 and /3 0. It is analogous to the 
Birman-Belopol'skii theorem in two-Hilbert-space scatter
ing theory; II both the statement of this theorem and its proof 
are simple because here the "identification map" is a sym
plectic transformation. 

Let K, 'lr ,A,H, and Pm be as in Theorem 1, and let P ~ 
be the spectral projection for the self-adjoint operator HO 
onto spectral values larger than m. Let Pac and P"a" be the 
projections onto the absolutely continuous subspaces for H 
and HO, respectively. 

Theorem 2: Let HO and H be non-negative complex
linear self-adjoint operators, and let T:K -Kbe a symplec
tic transformation such that TD (no) = D (H). Suppose there 
exists an M> ° such that (I - Pm )(AHT - T AH °)(1 - P ~) 
is a trace-class operator on K for all m > M. Then 
[J =s-lim T+e,AHTe-,AH"p o exist Iffurthermore ± t---+±oo ac • 

e'AHTKC TK for all t, then [J ± are partial symplectic 
transformations with initial space P:cK and final space 
T+PacTK. 

Remark' The hypothesis that TD (no ) = D (H) can be 
weakened considerably. It is required only that no and Hbe 
mutually subordinatell with respect to the identification 
map T. The statement of the theorem here includes the more 
restrictive hypothesis for simplicity, and this form of the 
theorem suffices to treat the model theory discussed in [II]. 

The proof of Theorem 2 in Sec. X. 

V. CRITERION FOR IMPLEMENTABILITY OF A 
PARTIAL-SYMPLECTIC MORPHISM 

Consider the automorphism u:'lr _'lr of the Weyl al
gebra induced by the invertible symplectic transformation 
S:K _K by u( W (f))== W (Sf) for allfin K, and consider 
the representation 1TR of 'lr induced by the symplectic 
transformation R:K _K as above. 

What are the necessary and sufficient conditions for u 
to be unitarily implementable in 1TR? 

Note first that u implementable in 1TR means that there 
exists a unitary operator U such that 
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U1TR (W(f))U* = 1TR (U(W(f))), for allfin K, 

that is, 

U W(RfJU* = W(RSf), for allfin K, 

that is, 

UWIgJU* = W(RSR +g), for allg in RK. 

Thus the implementability in 1TR of q is equivalent to the 
implementability in the Fock representation (of the Weyl 
aigebra over the Hilbert space RJY) of the automorphism 
induced by the transformation RSR + which is an invertible 
symplectic transformation on RK (see Appendix B). 

The following criterion for the unitary implementabi
lity in the Fock representation of the W ey I algebra of a given 
invertible symplectic transformation Q was found by 
Shalel2

: 

There exists a unitary operator U:Y(JY)-Y(JY) such 
that 

U W(f)U* = W(Qf) for allfin Kifand only if 
(IQ I - I) is a Hilbert-Schmidt operator. 

Here IQ I==(Q *Q )1/2, with Q * the real adjoint ofQ, and the 
trace in the definition of the Hilbert-Schmidt norm is taken 
over a real basis for K. 

Note that for a bounded real-linear transformation Y, 
(I Y I - I) is a Hilbert-Schmidt operator if and only if 
(I Y 12 - I) is a Hilbert-Schmidt operator, because the set 
B 2r (JY) of real-linear operators of Hilbert-Schmidt type is a 
* ideal, the operator (I Y I + I) has a bounded inverse, and 
(IYI 2 -I)=(IYI +I)(IYI-I)·Shale'scriterion(IQI-I) 
E B 2r(JY) is thus equivalent to (IQ 12 - I) E B 2r(JY)· 

If we apply this criterion to the question of whether an 
invertible symplectic transformation S is unitarily imple
mentable in the representation 1T R of 'Jr induced by the sym
plectic transformation R, we find that 

Sis implementable in 1T R iff IRSR + 12 - I is a 
Hilbert-Schmidt operator on the space RK. 
Now we consider the more general question of the im

plementation of the morphism induced by a partial symplec
tic transformation Q. 

We first restrict our attention to establishing a neces
sary and sufficient condition for the partial-isometric imple
mentability of a partial symplectic transformation Q in the 
Fock representation of 'Jr. Later we consider the implemen
tation of a partial symplectic transformation in certain re
presentations symplectically related to the Fock representa
tion. 

To establish the criterion, we first recall the well-known 
fact that if K is decomposed as the direct sum Ka ED Kb of 
subspaces Ka and K b, then the Fock space Y(JY) over K 
is isomorphic to the tensor product Y(K a) ® Y(Kb ) of the 
Fock spaces Y(Ka) and Y(Kb) over Ka and K b, respec
tively. Furthermore, Y(Ka) and Y(Kb) are naturally iso
morphic to the subspaces Y(Ka)® lab I cY(JY) and 
laa I ®Y(Kb)cY(JY), respectively, where aa and a b 
are the vacua of Y(Ka) and Y(Kb)' In the following we 
omit mention of these isomorphisms and speak of Y(Ka ) 
and Y(Kb) as subspaces of Y(JY). Neither do we distin-

guish between the usual action ofWeyl operators on Y(JY), 
and their tensor product action on Y(Ka) ® Y(Kb)' 
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Second, we note that a complex-linear partial isometry 
Z:K -K always has an implementation on Fock space by a 
partial isometry U z which is defined as follows. Set 
Uza==aand 

Uza* [(d···a* [In]a ==a* [ZIt]···a* [Zf" ]a, 

where fl"'" In E K. Because Z is a partial isometry, this 
definition extends by linearity to the entire Fock space 
Y(JY), and U z is bounded. It is, furthermore, easy to check 
that U~ a = a and that 

U~a* [{d···a* [f,,]a=a* [Z*fl]"'a* [z*f .. ]a. 

It follows from the decompositions 

K = Z *Z K ED (I - Z *Z)K = ZZ * KED (I - ZZ *)K 

that 

Y(JY)~Y(Z*ZJY)®Y((I -Z*Z)JY) 

~Y(ZZ*JY)®Y((I -ZZ*)Jf'), 

and that U ~ U z is the projection onto Y(Z * ZJY) ® I a ' I, 
while U z U ~ is the projection onto Y(ZZ * JY) ® I a " I. 
The operator U z is therefore a partial isometry with initial 
space Y(Z * ZJY) ® I a ' I and final space 
Y(ZZ *JY) ® I a" I, and Uz W(f) = W(ZfJUz, for all 
f E K, that is, U z implements Z. 

We make use of these two observations in the proof of 
the following theorem, which establishes the analog of 
Shale's criterion for partial symplectic transformations. 

Theorem 3: Let Q:K -Kbe a partial symplectic trans
formation. Then there exists a partial isometry 
U:Y(JY)-Y(JY) with initial space Y(Q +QJY) and final 
space Y(QQ + JY) such that UW(f) = W(Qf)U for all 
fE Kifand only if(IQ 12 - I) is a Hilbert-Schmidt opera

toronQ+QK. 
Remark: (IQ 12 - I) being a Hilbert-Schmidt operator 

on Q +QKisequivalent to (IQ 12 - Q +Q) being a Hilbert
Schmidt operator on K. 

Proof: Suppose first that (I Q 12 - I) E B 2r (Q + QJY). By 
results in Appendix B we know that I Q I is a partial symplec
tic transformation with initial and final spaces equal to 
Q + QK. Since I Q I is thus an invertible symplectic transfor
mation on Q + QK which satisfies Shale's criterion, there 
exists a unitary operator 

U1Q1 :Y(Q +QKj-Y(Q +QJY) 

such that U1Q1 Wig) = W(IQ IgJUIQI' for allg E Q +QK. 
Now regard Y(Q +QJY) as the subspace 

Y(Q+QJY)® la'l 
c Y(JY) = Y(Q + QJY) ® Y((I - Q + Q )JY), 

and define a unitary extension U of U1Q1 to all of Y(JY) by 
U==U1Q1 ®l. ThenUW(f)= W(IQlf+(I-Q+Q)fJU, 
forallfEK. 

Next let Z be the complex-linear partial isometry in the 
polar decomposition Q = Z 1 Q I. By results in Appendix B we 
know that Z * Z = Q +Q and ZZ * = QQ +. We also know 
from the reasoning earlier that Z has an implementation by 
the partial isometry U z :Y(Kj-Y(JY) with initial space 
Y(Q + QJY) ® I a ' I and final space Y(QQ + JY) ® I a " I . 

The operator UQ:Y(JY)-Y(JY) defined by 
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U Q = U z U is a partial isometry with initial space 
Y(Q +QJn® In'} andfinalspaceY(QQ + In ® In" },be
cause UQUa = UzUU* U~ = UzU~ and UaUQ 
= U*{U~ Uz ) U= U*U(U~Uz) = U~Uz by virtue of 
the fact that the projection U ~ U z onto the subspace 
Y(Q + QJn ® In'} commutes with U. Furthermore it is 
easy to check that 

UQW(f) = Uz W(IQlf+(1 -Q+Q)fJU 

= W(Z IQ If + Z (I - Q +Q )fJUz U 

= W(QfJUQ, 

that is, U Q implements Q. 
For the converse, suppose that the partial symplectic 

transformation Q:dY' -+dY' is implemented by a partial iso
metry UQ:Y(~Y(Jn with initial space Y(Q +QJn 
® In'} andfinalspaceY(QQ + In® In ttl· ThusUQ W(f) 
= W (Q f) U Q' for allf E dY'. We proceed by showing that the 
partial symplectic transformation I Q I is unitarily implemen
ted on Y(Q + QJn and then appealing to Shale's results to 
conclude that I Q 12 - IE B 2r (Q + QJn. 

Again let Z:dY' -+dY' be the complex-linear partial iso
metry occurring in the polar decomposition Q = Z I Q I, and 
let Uz:Y(~Y(Jn be the partial isometry implement
ing Z, as above. We know that Uz has the same initial and 
final spaces as does U Q' and that U ~ U z = U a U Q' respec
tively U z U ~ = U QUa, are the projections onto those sub
spaces of Y(Jn. Taking the adjoint of 
Uz W(f) = W(ZfJUzandusing W(h)* = W( - h), weob
tain 

U~ W(Zf) = W(f) U~ for all fE dY'. 

Therefore if we set UIQI=U~ UQ we have 

U1Q1 W(f) = U~ W(Qf)UQ = U~ W(Z IQ If)UQ 

= W(IQlf) U~ UQ 

= W(lQlf)U1Q1 , forall fEdY', 

that is, U1Q1 implements IQ I. Furthermore, 

UfQI U1Q1 = Ua (uz U~) UQ = Ua UQ' 

and 

U1Q1 UfQI = U~ (UQ Ua) Uz = U~ Uz = ua UQ' 

so u1Q 1 is a partial isometry with initial and final subspaces 
equal to Ua UQY(Jn = Y(Q +QJn® In '}. Thus U1Q1 is 
a unitary operator on Y(Q + QJn ® In'}, and we may re
gard U1Q I. as the unitary implementation on Y(Q + QJn of 
the invertible symplectic transformation I Q I :(Q + QJn 
-+(Q + QJn. Thus I Q I must satisfy Shale's criterion 
I Q 12 - IE B 2r (Q + QJn. This completes the proof of the 
theorem. III 

There are three straightforward applications of 
Theorem 3, to representations isometrically equivalent to, 
and interchangeable with, the Fock representation, and to 
the implementation of (suitable) partial symplectic transfor
mations in a representation symplectically related to the 
Fock representation. 

(A) We first apply Theorem 3 to answer the question of 
which representations 1TR symplectically related to the Fock 
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representation are isometrically equivalent to the Fock rep
resentation. Let R:dY' -+dY' be a symplectic transformation. 
By definition, the representation 1TR of rr induced by R is 
isometrically equivalent to the Fock representation if and 
only if there exists an isometry U:Y(Jn-+Y(Jn such that 
UW(f)=1TR(W(f))U, for all fE/J't", that is, 
UW (f) = W (R f) U, for all f E /J't". So 1T R is isometrically 
equivalent to the Fock representation if and only if (the mor
phism induced by) R is isometrically implementable in the 
Fock representation, which is the case if and only if 
(IR 1

2 -l)EB 2r (Jn. 
(B) The relationship between two arbitrary representa

tions of the Weyl algebra which are interchangeable is, in 
general, quite complicated. It is clear that if two representa
tions are unitarily equivalent then they are interchangeable, 
but the converse is not true. The situation simplifies, how
ever, if we consider the relationship between a representa
tion of rr induced by a symplectic transformation, and the 
Fock representation. 

Lemma: Let Q:/J't" -+/J't" be a symplectic transforma
tion, and let 1TQ be the representation of the Weyl algebra 
induced by Q, that is, 1T Q (W (f)) = W (Q f). Then 1T Q is inter
changeable with the F ock representation 1T I if and only if 1T Q 

is isometrically equivalent to the Fock representation. 
Proof: We know that 1T Q is isometrically equivalent to 

the Fock representation iff (I Q 12 - I) E B 2r (In. We also 
know that 1T Q is interchangeable with the Fock representa
tion 1T I if and only if for each invertible symplectic transfor
mation S:/J't"-+/J't", IQSI 2-IQI2EB 2r (Jn iff IS12-1 
E B 2r (In. (See Appendix C.) 

(1) Suppose first that 1T Q is isometrically equivalent to 
1TI; then IQ 12 - IE B 2r(Jn. Because IQS 12 _ IQ 12 
= S*(IQ 12 - 1)S + (IS 12 - 1),itfollowsthat IQS 12 _ IQ 12 
EB 2r (Jn iff IS 12 - IE B 2r (Jn. 

(2) Suppose conversely that 1T Q is interchangeable with 
1TI , and consider the invertible symplectic transformation 
S A. Because IA 12 = I, IA 12 - IE B 2r(Jn, so by assump
tion IQAI2_IQI2EB2r(Jn. Now, IQAI2=A*IQI2A 
= IQ 1-2, because IQ 12 is an invertible symplectic transfor

mation on /J't". Thus 

IQ 1-2(1 -IQ 14) = IQ 1-2(1 + IQ 12)(1 -IQ 12) EB 2r (Jn· 

By the ideal property of B 2r (In, this implies 
I Q 12 - IE B 2r (In, that is, 1T Q is isometrically equivalent to 
the Fock representation. I II 

(C) To apply Theorem 3 to the implementation of a par
tial symplectic transformation in a representation symplecti
cally related to the Fock representation, consider a symplec
tic transformation R:/J't" -+/J't", and let 1T R be the induced 
representation of rr. It is easy to see as earlier that (the 
morphism induced by) a partial symplectic transformation 
Q:/J't" -+/J't" is implementable by partial isometry in 1T R if and 
only if RQR + is implementable by partial isometry in the 
Fock representation over R/J't". It is possible, however, that 
RQR + may fail to be a partial symplectic transformation 
due to mismatch of the complex structures of the kernels and 
ranges of Rand Q. But it is not difficult to see that RQR + is a 
partial symplectic transformation if and only if both 
R (ker Q )andR (ran Q ) are complex subspaces of/J't". If these 
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are in fact complex subspaces, we can apply the criterion 
developed above to conclude that Q is implementable by par
tiaiisometryin1TR ifandonlyif(IRQR +1 2 -1)isaHilbert
Schmidt operator on RQ + JY', that is (by virtue of the results 
in Appendix q, if and only if IRQ 12 - IR 12 E B 2r(Q + In. 

VI. CRITERIA FOR IMPLEMENTATION OF 
AUTOMORPHISM GROUPS 

The necessary and sufficient conditions given in 
Theorem 1 relating R,T, and the self-adjoint generator H of 
the continuous unitary group V, = e'AH follow directly from 
Theorem 4 below, which is the crux of the matter. This 
theorem establishes the necessary and sufficient conditions 
for a symplectic transformation to commute modulo Hil
bert-Schmidt operators with all elements of a one-parameter 
unitary group. 

It is clear that if a positive symplectic operator S satis
fies Shale's criterion (S - I) EB 2r (%)then [S, V,] E B 2r(%), 
for all real t. But the converse is obviously not true. The 
properties of S which embody the fact that [S, Vt ] E B 2r (%) 
for all t depend on the relationship between S and the Hamil
tonian H; Theorem 4 states these properties in terms of the 
spectral projection Pm for H onto energies larger than m > O. 

Theorem 4: Let H be a non-negative, self-adjoint, com
plex-linear transformation with domain D (H) dense in the 
separable Hilbert space %. Let V:lR~B (%) be the (strongly 
continuous) unitary group generated by H, Vt =e,AH, and 
consider an open interval 1'C lR with 0 E 1'. Let Pm be the 
spectral projection for H onto spectral values larger than m. 
Let S be an invertible symplectic transformation on % re
garded as a real Hilbert space with inner product equal to the 
real part of the complex inner product on %, and symplectic 
form equal to the imaginary part. Suppose S is self-real-ad
joint. Then the following three statements are equivalent. 

(I) [S, Vt ] is of Hilbert-Schmidt type for all t E 1'. 
(II) There exists an m > 0 such that (A) Pm (S - I) is a 

Hilbert-Schmidt operator, and (B) [S, A (I - Pm )H] is a Hil
bert-Schmidt operator. 

(III) Statements (A) and (B) hold for all m > O. 
The proof of this theorem appears in Ref. 17. 
To make our discussion of the implications of this 

theorem concise, we introduce the following notation. 
Definition: Denote by f!It H (%) the set of all symplectic 

transformations Q:% ~% satisfying Pm (I Q I - I) 
EB2r(%) and [IQ I,A (I - Pm)H] EB2r(%), for some 
m>O. 

The situation in which H is bounded away from zero is a 
special case of particular interest. If H is bounded away from 
zero, that is, thereexistsac > Osuch that (flH f) ~cllf1l2for 
allf ED (H), then choosing 0 < m < c gives Pm = I, and then 
as a result Q E f!It H (%) if and only if( I Q I - I) E B 2r (%). So 
for any Hbounded away from the origin, f!It H(%) isjust the 
set of symplectic transformations Q which satisfy Shale's 
criterion(IQ I - I) EB 2r(%)' Henceforth for consistency of 
notation we denote this set of symplectic transformations by 
f!It/(%). 

A mathematically simple example is given in Ref. 17 
which shows that the set f!It H (%) is properly larger than 
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f!It /(%) when the spectrum of H reaches zero. The example 
given in [II] provides a physically motivated demonstration 
of the same fact. 

To apply this theorem to establish the necessary and 
sufficient conditions given in Theorem 1, we demonstrate 
that the unitary implementability of pin 17' R is equivalent to 
the condition (I) of Theorem 4 that [IR T + 12, Vt ] E B 2r (T In 
for all t, as follows. 

First note that by the hypotheses of Theorem 1, the 
unitary operator Vr commutes (for all t) with the projection 
TT + onto the range of the "diagonalization" symplectic 
transformation T, so the operator (T + V, T) is, by the results 
in Appendix B, an invertible symplectic transformation on 
all of JY' for all real t. 

Second, according to the criterion developed in the pre
ceding section, the automorphism group Pt induced by 
T + Vt T is unitarily implementable in 1TR if and only if 
IRT+VtTR +1 2 

- IEB 2r (RJn. 
Third, making use of the facts that I = Q +Q = Q *Q *+ 

and (QQ +)* = QQ + for any symplectic Q, we can write 

IRT+VtTR +1 2 -I =R HT*V~ (lRT+1 2Vt 

- V,IRT+1 2)TR + + (RR + -I). 

Now, in Appendix C it is shown that 

R *+ XR + EB2r (RJn iff XEB2r (Jn, 

and that 

T*YTEB2r(Jn iff YEB2r(TJn. 

Thus because (RR + - I) vanishes on RJY', and because V~ 
has a bounded inverse, we have 

IRT+VtTR +1 2 -IEB2r (RJn 

iff [IRT+1 2,Vrl EB2r (TJn. 

Note that because Rand T are symplectic, it follows 
from results in Appendix B that R T + is a partial symplectic 
transformation and hence that S=IRT+ 12 is an invertible 
symplectic transformation on the separable complex Hilbert 
space TT + JY' = T JY'. Thus Theorem 4 above is applicable 
to S==IRT+1 2, with % = TJY', and we conclude that the 
statements (A) and (B) are the necessary and sufficient condi
tions on S =IRT + 12 for P to be unitarily implementable in 
1TR' as asserted in Theorem 1. Thus 

P is unitarily implementable in 1TR 

if and only if IRT+ 12 E f!It H(TJn. 

We now consider the assertion in Theorem 1 about the 
situation in which H is bounded away from zero. In this case, 
the automorphism group p, induced by T + Vt T is imple
mentable in the representation 1TR if and only if 
IRT + 12 E f!It /(TJn. This implies that P is unitarily imple
mentable only in the representations 1TR interchangeable 
with the representation 1TT which naturally accommodates 
implementation of p, for the following reasons. 

Supposethatpis implementable in 1TR , that is, (IRT + 12 
- 1) E B 2r (TJn. Since TT+ is the complex-linear self-ad

joint projection onto TJY', the quantity 

IRT+12 -I = T*+ R *RT+ -ITT+12 + (TT+-1) 

= T*+(R *R - T*T)T+ + (TT+ -I) 
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is in B 2r (TK) if and only if T*+(lR 12 -ITI2)T+ 
eB2r(TK), and this is the case if and only if(lR 12 -ITI2) 
e B 2r (K), by the results in Appendix C. Thus (lR T + 12 - /) 
e B 2r(TK) if and only if (IR 12 - IT 12) e B 2r(K). But it is 

shown in Appendix C that (IR 12 - IT 12) e B 2r(K) implies 
that 1TR and 1TT are interchangeable. Therefore IRT + 12 
e R I (T K) implies that 1T R is interchangeable with 1T T' 

There is physical content to the fact that H bounded 
away from zero implies P is unitarily implementable only in 
the representations 1TR interchangeable with the natural rep
resentation 1T T associated with p. If V, is regarded as a time
development transformation generated by the Hamiltonian 
H for normal mode variables, then H is bounded away from 
zero only ifthere are no zero-mass normal-mode excitations. 
Thus only in theories with massless excitation can the inter
esting situation occur that P is unitarily implementable in 
representations not interchangeable with its natural asso
ciated representation 1T T' 

The example presented in [II] shows that the class of 
representations 1T R which admit implementation of P does in 
fact contain representations inequivalent to 1TT when mass
less particles are present. 

VII. CONTINUITY OF THE IMPLEMENTATION 

Suppose that the one-parameter group of invertible 
symplectic transformations T + V, T = T +(e'AH)T is in fact 
unitarily implementable in 1TR • The assertion of Theorem 1 
which does not follow directly from Theorem 4 is that the 
one-parameter family of implementing unitary operators 
can be chosen to be a strongly continuous unitary group. 
This implies in particular that, when V, is regarded as a time 
development, there always exists a "second-quantized" Ha
miltonian in representations where the dynamical automor
phismp is unitarily implemented. As the following consider
ations show, the validity of this assertion follows from (the 
somewhat technical) Theorem 5 below. 

Shale l2 showed that if Y, is a one-parameter group of 
implementable symplectic transformations which is contin
uous in a certain topology, then there exists a strongly con
tinuous unitary group implementing Y, in the Fock repre
sentation. Specifically, let rSp(ff) be the group of invertible 
symplectic transformations on the Hilbert space ff satisfy
ing Shale's criterion; the topology on rSp(ff) is defined as 
follows. Polar decomposition (with respect to the real ad
joint) of a transformation T e rSp(ff) gives T = ZIT I, where 
Z is complex unitary and I T I is a (real - ) positive invertible 
symplectic transformation. The topology on rSp(ff) is the 
product topology obtained when rSp(ff) is regarded as the 
Cartesian product of the space of unitary operators under 
the weak operator topology, with the space of positive inver
tible symplectic operators under the topology induced by the 
Hilbert-Schmidt norm [well defined because 
(ITI- /) eB2r (ff), for Te rSp(ff)]. 

Shale furthermore showed that group multiplication is 
continuous in this topology, so that if Y, is a one-parameter 
group of invertible symplectics, continuity of Y, at t = 0 im
plies continuity everywhere. Thus to show the existence of a 
continuous unitary implementation of Y, in the Fock repre
sentation, it is sufficient to show that Y:R~rSp(ff) is con-
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tinuous at the origin. 
To apply this criterion to the implementation of 

T + V, T in 1T R , note that, as earlier, continuous implementa
tion of T + V, Tin 1TR is equivalent to continuous implemen
tation of the one-parameter group Y, =R T + V, TR + of 
symplectic transformations invertible on ff ===.RK in the 
Fock representation of the Weyl algebra over ff. We may 
then make use of the following general theorem. 

Theorem 5: Let K be a separable complex Hilbert 
space, also regarded as a real Hilbert space with inner pro
duct equal to the real part of the complex inner product on 
K, and symplectic form equal to the imaginary part. Let 
Q:K ~K be a partial symplectic transformation (whose 
range QK is thus a separable complex Hilbert space). Let 
H:D (H )~QKbe a nonnegative self-adjoint complex-linear 
transformation with domain D (H) dense in QK, and set 
V,=e,AH. Define Y,=Q + V,Q (which is thus an invertible 
symplectic transformation on Q + QK). If(J Y, I - /) is a Hil
bert-Schmidt operator on Q + QK for all real t, then 
Y:R~rSp(Q + QK) is continuous for all t in Shale's topol
ogy. Hence Y has a strongly continuous unitary representa
tion in the Fock representation of '1r over Q +QK. 

In view of the remarks above, to prove this theorem it 
suffices to show that Y, is continuous at the origin in Shale's 
topology. The demonstration of this fact is a straightforward 
generalization of the proof of Theorem 3 in Ref. 17 to the 
partial symplectic transformations discussed here. 18 This 
theorem can, of course, be applied to the implementation of 
T + V, Tin 1TR by setting Q ===.TR +. The initial space of this 
partial symplectic transformation Q is Q + QK = RK and 
the range of Q is T K. By the earlier hypotheses on V" the 
group Y, RT + V, TR + is of exactly the type described in 
the theorem. Since the hypothesis here that (I Y, I - /) be in 
the Hilbert-Schmidt class is equivalent to the unitary imple
mentability of Y" it follows that if P is unitarily implementa
ble in 1TR then the implementing unitary family can always 
be chosen to be a strongly continuous unitary group. 

VIII. CONCURRENT IMPLEMENTATION 

Suppose that as in Sec. III the free time-development 
automorphism group P ~ of '1r is induced by the unitary 
group V~ = etAHo and that the interacting automorphismp, 
is induced by the one-parameter group T + V, T 
= T + (e,AH)T. The criteria developed in the preceding sec
tions imply that if there exists a representation 1TR of '1r 
symplectically related to the Fock representation which ad
mits concurrent unitary implementation of both automor
phism groups P ° and p, then R satisfies 

IRI2e8fiw (K) and IRT+1 2e8fiH(TK). 

The situation simplifies considerably if either Hamil
tonian H ° or H has spectrum bounded away from zero. 

Suppose first that IR 12 e 8fi HO (K), whereHoisbound
ed away from the origin. Then 8fi w(K) = 8fi I(K) and so 
(IR 12 - /) e B 2r(K). This implies that 1TR is isometrically 
equivalent to the Fock representation 1TI' SO in this case both 
automorphism groups must be implementable in the Fock 
representation if they are to be concurrently implemented in 
any representation 1T R' Furthermore, since IR T + 12 
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= T*+(IR 12 -I)T+ + IT+1 2, the fact that (IR 12_I) 
E B 2r(7t')CB 2r (T7t')impliesthat IRT + 12 E &i' H(T7t')ifand 
only if IT+12 E &i'H(T7t'). Thus ifHo is bounded away from 
zero, the only automorphism groups {3 (induced by T + Vt T) 
which can be unitarily implemented concurrently with {3 ° 
are those for which 1 T + 12 E &i' H (T 7t'), and the implementa
tion of the automorphism groups can be done only in the 
representations isometrically equivalent to the Fock repre
sentation. 

Suppose instead that H is bounded away from zero, and 
IRT + 12 E &i' H(T7t'). Then since &i' H(T7t') = &i' AT7t') for 
suchanH, we have IRT+ 12 - / E B 2r(T7t'), that is (as in Sec. 
VI), IR 12 - 1 T 12 E B 2r(7t'). This implies that 1TR is inter
changeable with the representation 1TT which naturally im
plements {3. So in this case both automorphism groups must 
be implementable in the representation 1TT if they are to be 
concurrently implemented in any representation 1TR • Fur
thermore, since IR 12 = ITI2 + (IR 12 -ITI2), the fact that 
IR 12 - 1 T 12 E B 2r(7t') implies that IR 12 E &i' HO(7t') if and 
only if 1 T 12 E &i' w(7t'). Thus if H is bounded away from 
zero, the only automorphism groups po (induced by V~) 
which can be unitarily implemented concurrently with {3 are 
those for which HO satisfies 1 T 12 E &i' w (7t'), and the imple
mentation of the automorphism groups can only be done in 
the representations interchangeable with 1TT' 

In the case where both generators HO and H have spec
tra bounded away from zero, the criteria IR 12 E &i' HO(7t') 
and IR T + 12 E &i' H (T 7t') for the concurrent unitary imple
mentation of {3 and po in 1T R reduce, by the preceding obser
vations, to 

IR 12 - / E B2r(7t') and 1 T + 12 E &i' H(T7t'), 

IR 12 - 1 T 12 E B2r(7t') and 1 T 12 E &i' w(7t'). 

The left-hand conditions immediately imply 1 T 12 - / 
E B 2r(7t'), so T then automatically satisfies 1 T 12 E &i' w(7t'). 

Then,since IT+1 2 -/= T*+ (/ -ITI2)T+ + (TT+ -I), 
and since (TT+ - I) vanishes on T:J?, it follows that 
1 T + 12 E &i' H(T7t') is satisfied also. 

In this situation po and {3 must be implementable in the 
Fock representation if they are to be implementable in any 
representation 1T R' Furthermore, for that to be possible, T 
must be isometrically implementable in the Fock representa
tion. In this case, when no massless excitations occur in the 
theory, all objects of a well-formulated second-quantized 
theory are accomodated by the Fock space. 

The situation is much less restrictive when massless 
particles occur in the theory. Then the spectra of the Hamil
tonians extend to zero, and the sets &i' H(7t') can be much 
larger than &i' [(7t'). This circumstance allows the frame
work to accommodate models with interactions that are 
more than small perturbations of the uncoupled dynamics, 
as is demonstrated by the example in [II). 

IX. ALGEBRAIC VERSUS REPRESENTATION
DEPENDENT CONSTRUCTION OF A SCATTERING 
OPERATOR 

In Sec. III we contemplated two formulations of scat
tering theory for the models studied here. We now review the 
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two in light of the information established above. 
Consider first the possibility of constructing wave oper

ators directly on the Hilbert space which carries a represen
tation 1TR of 'fr. We have seen that concurrent implementa
tion of the two automorphism groups po and {3 in 1TR 

requires that IRI2E&i'w(7t') and IRT+1 2E&i'H(T7t'), 
where the set &i' H(%) is defined in Sec. VI. We have also 
seen that the representations 1T[ and 1TT determined by the 
states invariant under po and{3, resepectively, are isometri
cally equivalent if and only if 1 T 12 - / E B 2r (7t'). Therefore, 
if the diagonalization transformation Tis so mild that 1T [ and 
1TT are isometrically equivalent, we may choose R = / 
(choose 1TR to be the Fock representation) or R = T (choose 
1TR to be the interaction-vacuum representation) to obtain a 
representation 1TR in which the automorphism groups have 
concurrent implementation. If 1T[ and 1TT are inequivalent, 
we have seen that because &i' H(%) is properly larger than 
&i' A%), there may still exist a representation 1TR admitting 
implementation of both automorphism groups. Such a situa
tion occurs in [II]. 

Whether the limit expressions for the wave operators 
converge in such a representation is a different question. For 
the particular model analyzed in [II], we find that these "sec
ond-quantized" expressions do not converge, although sym
plectic transformation which induce wave morphisms do ex
ist. This fact shows that the idea of constructing a scattering 
operator in a fixed representation that carries concurrent 
unitary implementation of the automorphism groups is not 
sufficiently general to treat all theories of physical interest. 

We therefore consider second the more algebraic con
struction of wave morphisms indicated earlier. We have seen 
that in order for the strong limits fJ ± to be partial symplec
tic transformations, it is sufficient that (/ - Pm) 
X (AHT - T AH 0)(/ - P::') be in the trace class for all m 
larger than some fixed M> O. That is, if for finite energies T 
intertwines AH and AH ° modulo the trace class, then fJ ± 

exist and induce wave morphisms on 'fr. Note that this con
struction is representation independent; whether fJ ± are 
implementable in a given representation is another (largely 
irrelevant) question. Now, because fJ ± are partial symplec
tic transformations with the same final space, the operator 
S =(fJ +) + fJ _ is an invertible symplectic transformation on 
the initial space P ~c:J? of fJ ± . The transformation S induces 
the scattering morphism u; the implementability of u in a 
given representation is of interest, and varies from model to 
model. 

In [II] we apply this framework to study a model theory 
which, despite its extreme simplicity, displays many of the 
nontrivial representation-theoretic phenomena discussed 
here. 

X. EXISTENCE AND COMPLETENESS OF M(l)LLER 
WAVE MORPHISMS 

This section is devoted to a proof of Theorem 2. This 
proof is similar to the presentation of the Birman
Belopol'skii Theorem in Ref. 11, but differs in two major 
respects. Since here the identification map T is only real
linear, some extra complications arise. On the other hand, 
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the fact that T is a symplectic transformation allows some 
simplifications. 

The proof of Theorem 2 relies on the following real
linear analog to Pearson's Theorem for two-Hilbert-space 
scattering. II 

Theorem 6: Let Hand H" be complex-linear self-ad
joint operators on K. Let J be a bounded real-linear opera
tor such that (AHJ - JAH") is of trace class, in the sense 
that there exists C e B Ir (J¥') such that 
(fICg) = (HfIAJg) - <fIJAH"g)forallfeD(H)andall 
g e D (H"). Then 

If/ ± (H,H°;J)== s-lim etAH Je - tAHO P':.c 
t_± 00 

exist. 
The proof of this theorem is the same as the proof of 

Pearson's Theorem in Ref. 11, but with C = AHJ - JAH" 
and attention to the fact thatA does not commute withJ. / / / 

Proof of Theorem 2: We first establish the existence of 
the indicated strong limits. Let 

If/(I )==etAH Te- tAB" P':.c 

and 

f/> (I )=etAB" T + e - tAH Pac. 

Then the existence of 

a ± = s-lim T + etAH Te - tAB" P':.c 
I-t>± 00 

is guaranteed by the existence of 

If/ ± = s-lim If/(I); 
l--+± 00 

we prove the latter. 
For m > 0, define J m =(1 - Pm )T(I - P"",). By hypoth

esis, (AHJ m - JmAHO) e Blr(J¥'), for all m >M. By the ana
log to Pearson's Theorem above, it follows that for m > M, 

If/ (H,H°·J )= s-lim etAH J e - tAHO po ± )m- m ac 
l __ ± 00 

exist. 
Now fix p. > M, and consider g e (I - P; )71'. Then for 

m > p., (I - P"",) g = g, so that the norm limit 

lim etAH(I_P ) Te-tAHOpo g=1f/ (HHo'J)g 
m (I.e ±')m 

I_± 00 

exists. To demonstrate the existence of 

lim If/ (I )g = lim etAH Te - tAHO P':.c g, 
t-+± 00 l-+± 00 

it therefore suffices to show that 

lim supliP m Te - tAHO P':.c gil = 0. 
m-+oo IER 

To do this, we make use of the fact that Hand H" are mutu
ally subordinate with respect to the identification map T, 
which follows from the condition TD (H") = D (H). 

Note first that, by virtue of the non-negativity of Hand 
H" and the condition TD (H") = D (H), the operator 

(I +H)T(I +Ho)-I 

has in its domain allf e 71', and hence is bounded. 
Next note that because g e (I - P; )71', g e D (I + H 0). 
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Thus 

IIPm TrtAB" P:c gil 
= liP m T(I + HO)- V + HO) e - tAHO P:c gil 

= 11(1 +H)-IPm(I +H)T(I +HO)-I 

XlI + HO) e- tAHO P':.c gil 

<[1/(1 + m)]II(I +H)T(I +HO)-III·II(I +H°)gll 

< [(1 + p.)/(1 + m)] 11(1 + H)T(I + HO)-llIlIgli. 
Therefore, 

lim supliP m Te - tAHO P ':.cgll = 0, 
m_oo IER 

for g e (I - P ~ )71', as desired. 
It follows that limt_ ± 00 If/ (I )g exists for 

g e (I - P ~ )71'. Since s-limp _ oo (I - P~) = I and since 
IIIf/ (1)11 is bounded in t, we have If/ ± =s-limt_ ± 00 If/ (I) ex
ists. 

It is convenient to establish the existence of the limit 
f/> ± =s-limt_ ± 00 f/> (I) as well. To do this, we simply note 
that the hypothesis D (H) = TD (H") implies T + D (H) 
= T + TD (H") = D (H" ), and that taking the adjoint with re

spect to B of the other hypothesis gives 

(I -P"",)(AHoT+ - T+AH)(I -Pm)eBlr(J¥'). 

Then by interchanging H" with H, and T + with T, in the 
preceding argument, we immediately conclude that f/> ± 

==s-limt_ ± 00 f/> (I) exists. 
We next establish that if etAH preserves T 71' then the 

real-linear operator a _ = T + If/ _ satisfies the conditions 
a ~ a_ =P:c and a_a ~ = T+PacT, and that 
a + = T + If/ + satisfies the corresponding conditions; these 
facts will complete the proof. 

Because TT + is the complex-linear projection onto 
TK, the hypothesis etAHTKCTKmeans that TT+ com
mutes on TKwithetAH, and withP ac as well. Thus TT + If/(I) 
= If/ (I) for all t, and it follows that TT + If/ ± = If/ ± . 

Because If/ (I) + If/ (t ) = P':.c andbecause If/ (I )isuniformly 
bounded in norm, it is not difficult to show that If/ ~ If/_ 
= If/! If/ + = P':.c. Therefore a ~ a_ = If/ ~ TT+If/_ 
= If/ ~ If/ _ = P':.c, and similarly a! n+ = P:c' as 

claimed. 
To show that a ± a ; = T + Pac T, we will show that 

ran If/ ± = Pac TK. It then follows that If/ ± are partial sym
plectic transformations with initial space P ':.c 71' and final 
space Pac TK, whence 

a± a; 
= T+1f/ ± If/; T= T+(PacTT+)T= T+PacT, 

as claimed. 
The demonstration that ran If/ ± = Pac TK, which 

completes the proof, proceeds in two steps. First we show 
that ran If/ ± CPac TK, then, second, we make use of the 
properties of f/> ± to show that Pac T 71' C ran If/ ± . 

By virtue of the fact that If/; If/ ± = P':.c and 
If/ ± P':.c = If/ ±' we have ker If/ ± = (I - P':.cjK. It follows 
easily that (see Appendix B) 
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(ranltp± I),=(ranltp± IlL =ker tp±, 

whence (rani tp ± Il = P~c K. 
Now let tp ± = Z ± I tp ± I be the real polar decomposi

tion of tp ± . We know that Z ± are partial real isometries 
with ker Z ± = ker tp ± = (I - P~c)K and ran Z ± 

= ran tp ± . Now, from the definition of tp ± ' it is clear that 
e - tAHtp ± etAHO = tp ± . Using this and its adjoint, we con

clude that [I tp ± I,e - tAB"] = O. Therefore, e - tAH tp ± 

= tp ± e - tAB" (*) implies e - tAHZ ± I tp ± I = Z ± I tp ± I 
xe- tAHO =Z± e-tAHOltp ± I. SO e-tAHZ± =Z± e- tAHO 

on (rani tp ± I) = P~K. Furthermore, (*) implies that 
e - tAHO leaves kertp ± = ker Z ± = (I - P~c)K invariant, 
so that 

e - tAHZ ± = Z ± e - tAHO = 0 

on (I - P ~ )K. Therefore e - tAHZ ± = Z ± e - tAB" on all of 
K, and since H O ~ (ker Z ±)' = H O ~ p~ is purely absolutely 

continuous, and since Z ± is isometric, it follows that 
H ~ (ran Z ±) = H ~ ran I/' ± is purely absolutely continuous. 
Thus Pac tp ± = tp ±' and since furthermore IT + tp ± 
= tp ± ' we have 

ran tp ± CP ac TK, 

as desired. 
To demonstrate the reverse inclusion, we repeat the ar

gument above for 4> ± in place of tp ± . The same statements, 
with Tinterchanged with T + , Ir' interchanged with H, and 
P~c interchanged with Pac IT +, show that 

ran 4> ± CP~K. 

If we now write 

tp(t)4>(t) = IT+Pac - etAH Te-tAB"(I - P~)4>(t) 

and take the strong limit, using the uniform boundedness of 
tp (t) and 4> (t), we obtain 

1/1 + 4> + = 1/1 _ 4> _ = IT + Pac = Pac IT + . 

Therefore Pac T K C ran tp ±' as desired. It follows that 
ran tp ± = Pac TK, which completes the proof. / / / 
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APPENDIX A: REAL-LINEAR TRANSFORMATIONS 

The framework in the text involves the reinterpretation 
of a complex Hilbert space as a real Hilbert space, with the 
real inner product being given by the real part of the complex 
inner product. Here the complex Hilbert space is not a com
plexification of the real Hilbert space, nor is the real Hilbert 
space the real linear span of a basis for the complex space. 
Rather, the same set K of vectors is regarded as being a 
Hilbert space under two (related) inner products, as follows. 

Let (K, ( I ) ) be a separable complex Hilbert space with 
(complex-valued) inner product (I). It is easy to see that the 
set K is also an inner product space (over the scalars H) 
under the real-valued inner product Re (I ) induced by ( I ). 
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Because furthermore (flf) = Re(flf), the norm induced 
by the real inner product is identical to the (usual) norm 
induced by (I). Thus (K,Re( I») is a real Hilbert space. 

Most of the results for complex Hilbert spaces also hold 
for their reinterpretations as real Hilbert spaces. [A notable 
exception is the recovery of (the matrix elements of) a bound
ed operator from its expectation values alone.] This appen
dix is a review of those results needed for the analysis in the 
text which are real-linear analogs of standard results for 
complex Hilbert spaces and complex-linear operators. The 
complex-linear versions can all be found in the book by Reed 
and Simon; 19 most of the proofs can easily be adapted to the 
real-linear situation. 

To begin on firm ground, note that if {h n In = 1, ... ,00 } 

is an orthonormal basis for the complex Hilbert space 
(K,( I») then the set {hn,ihn In = 1, ... ,00 } is an orthonormal 
basis for the real Hilbert space (K,Re( I»). It is easy to see 
that the Bessel and Schwarz inequalities, the parallelogram 
law, and the Pythagorean theorem all hold for the real Hil
bert space. Furthermore, if M is any real-linear manifold of 
the real Hilbert space K, then its real-orthogonal comple
ment 

M1=={feKIRe(flg) =0, for all geM} 

is easily shown to be a closed real-linear subspace of K. 
Real-linear versions of the projection theorem and the Riesz 
lemma are also easy to prove. 

Definition: A bounded real-linear transformation is a 
mapT:K-KsuchthatT(af + bg) = aT(f) + bT(g)forall 
f,g e K and all a,b, e R, and such that for some c ~ 0, 
IIT(f)1I :::;cllfll for allfe K. 

Denote by A the operation of multiplication by the 
complex number i on the Hilbert space K; A is a real-linear 
transformation. Real-linear transformations do not in gen
eral commute with A; those that do are called complex lin
ear. Clearly A is a complex-linear transformation, and 
A -I = - A. Note that the complex inner product can be 
expressed in terms of the real inner product by the use of A: 
(fig) = Re(flg) + i Re (Aflg) = Re(flg) 
- i Re(fIAg). Note also that a real-linear transformation 
is uniquely decomposed into complex-linear and complex
antilinear parts by 

Q/=(Q+A -IQA )/2, 

Qa=(Q-A -IQA )12, 

sothatQ/A =AQ/ andQaA = -AQa. 
It is easy to verify that if T:K -K is a bounded real

linear transformation, there exists a unique bounded real
linear transformation T *:K -K such that Re( T *f1g) 
= Re(fl Tg), for all f,g e K. The transformation T* is 

called the real adjoint of T. If T is complex linear then T * is 
the usual adjoint of T with respect to (I), because then 
(h Ig) = Re(h Ig) - i Re(h lAg) implies 

(T*flg) = Re(T*flg) - i Re(T*fIAg) 

= Re(fITg) - iRe(fITAg) 

= Re(fITg) - iRe(fIATg) = (fITg). 
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Also, if T is purely antilinear then 

(T*/lg) = Re(/ITg) - iRe(/ITAg) 

= Re(/ITg) + iRe(/IATg) 

= Re(TgI/) + i Re(ATgI/) = Re(TgI/) 

- i Re(TgIA/) = (TgI/), 

so the real adjoint gives the usual adjoint of an antilinear 
operator. 

It is furthermore clear that T** = T and (ST)* 
= T*S*, and that if T has a bounded inverse then 
(T*)-I = (T- I)*. 

An important result for real-linear operators is the po
lar decomposition theorem, for which we need the notion of 
a positive real-linear operator. In contrast to the complex
linear situation, the condition Re (I I Qf) 2 0 for all I in J¥" 
does not alone imply that Q is self-real-adjoint, so here the 
latter is incorporated into the definition of positivity of a 
real-linear transformation. 

Definition: A bounded real-linear transformation 
Q:J¥" ~J¥" is said to be positive if Q is self-real-adjoint and 
Re(/IQf) 20, for ali/E J¥". 

Note that if T:J¥" ~J¥" is a bounded real-linear transfor
mation then T * Tis self-real-adjoint and also clearly positive. 
This circumstance allows the definition of I T I. 

Square Root Lemma: Let Q:J¥" ~J¥" be a positive 
bounded real-linear transformation. Then there is a unique 
positive bounded real-linear transformation R:J¥" ~J¥" such 
that R 2 = Q. Furthermore, R commutes with every bounded 
real-linear operator which commutes with Q. 

The proof of this lemma rests on the norm convergence 
of the power series in the operator (I - Q) for the square root. 
The fact that Q is self-real adjoint is used in the conclusion 
that 111- Q II s 1 whenever IIQ II s 1, which follows from the 
observation that 

IIQII = supl(/IQf)1/11/112, forself-real-adjointQ. 
fEK 

The operator R in the lemma is, of course, denoted Q 1/2. 

Since Q = T * T satisfies the hypotheses of the theorem, 
we can define the (self-real-adjoint) positive operator 
ITI=(T*T)I/2. 

Definition: A real-linear transformation Z:J¥" ~J¥" is 
said to be a real-isometry ifllZ/l1 = 11I11 forall/E J¥". We say 
Z is a partial real-isometry if Z is an isometry when restricted 
to the real-orthogonal complement (ker Z)1 of its kernel. 

The proof of the following theorem proceeds exactly as 
in the complex-linear case. 

Polar Decomposition Theorem: Let T:J¥" ~J¥" be a 
bounded real-linear transformation. Then there is a partial 
real isometry Z:J¥" ~J¥" such that T = ZIT I. The operator Z 
is uniquely determined by the condition ker Z = ker T. Fur
thermore, the range of Z is the norm closure of the range of T 
in J¥". 

To discuss real-linear transformations of Hilbert
Schmidt type, we need to define the notion of the real trace of 
real-linear operators. It is not difficult to verify the follow
ing. 

Trace Theorem: Let {In In = 1, ... ,00 l be a real-ortho-
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normal basis for the separable real Hilbert space (J¥",Re( I»). 
Let Q be a bounded positive real-linear transformation, and 
define the trace trr Q of Q by trr Q =l:nReifn 1Qf..). Then 
trr Q is independent of the real-orthonormal basis chosen. 

The trace of an operator can of course be equal to infin-
ity. 

Definition: A bounded real-linear transformation 
T:J¥" ~J¥" is said to be a Hilbert-Schmidt operator if 
tr r (T * T) < 00. The set of all real-linear Hilbert-Schmidt op
erators on J¥" is denoted B 2r (J¥"). The subset of complex
linear operators in B 2r (J¥") is denoted by B 2c (J¥"). 

Since {h n ,Ahn l is a real-orthonormal basis for 
(J¥",Re( I») whenever {h n l is a complex-orthonormal basis 
for (J¥",( I»), if Tis a complex-linear operator then trr(T*T) 
=l:nReifnIT*T/,,) =l:nRe(TlnITln) = l:n liT/" 112 
= l:n(JIThn 112 + IIT(Ahn)1I2) = 2l:n IIThn 112 = 2 trc(T*T), 
wheretrc denotes the (usual) complex trace. SoB 2c(J¥") is the 
class of complex-linear Hilbert-Schmidt operators. Note 
furthermore that if Tis either complex-linear or purely com
plex-antilinear then trr(T*T) = l:n II Tin 112 = l:n(JIThnIl 2 

+ II T(Ahn 112) = 2l:n II Thn 112 = 2l:n,m I (hm I Thn W, with 
{h n l a complex-orthonormal basis. 

Just as in the complex-linear case, the set B 2r (J¥") is a * 
ideal in the bounded real-linear operators. This property of 
B 2r (J¥") is of great utility in the computations in the text. 

Theorem: B 2r (J¥") is a * ideal in the bounded real-linear 
transformations, that is, (a) B 2r (J¥") is a real vector space, (b) 
if Q E B 2r (J¥") then Q * E B 2r (J¥"), and (c) if Q E B 2r (J¥") and 
R:J¥" ~J¥" is a bounded real-linear transformation, then QR 
and R Q are both in B 2r (J¥"). 

Also, just as in the complex-linear situation, the set 
B 2r (J¥") of real-linear transformations forms a Banach space 
over R with the norm IITII2r==(trr(T*TW/2, and the finite
rank real-linear operators are 1I·lbr dense in B 2r(J¥"). Fur
thermore, if Q E B 2r (J¥") and R is a bounded real-linear 
transformation, then IIQ *1I2r = IIQ 112r,IIQR 112r 
S IIR IIIIQ 112r' and IIR Q 112r S IIR III1Q Ibr,just as in the com
plex-linear theory. 

Since B 2r (J¥") is an ideal, it follows immediately that the 
linear and antilinear parts Q/ and Qa of Q are elements of 
B 2r (J¥") if and only if Q E B 2r (J¥"). Furthermore, because 
{Afj l is a real-orthonormal basis for J¥" whenever {fj l is a 
real-orthonormal basis for J¥", if Q E B 2r (J¥") then 
trr(Q*Q)=trr(A*Q*QA). It then follows, by the 
linearity of the trace over positive operators, that trr(Q *Q) 
= trr(QrQtl + trr(Q:Qa)' 

APPENDIX B: SYMPLECTIC TRANSFORMATIONS 

A symplectic space is a real linear space L with a non de
generate skew-symmetric bilinear form B:L XL~R. Real
linear transformations taking (domains in) L into L which 
preserve the symplectic form B are called symplectic trans
formations. 

Here we take L to be the real Hilbert space (J¥",Re( I») 
introduced in Appendix A, and we let B be the nondegener
ate skew form given by B if ,g)=Im (I Ig) fori andg in the set 
J¥". This special relationship between the complex and the 
symplectic structures on J¥" is natural for the treatment of 
the model field theories under study. 
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Denote by A the operation of multiplication by the 
complex number i on K. Then B if,g)=Im(flg) 
= Re(Aflg) and Re(flg) =B(f,Ag) = Im(fIAg). If 
Q:K -+K is an arbitrary bounded real-linear transforma
tion, its real adjoint Q * is also a bounded real-linear transfor
mation. We define another bounded real-linear transforma
tion Q +:K-+Kby Q +==A -IQ*A. Note that 

B(Q+f,g)=B(A -IQ*Af,g) = Re(A (A -IQ*Afllg) 

= Re(Q * Aflg) = Re(AfIQg) = B (f,Qg). 

The transformation Q + is thus called the adjoint of Q with 
respect to B. It follows from the nondegeneracy of B that the 
transformationQ +satisfyingB (Q +f,g) = B (f,Qg)isunique. 
Note that A + =A * =A -I = -A. 

In the following, a real linear manifold in K will be 
called a subspace; here a subspace is not necessarily closed. 
For any subspace M of K, define 

M'=={feKIB(f,g) =0, for all geM). 

It is easy to show that if M is a complex subspace of K (that 
is, AM = M) thenM I = M.l ,and henceforth if Mis complex, 
M.l will be written M'. 

Lemma: Let Q:K -+Kbe a bounded real-linear trans
formation. Then (ranlQ III = ker Q. Iffurthermore (ker Q) 

is a complex subspace of K, then ran I Q I is also a complex 
subspace. 

Proo/' To show that (ranlQ IlL = ker Q, note that if 
fe ker Q, then for all g e K,Re(fil Q Ig) 
= Re(IQ ltig) = O. Thus (ker Q)C(ranIQ Ill.Conversely,if 
fe (ranlQ III then for all g e K, 0 
= Re(flIQ Ig)· Choose g==IQ If to 'get 0 
= Re(flIQ 1:1') = Re(QfIQf) = IIQfll2, whence f 
e ker Q, that is, (ker Q):::>(ranIQ IlL. 

For the second assertion, suppose (ker Q) is complex, 

and letfe (ranlQ I) = (ker Q)l' Then for all g e ker Q we 
have Re(Aflg) = Re(fiA *g) = 0 because A *g e ker Q. 

ThusAfe (ker QlL = ranlQ I wheneverfe ranlQ I, that is, 

ranlQ I is a complex subspace. / / / 
If M is a subspace of K, then the form B is said to be 

nondegenerate on M if fe M and B (f,g) = 0 for all geM 
imply f = O. Note that if M is any complex subspace of K 
then B (defined as the imaginary part of the inner product) is 
nondegenerate on M, because 

feM and B(f,g) =0, for all geM 

iff fe M and Re(Aflg) = 0, for all geM, 

which implies Re(AfIAf) = 0, that is,! = O. 
Definition: A bounded real-linear transformation 

S:K -+K will be called a partial symplectic transformation 
if (ker S) and (ran S) are complex subspaces of K and 
B (Sf ,sg) = B if,g) for allf and g in (ker S)'. 

Remark: If Q:K -+K is any bounded (hence contin
uous) real-linear transformation, then (ker Q) is closed be
cause it is the inverse image of the closed set {O}, and both 
(ker Q)' and (ran Q )' are closed because the orthogonal com
plement of any subspace is closed. Although (ran Q ) is a sub
space, it is not a priori closed. It will tum out, however, that 
(ran S) is, in fact, closed if S is partially symplectic. 

Definition: A bounded real-linear transformation 
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S:K -+K will be called a symplectic transformation if S is a 
partial symplectic transformation and (ker S) = {O 1, that is, 
B (Sf ,sg) = B if,g) for allf and g in K. 

Remark: This definition is somewhat different from 
those usually made in the literature. On one hand, it is less 
general because it requires (ran S) to be a complex subspace. 
On the other hand, it is more general because it allows S to 
have range smaller than the entire space. 

Definition: A bounded real-linear transformation 
S:K -+K will be called an invertible symplectic transforma
tion if S is a symplectic transformation and (ran S) = K. 

Definition: Let Me Kbe a closed complex subspace. A 
partial symplectic transformation S:K -+K will be said to 
be an invertible symplectic transformation on M if 
Me (ker S)' and SM = M. 

The relationship between the complex and symplectic 
structures on K induces several nice properties of partial 
symplectic transformations which are listed below. 

Theorem: Let S:K -+K be a partial symplectic trans
formation. Then we have the following. 

(I) Each of (ker S), (ker S)" (ran S), and (ran S)' is a 
closed complex subspace of K. 

(2) Both S + Sand SS + are complex-linear self-adjoint 
projections, and 

(Initial subspace of S )==(ker S )' 

= (ran S +) = S + SK = S + K 

==(Final subspace of S +), 

(ker S) = (ran S +)' = (I - S + S)K, 

(Final subspace of S )=(ran S) = (ker S +)' = SS + K 

= SK (Initialsubspaceof S +), 
(ranS)' = (kerS+) = (I -SS+)K. 

(3)S=SS+S and S+ =S+SS+. 
(4) S + is a partial symplectic transformation whenever 

S is a partial symplectic transformation. 
The proof of this theorem involves the straightforward 

verification of several assertions. Although there are many 
steps, none is difficult, and we omit the details. 

With the basic facts in the above theorem, we can deve
lop several results used in the text. 

Lemma: Let R:K -+K and S:K -+K be symplectic 
transformations. Then RS +:K -+K is a partial symplectic 
transformation. 

Proo/' By virtue of the facts that Rand S are partially 
symplectic and ker R = ker S = {O 1, it follows that 
S + S = R + R = /. Because ker R = {O 1, ker RS + 
= ker S +. Furthermore, RS + K = RS + SK = RK, so 

that ran RS + = ran R. Thus ker RS + and ran RS + are 
complex subspaces. Now suppose f,g 
e (ker RS +)' = (ker S +)" and consider B (RS +f,RS +g). 
Because (ker R )' = K,S + f and S + g are in (ker R )" so 
B(RS+f,RS+g) =B(S+f,S+g) =B(f,g) because f,g 
e (ker S +)'. Thus RS + is a partial symplectic transforma-
tion, as claimed. / / / 

Lemma: Let T:K -+Kbe a partial symplectic transfor
mation and let S = IT 12==T * T. Then S is an invertible sym
plectic transformation on T + T K, with S + S 
=SS+ = T+T. 
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Proof: First we find ker S and ran S. Because T * Tf = 0 
ifandonlyifTf= 0, we have ker S = ker T= (I - T+T)JY 
and (ker S)' = (ker T)' = T+TJY. Next, 

ranS=SJY= T*TJY=AT+A *TJY=AT+TJY 

= A (ker T)' = (ker T)" 

that is, ran S = (ker T)' = T + TJY. 
Now we establish the preservation of Bon T + TJY. Let 

f,g e (ker S)' = T + T JY. Then 

B(Sf,Sg) =B(T*Tf,T*Tg) 

=B(AT+A *Tf,AT+A *Tg) 

=B(T+A *Tf,T+A *Tg). 

Now, because ran T = (ker T +)' is a complex subspace, 
A*Tfe(kerT+),. Thus B(Sf,Sg)=B(A*Tf,A*Tg) 
=B(Tf,Tg) =B(f,g)becausef,ge T+TJY= (ker T)'. SoS 

preserves B on T+TJY,kerS=(T+T.:W)', and 
ranS= T+TJY. 

Furthermore, S+S= T+T*+T*T= T+(TT+)*T 
= T+TT+T= T+T, and SS+ = T*TT+T*+ 
= (T+THT*T)* = (T+T)* = T+T, as asserted. 

Finally, S (T + T.:W) = SS + SJY = SJY = T + TJY, so 
S is invertible on T + T JY. I I I 

Corollary: If T:JY -+JY is a symplectic transformation, 
then ITI 2=T*Tis an invertible symplectic transformation 
on all of JY. 

Lemma: Let S:JY -+JY be an invertible symplectic 
transformation on K C JY, and let P be the projection onto 
K. ThenS+SP=SS+P=P. 

Proof: By definition, K C(ker S)" SK = K, and 
S:JY -+JY is partially symplectic. So for allf,g e K, B (Sf,Sg) 
= B (f,g), that is, B (f, S + Sg) = B (f,g) for allf,g e K. Be
cause K is a complex subspace, B is nondegenerate on K and 
so the above implies S + Sg = g for all g e K, that is, S + SP 
= P. This furthermore implies SS + Sg = Sg for all g e K, 
thatis,SS+f =fforallfeSK = K. ThusSS+P = P. III 

Lemma: Let Q:JY -+JY be a partial symplectic trans
formation and let Vbe an invertible symplectic transforma
tion on ran Q. Then Y =Q + VQ is an invertible symplectic 
transformation on Q + QJY. 

Proof: Because V is an invertible symplectic transfor
mation on ran Q = QQ + JY = QJY, 

V+V(QQ+)= VV+(QQ+)=QQ+. 

First we find ker Y: 

ker Y 

= ker (Q +(VQ)) = (ker VQ)u(VQ)-I(ker Q +) 

= (ker Q )u( VQ ) - I((ran Q )'). 

Now, because VQJY = QJY, VQ = QQ + VQ so 
(VQ)-I((ran Q)') = to} and ker Y = ker Q. Thus (ker Y)' 
= (ker Q)' = Q +QJY. 

Next we find ran Y: ran Y = yJY = Q + VQJY 
= Q + QJY, and so ran Y = ran Q + = (ker Q )'. Further
more, Y (Q + Q.:W) = Q + VQQ + QJY = Q + VQJY, so that 
Y(Q +Q.:W) = Q +QJY. 

Finally, letf,g e (ker Y)' = (ker Q)'. Then because VQf 
e ran Q = (ker Q +)" we have 
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B (Yf, Yg) = B (Q + VQf,Q + VQg) 

= B (VQf, VQg) = B (Qf,Qg) = B (f,g). 

Thusker Y = (Q +Q':w)'andran Y = Q +QJYarecom
plexsubspaces, Y(Q +Q.:W) = Q +QJY,andYpreservesBon 
Q+QJY. III 

Recall that a positive real-linear transformation is, by 
the definition in Appendix A, also self-real-adjoint. 

Lemma: If T:JY -+JY is a partial symplectic transfor
mation then T has the real polar decomposition T = ZIT I, 
where I T I ==(T*T)1/2isapositivepartialsymplectictransfor
mation, invertible on T+TJY, with ITI+ITI = ITIITI+ 
= T + T, and where Z is a complex-linear partial isometry 
withZ+Z=Z*Z= T+TandZZ+ =ZZ* = TT+. 

Proof: From an earlier result we know S==ITI2 is an 
invertible symplectic on T + TJY, withS + S = SS + = T + T. 
Since S is positive, it has a unique positive square root S 1/2. 
SinceS + A *S *A = A *SA is also positive, it is not diffi
cult to see that 

(S +)1/2S 1/2 = S 1/2(S +)1/2 = T + T. 

[Consider the commuting operators S 1/4 and (S +)1/4, and 
recall that T + Tis a complex-linear self-adjoint projection.] 

Because furthermore (A *S 1/2A )2 = A *SA = S +, we 
have by the uniqueness of the positive square root that 

(S+)1/2 =A *S1/2A = (SI/2)+ = ITI+. 

Thus ITI+ITI = ITIITI+ = T+Tas claimed. 
Now set Z==TITI+. Then ZITI = TITI+ITI 

= TT+T= T, and 

Z+Z= ITIT+TITI+ = ITIITI+ITIITI+ 
= (T+T)(T+T) = T+T, 

Z*Z= ITI+T*TITI+ 
= ITI+ITI2ITI+ = (T+T)(T+T) = T+T, 

ZZ+ = TITI+ITIT+ = TT+TT+ = TT+, 

ZZ* = TITI+ITI+T* = TA *ITI2AT* 
= T(A *T*A)(A *TA )T* 

= TT+T*+T* = (TT+)(TT+)* = TT+. 

Finally, to show Z is complex-linear, we note that 
I T II T I + I T I = I T I, because I T I is a partial symplectic trans
formation. Thus 

A *ZA =A *TITI+A = T*+ITI = T*+ITIITI+ITI 
= T*+ITI2ITI+ = (TT+)*TITI+ 
= TT+TITI+ = TITI+ =Z, 

so Z is complex linear. 

APPENDIX C: TRACE-NORM PROPERTIES OF 
SYMPLECTIC TRANSFORMATIONS 

III 

In this appendix are a few observations used in the dis
cussion in the text which involve Hilbert-Schmidt norms 
and symplectic transformations. 

Lemma: Let S:JY -+JY be a symplectic transformation. 
Then S * + XS + e B 2r (S.:W) if and only if X e B 2r (.:W). 

Proof: Because SJY and (S.:W)' are orthogonal, we may 
choose a real-orthonormal basis for JY each element of 
which is either in SJY or in (S.:W)'. Since the trace in the 
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definition of the Hilbert-Schmidt norm is independent of the 
basis, we may evaluate traces in such a real-orthonormal 
basis {fn J, and tr r (Q *Q) = l:n,m (Re <In I Qfm ) )2, Suppose 
first that S * + XS + e B 2r (S,w'). Because S + (S,w')' = (O J, it 
followsthatS*+ XS + e B 2r(,w'). Making use of the fact that 
B 2r (,w') is an ideal gives S *(S H XS +)S e B 2r (,w'). Since 
I = S + S = S * S * + , this implies thatX E B 2r (,w'). If, conver
sely, X e B 2r (,w'), then by the ideal property 
S*+XS+ eB 2r (,w')CB 2r (S,w'). III 

Lemma: Let T:JY ~JYbe a symplectic transformation. 
Then T*XTeB 2r (,w') if and only ifXeB2r(T,w'). 

Proof: Again take traces in a real-orthonormal basis for 
JY each element of which is either in TJY or in (T,w')'. Sup
pose first that T * XT e B 2r (,w'). Then by the ideal property, 
(TT+)*XTT+ = T*+(T*XT)T+ eB2r(,w'). Since 
B 2r(,w')CB 2r (T,w'), and since TT+ is the projection onto 
TJY, we have XeB2r(T,w'). Conversely, suppose 
XeB 2r (T,w'). Then T*+T*XTT+ e B 2r (T,w'), and since 
TT+(T,w')' = (OJ, THT*XTT+ eB 2r (,w'). Using the 
facts thatB 2r(,w') is an ideal and that I = T+T= T*T*+, 
we have T*(T*+T*XTT+)TeB 2r (,w'), hence 
T*XTeB 2r (,w'). III 

Remark: If Q:JY ~JY is a partial symplectic transfor
mation then Q e B 2r (,w') if and only if Q e B 2r (Q + Q,w'), and 
the notation IIQ 112r for the Hilbert-Schmidt norm of Q is 
unambiguous. This is because (ker Q)' = Q + QJY and 
(ker Q) are orthogonal subspaces of JY. Since the trace is 
basis independent we may choose a basis each element of 
which is either in (ker Q ) or in (ker Q )' to compute the trace of 
IQ 12:Q +QJY~Q +QJY; there is no contribution from the 
terms involving basis vectors in (ker Q ). 

Lemma: Let T:JY ~JYbe a symplectic transformation. 
Then (IT+1 2-I)eB2r (T,w') if and only if (ITI2_I) 
e B 2r(,w'). Furthermore, if dim(ker T +) = codim(ran T) is 

finite, then (i TI2 - I) eB 2r(,w') if and only if (IT+12 - I) 
eB2r(,w'). 

Proof' Since I = T+T= T*T*+, we have (ITI 2 - I) 
= - T *( IT + 12 - I) T. It thus follows from the second 

lemma above that (I T 12 - I) e B 2r (,w') if and only if 
(I T + 12 - I) e B 2r (T,w'). For the second assertion, note that 
(IT+1 2 -I) = (IT+1 2 -I)TT+ - (I - TT+). With the 
additional assumption that the subspace (ker T +) 
= (I - TT +)JY is finite dimensional, it follows that 
(IT+1 2-I)eB2r (,w') if and only if (IT+12_I)TT+ 
e B 2r (,w'), which is the case if and only if 
(IT+1 2-I)eB2r (T,w'). III 

Recall that two representations of the Weyl algebra are 
said to be interchangeable if they both admit unitary imple
mentation of exactly the same set of symplectic automor
phisms. 

Lemma: Let R:JY ~JY and T:JY ~JY be symplectic 
transformations, and let 1TR and 1TT be the associated repre
sentations of the Weyl algebra, that is, with the conventions 

1279 J. Math. Phys., Vol. 26, No.6, June 1985 

of Sec. II of the text, 1TR(W(f)) = W(Rf) and 1TT(W(f)) 
= W(Tf) for aUfe JY. If(IRI 2 - IT 12) e B 2r(,w'), then the 

representations 1TR and 1TT are interchangeable. 
Proof: LetS:JY ~JYbe an arbitrary invertible symplec

tic transformation and let Us be the automorphism of the 
Weyl algebra induced by S. We must show that Us is unitari
ly implementable in 17' R if and only if Us is unitarily imple
mentablein 1TT, assuming (IR 12 -ITI2) eB 2r(,w'). Now, as 
in Sec. V, Us is unitarily implementable in 1TR if and only if 
(IRSR + 12 - I) e B 2r{R,w').SinceRR +isthecomplex-linear 
self-adjoint projection onto RJY, the operator 

(IRSR +1 2 -I) =R *+IRSI 2R + -IRR +1 2 + (RR +-I) 

=R *+(IRSI 2 -IR 12)R + + (RR +-I) 

is in B 2r (R,w') if and only if 
R H{IRS 12 -IR 12)R + eB 2,(R,w'). By an earlier result in 
this Appendix, this latter condition is true if and only if 
(IRS 12 - IR 12) e B 2r(,w'). Thus Us is unitarily implementa
blein1TR ifandonlyif(IRS 12 - IR 12) e B 2r (,w').Byhypothe
sis, (IRI 2-ITI2)eB2r (,w'), so that (iRSI 2 -IRI2) 
=S*(IR 12 -ITI2)S-(IR 12_ITI2) +(ITSI2-ITI2)isa 
Hilbert-Schmidt operator iff (I TS 12 - IT 12) e B 2r (,w'), that 
is, if and only if S is unitarily implementable in 17' T' Thus 17' R 

and 1TT are interchangeable. I II 
The proof of this lemma established the following fact 

which is worth recording separately. 
Corollary: Let R:JY ~JY be a symplectic transforma

tion, and let S:JY ~JY be an invertible sympletic transfor
mation. The automorphism Us induced by S is unitarily im
plementable in the representation 1TR induced by R if and 
only if(IRS 12 -IR 12) eB2r{,w'). 
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This paper analyzes a family of model quantum field theories for which a C *-algebraic viewpoint 
is essential because time-dependent scattering theory cannot be constructed in anyone natural 
representation of the observable algebra. The models demonstrate, in an uncomplicated setting, 
mechanisms by which nonstandard representations of the canonical commutation relations 
(CCR) arise in the solution of the field theory. It is shown explicitly how sufficiently strong low
energy coupling between a massless quantum field and a quantum oscillator can result in the 
inequivalence of the free and interacting vacua, and in the failure of Meller wave operators to 
exist. It is also shown explicitly how an algebraic framework can be used to circumvent these 
representation-dependent difficulties and to easily construct an S matrix. The treatment relies on 
and illustrates the general theory developed in a preceding paper for scattering in models which 
are field-theoretic analogs to systems with finite numbers of degrees offreedom that are solvable 
by transformation to normal modes. 

I. INTRODUCTION 
This paper presents a family of model quantum field 

theories which illustrate the general framework developed in 
a preceeding paper,1 henceforth referred to as [I]. These 
models demonstrate, in an uncomplicated setting, mecha
nisms by which nonstandard representations of the algebra 
of observables arise in the solution of a field theory. 

The models are field-theoretic analogs of systems with 
finite numbers of degrees of freedom that are solvable by 
transformation to normal modes. They are of interest be
cause a C *-algebraic viewpoint is essential for their treat
ment in terms of time-dependent scattering theory; for these 
models, wave operators fail to exist in any natural represen
tation of the Weyl algebra of the canonical commutation 
relations, while a conventional S matrix can be constructed 
using an algebraic framework. 

The system under study consists of a quantum-mechan
ical oscillator interacting linearly with a massless scalar 
field, roughly modeling an atom interacting with light. It is a 
variant of a model proposed by Schwabl and Thirring2 in 
their discussion oflaser theory, and later treated by Arae in 
a series of papers about the Lamb shift in quantum electro
dynamics. The linear coupling studied by Arai and Schwabl 
and Thirring is "electrostatic" in nature, while the coupling 
studied here is a "spring force." The mathematical differ
ence is manifest in the fact that the analyticity of a certain 
resolvent [D (z) -1 in the following] does not depend too sensi
tively on the low-energy strength of the coupling in the mod
el studied here. 

There are significant differences in viewpoint and tech
nique between the analysis here and that which Arai em
ploys to treat the model of Schwab I and Thirring. Here there 
is no need to prove the existence and self-adjointness of a 
second-quantized Hamiltonian, because the interacting dyn
amical automorphism group of the Weyl C * algebra is in
duced by a one-parameter group of symplectic transforma
tions on the classical phase space. Thus a knowledge of the 
theory of free quantized fields and Shale's criterion for the 
implementability of symplectic morphisms [I] is sufficient to 
establish all the results needed about the second-quantized 
theory. Furthermore, the C *-algebraic framework used here 

allows the treatment of a large class of coupling functions 
which cannot be handled by Arai's methods, and which give 
rise to interesting exactly solvable theories having "infrared 
problems. " 

The analysis proceeds as follows. In Sec. II we write 
formal equations for the system with linear coupling involv
ing an unspecified coupling function. We then employ heu
ristic calculations to obtain a formal solution to the field 
equations, which suggests the formal "diagonalizing" trans
formation to "normal mode variables." This formal linear 
canonical transformation on the "quantized" field and oscil
lator variables is then seen to be induced by a certain map on 
the classical phase space. 

This map T is the starting point for the analysis of the 
system. It is shown in Sec. III A that with certain mild re
strictions on the coupling function, T is a bounded real-lin
ear transformation. In Sec. III B we show that T is in fact a 
symplectic transformation. 

In Secs. III C-III E, we examine the way the properties 
of T depend on the coupling function. Having introduced a 
specific one-parameter family of coupling functions with 
small-momentum behavior proportional to I p I - a , we show 
in Sec. III C that for ° < a';;; 1, the transformation T is isome
trically implementable in the Fock representation of the 
CCR, but that for! < a < 1, T is not isometrically implemen
table in the Fock representation. In Sec. III D, we show that 
the interacting dynamical automorphism group is unitarily 
implementable in the Fock representation for all ae(O, 1), and 
in Sec. III E, we show that the free dynamical automorphism 
group is unitarily implementable for all ae(O, 1) in the repre
sentation 1TT determined by the interaction-vacuum state. 

In Sections III F-III H, we formulate time-dependent 
scattering theory in the algebraic framework presented in 
[I]. We show in Sec. III F that the model here satisfies the 
general hypotheses guaranteeing the existence of Meller 
wave morphisms. In Sec. III G, we calculate the wave mor
phisms explicitly; these are seen to be nonimplementable in 
each of the two natural representations. In Sec. III H we 
show that the scattering morphism which results is imple
men table in the bare-vacuum (Fock) representation, but not 
in the interaction-vacuum representation 1TT • 
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The results of the analysis in Sec. III and their immedi
ate implications are summarized in Sec. IV. The reader who 
wishes to skip the detailed calculations of Sec. III may tum 
directly to Sec. IV after reading Sec. II. 

Section V contains the physical interpretation of the 
preceding analysis. It is pointed out that the inequivalence of 
the bare vacuum and the interaction vacuum is an "infrared 
problem" which precludes the existence of second-quan
tized wave operators, but that an S matrix is easily calculated 
within the algebraic framework for time-dependent scatter
ing theory. 

II. PHYSICAL MODEL AND HEURISTIC ANALYSIS 

The analysis in this section is not meant to be rigorous, 
but rather to illustrate the connection between traditional 
field equations and the symplectic transformation which is 
the starting point of our rigorous treatment. We work pri
marily with the momentum-space versions offield variables, 
elements of classical phase space, etc., which are Fourier 
transforms of the corresponding coordinate-space objects. 
In the following equations, the independent variables are the 
Hermitian scalar field ¢ (t,p) and the position coordinate q(t ) 
of a one-dimensional harmonic oscillator. The "uncoupled" 
field is supposed to be massless, and the ("uncoupled") har
monic oscillator has a natural frequency liJo. 

The equations of motion are 

(a; + p2)¢ (t,p) = -AP(p{f d 3k p(k)¢ (t,k) - q(t)), 

(a; + liJ6 )q(t) = - ..1,( q(t) - f d 3k p(k)¢ (t,k)), 

where p:R3 ~C is a coupling function and the real number 
..1,>0 gives the coupling strength. We make an assumption 
about the coupling function pIp) which simplifies the analy
sis but does not affect the essential features of the model. 
Henceforth we assume that the coordinate-space Fourier 
transform pIx) of p is a spherically symmetric real-valued 
function. It immediately follows that pIp) is a spherically 
symmetric real-valued function of p. 

We can picture this system as an oscillator of mass m 
and natural frequency liJo,coupled by a spring with spring 
constant k = Am to a string (in one spatial dimension) or a 
membrane (in two spatial dimensions) with the coupling 
smeared out by a function pIx). If the coupling were to a 
point on the string or the membrane, p would be proportion
al to a delta function. 

We can formally solve these linear equations.4 Intro
ducing the "free (in) field" and "uncoupled oscillator" solu
tions 

qO(t )=(2aJo)-1/2(B *ei,>>ot + Be - i.,,",), 

treating the right-hand sides of the equations of motion as 
source terms in the Yang-Feldman equations, and doing 
some algebra with the time-variable Fourier transforms of 
the various quantities, we obtain 
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¢ (t,p) = (2aJp )-1/2f d 3k (I *(p,k) b *(k)/"k' 

+ L *(p,k) b ( - k)e - i"'k'), 

q(t) = f d 3k (2aJk )-1/2(Q (k) b *(k)ei"'k' 

+ (l(k) b( - k)e-i"'k'), 

where we have defined the kernel 

L (p,q)=83(p _ q) + AP(P)(liJ6 - liJ~ )liJ!l2p(q) 
liJ~I2D +(liJ~)(liJ~ - liJ~ + iO) 

and the function Q(p)==Ap(p)/D+(liJ~). In these formulas 
liJp=lpl, and the function D+ is given by 

D ± (x)= lim D (x ± ie) with 
E--++O 

D (z)==..t + liJ6 - z + A (liJ6 - z) f d 3plp(pW(liJ~ - Z)-I. 

Note that the fixed number liJo is not to be mistaken for liJp at 
p = O. We denote by I (p,q) the complex conjugate of the 
quantity L (p,q), and we set L *(p,q)==L (q,p). For future con
venience we also define 

M (p,q)==WpL (p,q)liJq- I. 

We will show in the next section that there are well-defined 
bounded operators Land M whose symbolic kernels are the 
expressions given here. 

This model is in fact a field-theoretic analog of a system 
with finite number of degrees of freedom having a transfor
mation to normal modes. To make the analogy explicit, we 
now rewrite the formal solutions above in terms of a (linear, 
canonical) "diagonalization" transformation. 

To find this transformation, we introduce the time-zero 
decompositions of the field variables ¢ and the oscillator 
variable q in terms of amplitudes a(p) and A, that is, we define 
a*, a, A *, and A by 

¢ (0,p)=(2aJp ) - 112(a*(p) + a( - p)), 

~ (0,p)=i(liJp /2)1I2(a*(p) - a( - p)), 

q(0)=(2aJo) - 112(A * + A ), 

q(0)=i(liJoI2)1I2(A * - A ). 

Substituting these decompositions into the formal solutions 
and solving for a*, a, A *, and A, we find 

and 

alp) = fd3k!{(I* -M*)(p,k)b*(k) 

+ (L * + M *)(p,k) b (k) }, 

a*(p) = f d 3k!{ (I * + M *)(p,k) b *(k) 

+ (L * - M*)(p,k) b *(k)}, 

A = f d 3kWliJ~l2liJk- 112 - liJo- 112liJ:/2)Q (k)b *(k) 

+ (liJ~/2liJk- 112 + liJo- 112liJ:/2){l (k)b (k)}, 

A * = f d 3k H (liJ~l2liJk 112 + liJo- 112liJ:/2)Q (k)b *(k) 

+ (liJ~l2liJk- 112 - liJo- 112liJ:/2){l (k)b *(k)}. 
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To arrive at the above, we have made use of the spherical 
symmetryof(L - I),(M - I),andQ to eliminate minus signs 
in the arguments. 

These amplitudes A and a of course "satisfy the CCR" 
in a formal sense, and the symbolic expressions 

w(:)=eXP(i(a*[h] + a[h] +A *u +Au)/~), 
where heL2(R

3
), UEC, and a[h ]==!d 3p h (p)a(p), 

a*[h] = (a[h ])*, satisfy the Weyl relations 

with symplectic form B given by 

B ((::) , (::))=Im(hdhl) + Im(u1u2)' 

These heuristic manipulations serve to motivate the fol
lowing considerations. The space K L 2(R

3
) E9 C with the 

symplectic form B . defined as above is the classical phase 
space for a system consisting of an (uncoupled) scalar field 
and a harmonic oscillator. The abstract Weyl C * algebra 7r 
over K has unitary elements W (~) satisfying the Weyl rela
tions above (see [I]). The "normal-mode" amplitudes b intro
duced for the free field (that is, the "in" field solution of the 
homogeneous wave equation) also satisfy the CCR and are 
related to the amplitudes A and a by the formulas above. 
These formulas can be combined to give (a* [h ] + a [h ] 
+ A *u + Au) = (b *[h '] + b [h ']), where h 'eL2(R

3
) is re

lated to h and U by a linear formula given below. 
To make these observations precise, we can consider the 

"change of variables" from the symbols A and a to the sym
bols b as a map on the (abstract) Weyl algebra given by 

It will tum out that r is a morphism of 7r induced by a 
symplectic transformation T. 

We can get a formal expression for the action of T as 
follows. Let C:L2(R

3)-L2(R
3

) be the antilinear conjugation 

given by (Ch )(p)= h ( - p); here, of course, complex conju
gation of the function h refers to the fixed complex structure 
on L 2(R

3
). Decompose the function h as h =1 + ig, where 

1,geL2(R3
) are invariant under C, and let u = v + iw with 

v,WER. It is then straightforward to compute that a*[f + ig] 
+ a[f + ig] + A *(v + iw) + A (v - iw) = b *[h '] + b [h '], 
where 

[ 

(L+I) 

-i(L-I) 
2T= 

o 
o 

i(M-M) 

(M+M) 

o 
o 

IW~/2W-l/2(Q+ Q) 
_ ilw~/2W-l/2(Q _ Q) 

o 
o 

The ket notation is employed to call attention to the fact that, 
for example, the operator IW~/2W-l/2(Q + Q):R-L2(R3)c. 
acts on R by multiplication with the function 
W~/2Wp- 1I2(Q (p) + Q (pl). 
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h '(k)=(LI + iMg + W~/2W-l/2Qv + iWO-1I2W1/2Qw)(k) 

= !,(k) + ig'(k), 

with!, and g' the C-invariant functions 

I' = !(L + I)f + !i(M - M)g + !W~/2W-l /2(Q + Q )v 

+ !iwo- 1I2W1/2(Q - Q )w, 

g' = - !i(L - I )f + !(M + M)g - !iw~/2w- 1/2(Q - Q )v 

+ !wo- 1I2W1/2(Q + Q )w. 

Here we have made use of a self-explanatory symbolic opera
tor notation. Henceforth we also represent elements of 
K = L 2(R

3
) E9 C as quadruples in L 2(R

3)c 
E9 L 2(R

3)c E9 R E9 R: 

(D with f,geL,IR'lc~iheL,IR'IICh ~ hi 

Wand V,WER. 

With this notation,K is a real-linear space with symplectic 
form B the same as before but now written in terms of four
tuples as 

B(QJ.crJ)~ if.ig,) - W.~) + ".W, -W.",. 

wherefor/andgeL2(R3Jc, (fIg) = (glf) = (fIg) byvirtue 
of the C invariance of I and g. In this notation, the linear 
transformation A:K _K representing multiplication by 
the complex number ion K is given by 

-/ 0 
o 0 
o 0 
o 

and the morphism r, defined as above by 

is induced by the transformation T given by 

ilwo-1I2W1/2(Q _ Q )] 
Iwo- 1I2W1/2(Q + Q) 

o 
o 

III. CALCULATIONS 

In this section we establish that the model discussed 
heuristically in the preceding section does in fact furnish an 
example of the general framework presented in [I], and we 
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analyze its properties. In Sec. III A and III B we define the 
symplectic transformation T precisely. In Sec. III C-III E 
we investigate the properties of T related to the implementa
tion of T itself and to the implementation of the time devel
opment automorphism groups. In Sec. III F-III H we inves
tigate the Meller wave morphisms and S matrix arising in 
the time-dependent scattering theory for this system. 

Since the purpose is to provide an illustrative example 
rather than to analyze the most general case of the model at 
hand, we make specific assumptions about the coupling 
function pIp) which streamline the discussion but preserve 
all the features of interest. In particular, we consider cou
pling functionsp(p) which are members of the family 

p(a;p)=lpl-a(1 + IpI2)-I12, where O<a< 1. 

Note that every function in this family is a strictly positive 
spherically symmetric function which is continuously differ
entiable on R3

, {O J. The important feature of such a func
tionp is its behaviornear the origin. The factor (1 + I p 12) - 1/2 
is included to make p fall off quickly enough for large I p I to 
insure the convergence of various integrals; the precise form 
of this convergence factor is unimportant. 

A. Rigorous definition of the transformation T 

Much of the analysis depends on the properties of the 
function D (z) introduced earlier. For a fixed coupling func
tionp(a;p), we define 

D (a;Z)==A + w~ - z 

+ A. (w~ - z) f d 3plP(a;pW(w~ - z)- I, 

for all z in the cut complex plane C, [0,(0). This function 
D (a;z) is analytic on C,[O, (0), and in fact we have 

D (a;z) = A. + w~ - z + 2r A. (sin 1T(a - !))-I 

X((w~ - z)l(1 + z))(( - z) - a+ 112 - 1). 

Here the function w---+w - a + 112 has a branch cut along the 
negative real axis and is real for positive w. 

Furthermore, for t> 0 the limits 

D ± (a;t )= lim D (a;t ± iE) 
1;-++0 

exist and are given by 

D+(a;t) = A. + w~ - t 

2rA. w~ - t( ei1rl.a - 112) ) + -- -1 
sin 1T(a - ~) 1 + t t a - 112 ' 

withD_(a;t) = D+(a;t). [At a =!, we have 

D+(!;t) = A. + w~ - t + 21TA. (w~ - t)(1 + t)-I 
X (i1T - In t ).] 

It is not difficult to see that D + (a;t ) is bounded away from 

zero for all t, and that lim D +(a;t)lt = - 1. Furthermore, 
t_", 

ast_+O, 
D+(a;t) 

(

A. + w~ + C + 0 (t 112 - a), if 0 < a < !, 
= A. + w~ - 21TA.w~(ln(t) - i1T) + 0 (t In(t)), if a = !, 

A. + w~ + C ((exp iTr(a - mt - (a - 112) - 1) 

+ O(t 3/2 - a
), if! <a < 1, 
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where C==2rA.w~ I sin 1T(a - !)I-I is a positive constant. 
Now define the function Q (a;k)==Ap(a;k)/D + (a;wi). 

Using the properties of D + above, it is easy to see that all of 
the functions Ikl YQ (a;k) are in L 2(R

3), for 0 < a < 1 and 

-!<r<~· 
In this subsection we make sense of the symbolic ker

nelsL (p,q) and M (p,q) occurring in the transformation T. To 
this end, we define for 0 < a < 1 and E> 0, the functions 

and 

A.p(a;p)(w~ - w~ lw!/2p(a;q) 
(La (E) - I )(p,q) 

W 112 D (a·w2 )(W2 - W2 + iE) p +, p p q 

A.p(a;plw;I2(W~ - W~ lo(a;q) 
(M a (E) - I)(p,q) D (a.w2 )(W2 _ W2 + iE)w 112 ' 

+ 'p p q q 

which are reminiscent of the symbolic kernels in the last 
section. 

The remainder of this subsection is devoted to showing 
that these two functions are kernels for bounded operators 
La (E) - IandMa(E) -IwhosestronglimitsasE_ + o exist 
and are bounded operators denoted by La - I and Ma - I, 
respectively. The transformation T is then defined in terms 
of La and Ma by exactly the same formula as in the last 
section. 

To demonstrate these assertions, it is convenient to de
compose the functions above, as follows: 

(La (E) - I )(p,q) 

= R (a;p)(G (E)(p,q) -.11 _ a (E)(p,q))(1 + W;)-1/2, 

(Ma(E) - I)(p,q) 

= R (a;p)(G (E)(p,q) -.1 :(E)(p,q))(1 + W;)-1/2, 

where 

A. (w~ - w2 )w l - 2a 
R (a·p)=(w2 - w2 )wl - aQ (a·p) = p p 

, - 0 p p , D ( . 2)(1 2)1/2 + a,wp + wp 

and 

G (E)(p,q)=(Wp Wq )-1/2(W; - w; + iE)-1 

and, forO<r< 1, 

.1 y(E)(p,q)=wp- Y(w; - w~)G (E)(p,q), 

with 

.1 ~(E)(p,q)== .1 y (E)(q,p). 

In view ofthe properties of D+, it is easily established 
that the continuous function R (a;p) is bounded on R3 for all 
ae(O, 1). 

The function G (E)(p,q) was introduced by Arai l in the 
analysis of his model; it is the kernel for a bounded operator 
G (E):L2(R

3)_L2(R
3). The family G (E) is norm-bounded uni-

formly in E, and the strong limit s-lim G (E) exists and con-
E_+O 

verges to a bounded operator G:L2(R
3)_L2(R

3), which is re-
lated to the Hilbert transform. 

Entirely analogous statements are true of the function 
.1y (E)(p,q) for 0 < r < 1, and are easy to prove by virtue of the 
fact that.1 y (O)(p,q) is itself the integral kernel for a bounded 
operator .1 y. It is shown in Appendix A that.1 y (E)(p,q) is the 
integral kernel for a bounded operator .1y(E):L2(R3)_L2(R3), 
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that the family .1r(~) is for fixed r norm-bounded uniformly 

in ~, and that s-lim .1y(~) =.1y and s-lim .1y(~)* =.1 ~, 
E--->+O £-++0 

where the operator.1 y is induced by the integral kernel 

.1 y(O)(p,q)=wq- V2Wp- y - V2(W; - w~)/(w; - w~). 

Combining the properties of the operators G (~) and 
.1r(~) with the previous decompositions, we see that for 
o <a < 1, the functions (La (€) - I)(p,q) and (Ma (~) - I)(p,q) 
are integral kernels for the bounded operators 

La(€) - I R (a;p)(G(~) - .11_a(~))(1 + W2)-1/2 

and 

Ma(~) - I =R (a;p)(G (€) -.1 :(€))(1 + W2)-I12, 

where here R (a;p) and (1 + w2) -1/2 denote the operations of 
multiplication by the corresponding bounded functions. It 
also follows that the families La (~) and Ma (~) are uniformly 
bounded in norm for ~ > 0, and that furthermore, the strong 
limits as ~- + 0 of these operators exist. 

We denote these bounded limit operators by La and 
M a , respectively, and we have 

La = I + R (a;p)(G - .1 1 _ a HI + W2)-1/2 

and 
Ma =1 +R (a;p)(G +.1 :)(1 +W2)-1/2. 

Note that with these definitions, both (La - I) and 
(M a - I) vanish on the subspace (I - 1/1 )L2(R3

), where 1/1 is 
the spherical average introduced in Appendix A. This 
spherical symmetry of (La - I) and (Ma - I) implies that 

theoperators(La + La)' - i(La - La ),(Ma + Ma ),and 

i(Ma - Ma) all preserve the C-invariant subspace L 2(R
3)c. 

Furthermore, the spherical symmetry of the function Q (a;p) 

implies that the functions wl V2(Q (a;p) + Q (a;p)) and 

iwp± 1/2(Q (a;p) - Q (a;p)) are all elements of L 2(R
3)c. 

We have therefore shown that the expression for the 
transformation T given in Sec. II with L, M, and Q replaced 
by La' Ma , and Q (a;p) respectively, defines a bounded real
linear transformation Ta :JY -JY, where JY is the classical 
phase space JY==L2(R

3)c al L 2(R
3 )c al R al R. 

B. Verification that Tis symplectic 

The preceding discussion shows that Ta is a bounded 
real-linear transformation for 0 < a < 1. It is clear from the 
forms of A and of T that the range of Tis a complex subspace 

[ (M' +M') i(M* -M*) 

-ilL * -L*) (L* +L*) 
2T+ = (wl/2wo-1I2(Q + Q)I i(WI/2wo-1I2(Q _ Q)I 

_ i(W~12W-1/2(Q _ '0)1 (W~/2W-1/2(Q+ '0)1 

of JY = L 2(R
3)c al L 2(R

3)c al R al R. To complete the verifi
cation that T is symplectic, we need only show that 
T + T = I. To do this, we require identities from the follow
ing list. 

(1) IIQ II = 1. 
(2) L *lw1I2Q} = 0 andM*lw- 1/2Q} = O. 
(3) L*M=IandM*L=I . 
(4) ML*=I_lwI/2Q)(w-1/2QI and LM* 

= 1- Iw- 1/2Q} (w 1/2Q I. 
(5) L = TJL + (1 - TJ)(I - 1/1) and M = TJM 

+ (1 - TJ)(I - 1/1), where TJ:R3_C is given by TJ(p) 
=D+(w;)(D_(w;))-I, and where 1/I:L2(R3 )_L2(R

3 ) is the 
spherical average. 

(6) L*lhQ) =L*lhQ}andM*lhQ) =M*lhQ)for 
any h:R3_C that is spherically symmetric and such that 
hQeL2(R3

). 

(7) L *hL = L *hL and L *hM = L *hM and 
M*hM=M*hM and M*hL =M*hL for any h:R3_C 
that is spherically symmetric and such that the indicated 
operators are well defined and bounded. 

Statements (1 )-(5) are verified by calculations which in
volve the explicit kernel functions for L (~) and M (~), while 
statements (6) and (7) follow directly from the others. These 
calculations are similar to those in Lemmas 4.6 and 4.9 of 
Ref. 3, and we omit them here. 

Note that the following abuses of notation are routinely 
made here. If a function h:R3_C is spherically symmetric, 
we often write h (p)whenp==lpl insteadofh (p). Furthermore, 
the argument a in p(a;p), R (a;p), D +(a;w2), etc. is often 
dropped for brevity. Thus, for example, pty1/2) means 
p(a;y l12e) for some fixed unit vector e, or equivalently, 
pty1/2) =y-a12(1 + y)-1/2. 

In the proof of these identities and in calculations to 
follow, use is made ofthe identity 

D _(t) - D +(t) = 4n2iAt 1/2(t - w~ )(,o(t 1/2))2 for t> 0, 

which holds for general spherically symmetric coupling 
functions p (under mild restrictions) as well as for those of 
the form p(a;p). Also used is the fact that D (z) is an analytic 
function on the cut plane C \ [0, 00 ) which is bounded in mod
ulus away from zero, and which satisfies 
Re(D (z)) > A + w~ > 0 for Re(z) < 0, as well as 

lim D (z)/z = - 1. 
Izl~oo " 

Now, the real-linear transformation T + is given by 

0 

~l 0 

0 

0 

Straightforward matrix multiplication and use of the'identities listed above establish that T + T = I, as claimed. Thus Ta is a 
symplectic transformation for 0 < a < 1. 

It is also instructive to compute the projection TT + onto the range of T. From identities (4) and (5) above, we easily obtain 

LM* = - Iw- 1/2'O )(wI/2Q I + (I - 1/1) + TJI/I, ML * = - Iw 1/2'O) (w- 1/2Q I + (I - 1/1) + TJI/I· 

Using these relationships and their complex conjugates, it is straightforward to show that 
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T T+ = [~ 
0 0 

~] I 0 
a a 0 0 0 o . 

0 0 0 0 

Thus the kernel of the transformation T: is a two-real-dimensional complex subspace of 7t". Note in particular that 
codim(ran Ta) is finite. 

c. Implementabillty of Tin 11'/ 

The results in [I] show that the symplectic transforma
tions T and T + are isometrically implementable in the Fock 
representation 11'[ ifandonlyif(1 T 12 - I)ElJ 2'(Jf'), orequiv
alently, if and only if(IT + 12 - /)ElJ2, (TJf'). In this subsec
tion we examine the operator (I T + 12 - I) to determine 
whether or not it is of Hilbert-Schmidt type. 

We analyze T + instead of T because the subsection 
which follows requires many of the results for T + which we 
establish here. The discussion in both subsections is simpli

I 

I 
fied somewhat by the following few preliminary observa
tions. 

Note that if/andg are elements of L 2, then the dyadic 
E == If) (gl is a Hilbert-Schmidt operator, and furthermore, 
if A is any bounded operator, then EA and AE are both Hil
bert-Schmidt operators. Thus terms in the expression for an 
operator which are dyadics do not influence the Hilbert
Schmidt character of the operator. So for the purposes of this 
subsection we may ignore dyadic terms in the expression for 
(IT+12 -I). 

The real-linear transformation T + * is given by 

i(L-L) 

(L+L) 

o 

IlU1/2lUO- 1I2(Q + Q) 
_ illU1/2lUo II~Q _ Q) 

o 

illU~/2lU-I/2(Q _ Q I)] 
IlU~/2lU-I/2(Q + Q) 

o 
o o 

Straightforward matrix multiplication shows that 
IT+1 2 is of the form 

IT+12 = [~ ~ ~ ~] +F, 

o 0 0 0 

with each of A, B, C and D mapping L 2(R3)c to L 2(lR3
)C' and 

where the entries of the matrix Fare dyadics from the vector 
entries in T + . Using the formulas developed above for Land 
Ai in terms of L, M, TJ, and 1/1, it is straightforward to show 
that 

4A = (1 -TJ)LL *(1 -1i) + (1 + TJ)MM*(1 + 1i), 

4B = - i(1 + TJ)LL *(1 -1i)- i(1 -TJ)MM*(1 + 1i), 

C=B*, 

4D = (1 + TJ)LL *(1 + 1i) + (1 -TJ)MM*(1 -1i). 

We now make use of these observations to determine 
the range of a for which (I T;: 12 - I) is a Hilbert-Schmidt 
operator. In view of the above, 

tr,((/ T + 12 - /)2) 

= 2 + tr((A _1)2 +BB* +B*B+ (D-In 

modulo addition of finite contributions from the matrix F. 
Here the latter trace is taken over a basis for L 2(R3)c. It is 
straightforward, although tedious, to verify that 

2((A _/)2 +BB * +B *B + (D - /)2) 

= (LL * - 1)2 + TJ(LL * - /)~ 

+ (MM * - /)2 + TJ(MM * - /)~. 

The conjugation C:L2(R3~L2(R3), defined earlier by 
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o 

(C/)(p) = /( - pI, has the property that 
C LL * C = LL * = TJLL r,;;, hence C (LL * - I )2C 
= TJ(LL * - I )~. Thus the operator Z =(LL * - 1)2 
+ TJ(LL * - I)~commuteswithCandhencepreservesboth 

L 2(R3)c = !(I + C )L2(R3) and L 2(R3)c = !(I - C )L2(R3). 
Now, if{ h n 1 is an orthonormal basis for L 2(R3)c, then {ihn 1 
is an orthonormal basis for L 2(R3)c. SinceL commutes with 
multiplication by i, the trace of Z over the basis (hn ,ihn 1 for 
L 2(R

3
) is just twice the trace of Z over the basis (hn 1 for 

L 2(R
3)c. We conclude that Z has finite trace over L 2(R

3 )c if 
and only if Z has finite trace over L 2(R

3
). 

Remark' This last observation is a complexification for 
the sake of calculational convenience, so that we may take 
traces later in bases for L 2(R

3
) instead of L 2(R

3)c. This new 
L 2(R

3
) is certainly not the original test function space which 

was decomposed as L 2(R
3

) = L 2(R
3)c $ L 2(R

3)c. 
Identical reasoning holds for the terms in M, and it fol

lows that (I T + 12 - I )ElJ 2, (T Jf') if and only if 

(LL * - /)2 + TJ(LL * - I)~ 

+ (MM * - 1)2 + TJ(MM * - I)~ 

has finite trace over L 2(R
3

). Since each term in the above 
expression is the absolute square of an operator, the entire 
expression is in the trace class if and only if each term is in the 
trace class. Because TJ has modulus 1, Aij is Hilbert-Schmidt 
if andJonly if A is Hilbert-Schmidt. We thus conclude that 
(I T + 12 - I)ElJ2,(TJf') if and only if both (LL * - /) and 
(MM * - I) are elements of B 2(L2(R

3
)). 

To carry the calculations further, it is convenient to 
introduce the operators 

FL==LL * - I + IlU~/2lU-I/2Q )(lU~/2lU-I/2Q I 
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and 

FM-MM* - 1+ IWo-1I2w1/2Q )(WO-1I2WI/2Q I. 

Because the dyadics do not influence the Hilbert-Schmidt 
character of the expressions, we then have 

(IT+1 2 - /)EB2,(TJ¥') iff both FL andFM are in B2(L2(R
3

)). 

The advantage gained by introducing these particular opera
tors FL is that there are relatively simple functions FL (O)(p,q) 

M M 

such that FL is an element of B2(L2(R3
)) if and only if 

M 

FL (O)(p,q) is an element of L 2(R
6

). (These functions are actu-
M 

ally Carleman kernels for F Land F M' but this knowledge is 
not necessary here.) 

In Appendix A we construct these functions as limits as 
E-D of functions FL (E) which arise from the explicit integral 

M 

kernels for the operators L (E) and M (E). The results are that 
Ff.(O)(p,q) = Kf.(O)(w;,w~), where 

KL (O)(s,t) 
M 

_ ( _ A) (w~ - s) (w~ - t) p(SI/2)p(t 1/2) 
= + -- YL(s,t), 

- 1T D+(s) D_(t) (st)±1/4 M 

with 

YL(S,t)=i"" dy y±
1I2

D( -y) . 
M 0 (y + w~)(y + s)(y + t) 

So the demonstration that (I T a+ 12 - I)EB2,(TaJ¥') for 
0< a <! now reduces to showing that FL (0) and F M (0) are in 
L 2(R

6
) for 0 < a < !, and the demonstration that 

(I T a+ 12 - I)E£B2r(TaJ¥') for! <a < 1 now reduces to show
ing that F L (0), say, is not in L 2(R6

) for! < a < 1. These dem
onstrations are a straightforward application of the esti
mates in Appendix B. 

Suppose first that 0 < a <!. Then 

T L (O)=Jd 3p d 3 q IFL (O)(p,q) 12 
M M 

= (21T)2i"" ds dt (st )1/21KL (O)(s,t W, 
o M 

and the estimates in Appendix B then give 

TL (0) < (21Tdd2i"" ds dt(l + s)-I(l + t)-I(st)-a (s + t)-I, 
M 0 

and this last integral is easily seen to be convergent for 
O<a <!. Thus (IT a+ 12 - /)EB2r(TaJ¥') for O<a <!. 

Now suppose that! <a < 1. We have the decomposi
tionFL (O)(p,q) = F~)(O)(p,q) + F~)(O)(p,q) made in Appendix 

M M M 

B; to show that FL (0)E£ldR6), we show that F~)(0)EL2(R6) 
whereas F~)(0)EEL2(R6). Let 

~(O)= J d 3p d 3qlF~(0)(p,qW· 
As above, the considerations in Appendix B show tvat for 
! < a < 1, ~i)(O) is less than the convergent integral 

(21Td2)2 i"" ds dt (1 + s)-I(1 + t)-I(St) - (1- a)(s + t)-I 

so that F~)(O)EL2(R6), as claimed. For future reference we 
note that in an identical fashion we find F~(0)EL2(R6) also. 
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The lower bound for K ~)(O) developed in Appendix B 
yields the lower bound 

~1)(0»(21T(1 - a)2ah2(aW 

X iVdsdt(l +s)-I(l + t)-I(st)-(I-a)(s + t)-2a, 

where v=w~/2. 
It is not difficult to verify that this last integral is diver

gent, for example, by making the change of variables s = r() 
and t = r(1 - ()). Thus F~)(0)EEL2(R6), as asserted. 

For brevity we have omitted the case a = !; it can be 
shown that (I T jJ21 2 - I)EB2r (T1I2 J¥'). We, therefore, have 
finally 

(ITa+12-/)EB2r(TaJ¥'), for O<a"q, 

but 

D. Implementabillty of f3 in 1T1 

The results of [I] guarantee that the time-development 
automorphism group f3 can be unitarily implemented in the 
Fock representation if and only if both 
Pm(IT:- 12 -I)EB2r (TaJ¥') and [IT:- 12, A (I - Pm)H] 
EB2r(TaJ¥'). In this subsection we examine these two opera
tors to determine whether or not they are of Hilbert
Schmidt type. 

Because (IT a+ 12 - /)EB2r(TaJ¥') for a <!, it follows 
that both of Pm (I T:- 12 - I) and [ (I T:- 12 - /), 
A (I - Pm )H] are Hilbert-Schmidt operators for a <!. The 
remainder of this subsection analyzes these operators for the 
case!<a<1. 

The Hamiltonian H which generates the time develop
ment operator V, = e'AH for the normal modes is given by 

o 

o 
o 

o 0] o 0 
o 0' 

o 0 
and the spectral projection Pm for H onto energies larger 
than m is given by 

[

()(IPI- m) 

P = 0 
m 0 

o 

o 
()(Ipl - m) 

o 
o 

o 0] o 0 
o 0' 

o 0 

where ():R---+R is the usual step function which vanishes for 
negative argument and has value 1 for positive argument. 

The Hilbert-Schmidt nature of Pm (I T + 12 - I) is easy 
to ascertain. Note first that because (I T + 12 - I )Pm is its ad
joint, Pm (I T + 12 - I) is a Hilbert-Schmidt operator if and 
only if(IT+ 12 - I)Pm is a Hilbert-Schmidt operator. Note 
also that Pm = () (Ipl - m)TT +, and that multiplication by 
()(Ipl- m)commuteswith theconjugationC. Then it is easy 
to see, by arguments parallel to those in Sec. III C, that 
Pm (IT+1 2 -I)EB2r(TJ¥') if and only if both (LL *-/) 
x()(lpl-m) and (MM* -/)()(Ipl-m) are elements of 
B2(L2(R

3
)). With arguments identical to those used earlier, it 
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is easy to show that (LL * - I)8 (I p I - m) and 
(MM * - I)8 (ipi - m) are in B2(L 2(R3

)) if and only if FL (0) 
and F M (0) are elements of L 2(R3 X { qER3 11 q 1 > m J ). 

To verify these latter conditions, we need only inspect 
the integrals 

d2(m)=f d 3p f d 3q IF(2(0)(p,qW, 
M J1ql>m M 

because we already know that F(~(0)EL2(R6). Now, the esti-
M 

mates in Appendix B imply 

dll(m)«21Tk2(a)m - 2a)2 f'" ds f'" dt 
Jo Jm2 

X(I + s)-I(I + t)-I(St) -(I-al, 

and 

d1)(m )«21Tk2(a)m - 2a(1 - a l)2 f'" ds f'" dt 
Jo Jm2 

X(I +s)-I(I +t)-I(st)-a. 

Since these last integrals are convergent, we see that the low
momentum cutoff has improved the integrals enough to 
make d2(m) finite. Thus (LL * - 1)8 (ipi - m) and 

M 

(MM * - 1)8 (i p I - m) are elements of B2(L 2(R
3

)), hence 
Pm(IT: 12 - 1)EB2r (Ta£} for! <a < 1. 

TheHilbert-Schmidtnatureof[IT+ 12, A (I - Pm )H]is 
determined by the following considerations. Let 

s(p)={lpl, for Ipl<m, 
0, for Ipl > m. 

Then A (I - Pm )H is the bounded operator 

A(I-Pm~~ [~ y ~ ~l 
So we find 

[IT+1 2,A (I -Pm)H] rS
+5

B

' 

sD-As 0 

n _ Ds-sA -sB-B*s 0 
- 0 0 0 

0 0 0 

and hence 

trr(1 [IT+ 12, A (I - Pm)H] 12) 

=tr(lDs-sA 12+ IsD-AsI2+ IBs+sB*12 

+ IB*s + sB 12), 

where the latter trace is taken over a basis for L 2(R3)c. 
It is again straightforward, although tedious, to verify 

that 

2(IDs-sA 12+ IsD-AsI2+ IBs+sB*12 

+ IB *5 + sB 12) 

1287 

= IsMM* - LL *5 12 + 77lsMM* - LL *5 127j 

+ IMM*s - sLL *12 + 77IMM*s - SLL *127j. 
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Again, the sum of the first two terms commutes with the 
conjugation C and with multiplication by i, and hence has 
finite L 2(R3 )c trace if and only if it has finite L 2(R3

) trace. 
Since the third and fourth operators are adjoints of the first 
and second, respectively, the same reasoning as before leads 
to the conclusion 

[IT+1 2, A (I - Pm)H ]EB2r(T£) 

iff sMM* - LL *sEB2(L2(R3
)). 

To demonstrate that (sMaM: -LaL:S)EB2(L2(R3)) 
for a > !, we first observe that because the multiplicative op
erator 5 is bounded, we may employ the same arguments as 
before to establish that 

(sMM * - LL *5 )EB2(L2(R3)) 

iff 5 (p)F M(O)(P,q) - FL (O)(p,q)s (q)EL2(R6). 

Next, because we already know that F(~(0)EL2(R6), we need 
M 

only examine the function 5 (p)F~(O)(p,q) - F2l(0)(p,q)s (q). 
Now note that 

d 2l=:= f d 3p d 3q ls (p)F~(O)(p,q) - F2l(0)(p,q)s (q)12 

= (21Tf1'" ds dt (st) 1/2 Is(SI/2) 

XK~(O)(s,t) - K2l(0)(s,t )s(t 1/2)12 

<2(21T)21
m

'S ds 1'" dt (st )1/2 

X (IK ~(O)(s,t W + IK 2l(0)(t,sW), 
where we have interchanged the integration variable names 
in the second term in order to get the last expression. From 
the estimates in Appendix B we then find 

u(2l<2(21Tk2(aW1m'dSi"'dt(1 +s)-I(I +t)-I 

X{S-(I-alt -a+s-at -(I-all. 

Since these last integrals are convergent it follows that 

(5 (p)F M(O)(P,q) - FL (O)(p,q)s (q))EL2(R6), 

whence 

[IT a+ 12
, A (I - Pm)H ]EB2r(Ta£) for! <a < I, 

as asserted. 

E. Implementablllty of po In 1Tr 

According to the general theory developed in [1], the 
automorphism group po (which specifies the time develop
ment of the uncoupled system) is implementable in the repre
sentation 1TT (which is induced by the state on 'lr invariant 
under the interacting time-development automorphism f3t) 
if and ~nly if I T 12E~ H" (£). That is, po is implementable in 
1TT if and only if both P::'(iTI2 - 1)EB2r(£} and 
[ITI 2, A (I - P::')HO]EB2r(£)' 

Because we have shown above that (I T 12 - 1)EB2r (£) 
for a < !, it follows that both of the above operators are in the 
Hilbert-Schmidt class for a <!. The remainder of this sec
tion analyzes these operators for the case! < a < 1. 
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The Hamiltonian Ir, which generates the time devel
opment operator V~ for the uncoupled system, is given by 

Ir = [~ ~ ~ ~], 
o 0 Wo 0 
o 0 0 Wo 

and the spectral projection P;:' for Ir onto energies larger 
than m is given by 

[

O(W - m) 

po = 0 
m 0 

o 

o 
O(w - m) 

o 
o 

o 
o 

O(wo - m) 
o 

o ] o 
o . 

O(wo - m) 

The transformation IT 12 is computed in a straightfor
ward fashion, making use of the identities involving L, M, 
and Q given earlier, and is given by 

[ L'L 
0 IL *w~/2w -1/2Q ) 

o 1 M*M 0 1M *w I/2wo- 1/2Q) 

ITI' ~ (L ''''''~-'''Q I 0 Ilw~/2W-1/2Q 112 

Ilwl/2w; 1/2Q 112 . (M *w I/2wo- 1/2Q I 

is easy to show that (LL * -I)O(lpl- m) and 
(MM* -I)O(ipl- m) are inB2(L2(R3

)) if and only if FL(O) 
andFM(O) are elements of L 2(R

3 X [qeJR31lql >mJ). 

To carry the calculations further, we once again reduce 
the investigation of the Hilbert-Schmidt character of these 
operators onL2(R

3
) to the investigation of the square integra

bility of associated functions on R6. This reduction is parallel 
to, and somewhat simpler than, the corresponding reduction 
developed earlier for the expressions involving LL * and 
MM* in place of L *L and M*M. For brevity, we merely 
outline the procedure here. 

As in Appendix A, consideration of the kemal for the 
operator(L (E)* - I)(L (E) - I) leads, viacontourintegration 
(with one less residue term this time), to the conclusion that 
the operator FL = L *L - I is in the Hilbert-Schmidt 
class if and only if the function FL (O)(p,q) is in L 2(JR6). 
Similarly, F M == M * M - I is a Hilbert-Schmidt operator if 
and only if the function F M(O)(P,q) is in L 2(R

6
). Here 

F dE) == K dE)(w; ,w;), with K L (E)(S,t )= ± ( - A. / 
M M M 

rr)(st) ± 1I4p(SI/2)P(t 1/2)y L (s + iE,t - iE) and 
M 

- 1"" (y + w~) Y L (z,w)== dy . 
M 0 Y ± 1I2( y + z)( y + wID ( - y) 

The demonstration that (L * L - 1)0 (w - m )eB2(L2(R
3

)) 

then reduces to showing that the function FdO)(p,q) 
XO(lql- m)isinL2(R

6
). Similarly, we find that (M*M -I) 

XO(w - m)eB2(L2(R3
)) if and only if FM(O)(p,q) 

xO(iql- m)eL2(JR6). 
To show that the functions FL (0) and F M(O) are ele

ments of L 2(R
3 X [ qeR311 q I > m J), we simply inspect the in

tegrals 

U L (m)=f d 3p J. d 3q lF L (O)(p,q) 12. 
M iqi>m M 

The estimates in Appendix B show that these integrals are 
convergent for ~ <a < 1. We therefore conclude that 

P;:' (I T 12 - l)eB2r!Jf"'), for all ae(O, 1). 
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0 

We next consider the operator [ITI 2,A (I -P;:')H°]. 
With S representing mUltiplication by the function S (p) in
troduced earlier, and with So~oO (m - wo), we have 

A(I-P;:')HO=(~ ~s ~ ~). 
o 0 0 -So 
o 0 So 0 

The same reasoning as for the analogous expression with T + 

and H leads to the conclusion 

[ITI 2,A (I -P;:')HO] 

eB2r (Jf"') iff SM * M - L * LseB2(L2(R
3

)), 

which is in tum equivalent to 

S (p)F M(O)(P,q) - FL (O)(p,q)s (q)eL2(R
6

). 

To verify this last condition, we can make use of the esti
mates in Appendix B to obtain 

iT = f d 3p d 3q ls (p)F M(O)(P,q) - FdO)(p,q)s (q)12 

.;;;;2(2rrf im2 

s ds i oo 

dt (st )1/2 

X(IKM(O)(S,tW + IKdO)(t,sW) 

.;;;; 16trA. 21
m2 

ds 1
00 

dt s . 
o 0 (1 + s)( 1 + t lIst tis + t ) 

Since this last integral is convergent, it follows that 
[I T 1

2
, A (I - P;:')H°]eB2r (Jf"') fo£! <a < 1. 
We have thus shown that both P;:' (i T 12 - I) and 

[ITI 2,A (I -P;:')H°] are Hilbert-Schmidt operators for 
ae(O,l), that is, ITI2e~ w(Jf"'). ThuspOis implementable in 
TrT for all values of a. 

F. Existence of wave morphlsms 

According to Theorem 2 of [I], the limits (J ± 

==s-lim T+etAHTe-tAHopo exist on JY if TD(HO) t __ ± 00 ac 

= D (H) and if (I - Pm )(AHT - TAHO)(I - P;:') is a trace
class operator on JY for all sufficiently large m. In this sec
tion we illustrate the application of this theorem by verifying 
these conditions for the model under study. (Note that the 
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additional hypothesis of Theorem 2, that etAHT 7t" C T 7t" for 
all t, is satisfied automatically in the model.) 

It is easy to see that the condition TD (H 0) = D (H) is 
equivalent to the conditions 

LD (m) = D (m) and MD (m) = D (m), 

where as before m is the operation of multiplication by mp 
==Ipi on L Z(JR3). 

From the formulas for L (E) and M (E), it follows that for 
feD (m) we have Mmf = mLf Because L and M are bounded, 
and becauseL • M = I, it follows immediately thatLfeD (m) if 
and only iffeD (m), that is, LD (m) = D (m). 

To show that MD (m) = D (m), it is helpful to establish 
that the operator Z =mM - Mm is a bounded operator on 
L z(R

3
). To do this, we simply examine the explicit integral 

kernel for Z(E)==mM(E) - M(E)m: 

Z(E)(p,q) = m!/zQ(p)(m~ - m;) 

m - m 
X p q m

q
- 1/2 p(q). 

m2 
- m2 + iE p q 

It is not difficult to see that the integral operator is bounded 
uniformly in E, hence that Z is bounded. 

From the facts that mMf = Mmf + Zf for feD (m) and 
L • M = I, it follows immediately that MD (m) = D (m). Thus 
TD(HO)=D(H). 

We next consider the operator X (I-Pm) 
X (AHT - TAHO)(I - P;:'). It is straightforward to show 
that 

(

IOMS ~ sLO I
Z 

X·X= o 
o 

o 
ISMO-OLSIZ 

o 
o 

o 
o 
o 
o 

modulo dyadic and constant terms which do not influence 
the finiteness of the trace norm. Here the symbol 0 is a short
hand for the operation of multiplication by 0 (m - m). Thus 
Xbelongs to the trace class ifand only if both I OMs - sLO I 
and IsMO - OLs I have finite traces over L z(R

3
). 

Now, S = mO, and Mmf = mLf for feD (m). Thus 
(OMs - sLO)g = 0 (Mm - mL )Bg = 0 for allgELz(JR3). That 
is, OMs - sLO = O. So we need consider only sMO - OLs· 

By using the explicit kernels for L (E) and M (E), it is 
straightforward to calculate that 

sMO - OLs = IO(m - m)m-IIZ(m~ - m2)Q) 

X (m-1IZp(m)O(m - m)l, 

where each entry of the dyadic is in L Z(JR3). Thus we trivially 
have that (SMO - OLs) is a trace-class operator as well. We 
have therefore shown thatXEB1r (7t"), and the hypotheses of 
Theorem 2 in [I] are thereby verified. 

G. Explicit calculation of wave morphisms 

The existence of the limits 

{}± ==s-lim T+etAHTe-tAHOp~c 
t-+± 00 

is guaranteed by the fact T, H, and H ° satisfy the hypotheses 
of Theorem 2 in [I]. For the particular transformations at 
hand, however, we can obtain much more information by 
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calculating these limits explicitly. The results are instructive 
and have implications for the choice of method used to con
struct the S matrix, as we will see later. 

Let 4> (t )==etAHTe- tAWP~c. The projection P~c onto 
the absolutely continuous subspace of no is given by 

P:c =(~ ! H). 
o 0 0 0 

We note that in this model P ~c = TT + . 

With the temporary abbreviations 
u==sin mt, r==cos mt, 

uo=sin mo t, 1'o=cos mo t, 
it is straightforward to compute that 

where 

4>dt) 0 
4>zz(t) 0 

o 0 
o o 

24>11(t) = 1'(L + I)1' + aiM + M)u 

+ iaiL - I)1' - i1'(M - M )u, 

24>dt) = 1'(L + I)u - aiM + M)1' 

+ iaiL - I)u + i1'(M - M )1', 

24>zl(t) = aiL + I)1' - 1'(M + M)u 

- i1'(L - I)1' - iaiM - M )u, 

24>zz(t) = aiL + I)u + 1'(M + M)1' 

+iaiM -M)r- i1'(L -I)u. 

To evaluate the large It I limits of these expressions, we 
make use of the following lemma. Recall that 1/1: 
LZ(JR3) __ L2(JR3) is the spherical average, and that the func
tion 7J(p) D+(m;lID_(m;) takes complex values with mo
dulus 1. 

Lemma: The operators Land M have the properties 

s-lim e - itW(L _ I)eitw 
t_+ 00 

= s-lim e - itW(M - I )eitw = (7; - 1) 1/1, 
t_+ 00 

s-lim e - itW(L - I )eitw 
,_- 00 

,_- 00 

Proof' Let D be the dense subspace of L z(R
3

) consisting of 
continuously differentiable functions of compact support 
not including the origin. Let At =e - itW(L - I )eitw. We will 
show that 

lim II(At - (7; - l)l/Ilfll = 0 and lim IIAJII = 0, 
1_+ 00 1_- 00 

for feD. Because At is uniformly bounded, it then follows 
that s-limt_ + co At = (7; - 1)1/1 and s-limt _ _ co At = O. 

To establish these assertions, let feD. Then using the 
explicit formula for L (E) and integrating over the angular 
variables, we find 
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(A,j)(p) = lim - 41rA.p(p)(al~ - al~) 
E-++O al l/2 D (al2 ) 

p + P 

x roo dq i
t
(q-bJ

p
)q5/2p(q) (I/If)(q). 

Jo q2 - al~ - iE 

Note that h (q)==q5/2p(q)( I/If)(q) is a continuously differentia
ble function with compact support on the positive half-line. 
The remaining integral can now be written 

roo d eit(q-"'p)h (q) 

Jo q q2 - al~ - iE 

. L 00 (EI1T)h (q)eit (q - bJp) = 1Tl dq .!.....:...~....!.!!-=-----
o (q2 _ al~)2 + C 

+ roo dqh(q)-h(alp) it(q-",p) (q2- al;f 
Jo q-alp q+alp (q2_al;)2+C 

L
oo q2 - al2 

+ h (alp) dq p it(q-bJp) . 
o (q2 _ al~)2 + C 

Because q-I h (q)eit(q - "'p) is a continuous integrable function 
of q, the first integral term on the right-hand side becomes, in 
the limit E-. + 0, simply (1Til2wp)h (alp). The second integral 
term becomes, in the limit E-. + 0, 

roo dq h (q) - h (alp) eit(q-",p) , 

Jo q - alp q + alp 

and has, by virtue of the nice properties of h, an absolutely 
integrable integrand. The third integral term becomes, in the 
limit E-. + 0, the principal-value integral 

h (alp)P roo eit(q-",p) dq 

Jo q2 - al; 

h (alp) [. S' (t )(1 + - 2it"'p) -" It I) - it"'p = -- I 1 alp e - "Ism alp e 
2wp 

+ Ci(talp)(e - 2it"'p - 1) 1, 
where Si and Ci are the sine and cosine integrals 

. LX sin t . 100 

cos t SI(X) == - dt and Cl(X) = - - dt. 
o txt 

We now consider the limits as t-. ± 00 of these three 
terms. The first expression is independent of t. The second 
integral term vanishes as It 1-'00 by virtue of the Riemann
Lebesgue Lemma. Because limlxl~oo Ci(x) = 0 and 
limx~± 00 Si(x) = ± 1T12, the third expression has the limit 
± (1Til2wp)h (alp) as t-. ± 00. So we have 

I
· I' Loo d eit(q - "'p)h (q) 1 ± 1 1Ti h ( ) 
1m 1m q =--- alp' 

t~±ooE-++O 0 q2-al~-iE 2 alp 

Upon substitution of this result into the formula for A t J, and 
use of the identity 

D+(al~) - D_(al~) = - WUalp(al~ - al~)(P(pW, 

we find 

lim (A,j)(p) = [(1 ± 1)12]((7j - 1)1/1 f)(p), 
t_± 00 

as asserted. 
The proof for M in place of L is the same. 
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III 

Applying this lemma to the expressions above for t/J (t ), 
we find 

lim t/J (t) = P~ and lim t/J (t) = S, 
t_+ 00 ,_- 00 

where S is the partial isometry given by 

(

(I - 1/1) + (Re 7J)1/I 

S == - (1m 7J)1/I 
o 
o 

(1m 7J)1/I 

(I - 1/1) + (Re 7J)1/I 

o 
o 

Thus, since T + P~ = T +, we have 

11+ = T+ and 11_ = T+S. 

Note that the partial isometry S induces the scattering mor
phism, because (11 +) + 11 _ = S. 

H. Nonimplementabillty of 5 In 1T T 

The partial isometry S which induces the scattering 
morphism is, of course, implementable in the Fock represen
tation. It is natural to ask whether S is also implementable in 
the interaction-vacuum representation 1TT • The answer is no 
for! < a < 1, as the following analysis shows. 

The theory developed in Sec. V of [I] shows that, if 
T (ker S) and T (ran S) are complex subspaces of K, then the 
partial symplectic transformation S is implementable by 
partial isometry in 1T T if and only if ( I TS 12 - I T 12) 
eB2r (S + JY). From the fact that S is a partial isometry with 
initial and final spaces equal to T K, it is clear that T (ker S) 
and T (ran S) are complex subspaces. Because S is unitary on 
T K, it follows that S is implementable in 1T T if and only if 
[S, I T 12]eB2ATJY). 

By straightforward calculation, making use of the iden
tity LI/I = L - (I - 1/1) and the corresponding formula for 
M, it is not difficult to establish that [S,I T 12]eB2r(TJY) if and 
only if all three of [(Re 7J),L * ,L], [(Re 7J),M * M], and 
((1m 7J)L *L - M*M(lm 7J)) are elements of B2(L2(R

3
)). We 

now demonstrate that the third operator is not in fact of the 
Hilbert-Schmidt class. 

As earlier, ((1m 7J)L * L - M * M (1m 7J))eB2(L2(R
3

)) if 
and only if the function 

X (p,q) = [(1m 7J(p))FL (O)(p,q) - F M(O)(p,q)(lm 7J(q))] 

is an element of L 2(R6
). It is easy to see from the formula for 

D + that foq < a < 1, 

lim 7J(t 1/2) = ei17{2a - I). 

t~ 

There thus exists V> 0 such that 

1m 7J(t 1/2) > /) == ~ sin 1T(2a - 1) > 0, for all te(O, v). 

Now, 

f d 3p d 3q lX (p,qW = 4A. 2 roo ds dt (st) - (a - 1/2) 

Jo (1 +s)(1 + t) 

X 1(lm 7J(SI/2))(st)1/4YL(S,t) 

+ (1m 7J(t 1/2))(St)-1/4y M(S,t W 
To show that this integral is divergent, we note first that it is 
greater than the same expression with upper limits of inte
gration equal to v instead of 00. We then use the estimate 
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1m '1/(t 1/2) > ~ for te(O,v) along with the lower bounds for Y L 

M 

in Appendix B to show that fd 3pd 3qIX(p,qW is bounded 
below by an integral which is positive and divergent. 

Therefore, we have demonstrated that for ~ < a < 1, 
[S, I T 1

2]EB2, (T jY). Thus for this range of a, S is not isometri
cally implementable in 1TT • 

IV. SUMMARY OF CALCULATIONS 

In this section we summarize the results of the preced
ing calculations and indicate their immediate implications. 
In the section which follows, we draw some conclusions. 

The model consists mathematically of the two one-pa
rameter symplectic groups V~ and T + V, T on the classical 
phase space ~ which is decomposed as 
~ = L 2(R

3)c Ell L 2(R
3)c Ell R Ell R, with V~ = e,AHo and V, 

= e'AH. These two symplectic groups induce the one-pa
rameter automorphism groups /3~ and /3, on the Weyl C * 
algebra 'lr of the CCR over ~, with /3 ° giving the time 
development of the uncoupled system, and /3 giving the time 
development of the interacting system. The fixed symplectic 
transformation T is parametrized by the low-energy cou
pling power a, as is the automorphism group /3,. The natural 
state on the Weyl algebra invariant under /30 is the Fock 
vacuum state E1, and the natural state invariant under /3 is 
the state ET which induces the representation 1TT · 

After establishing that the heuristic formulas for the 
diagonalization transformation do indeed define a bounded 
operator Ta that is a symplectic transformation for 
0< a < 1, we proceeded to analyze the properties of Ta 
which determine the implementability of the various mor
phisms under consideration. 

(1) Isometric implementability of the diagonalizing 
transformation T: According to the general theory devel
oped in [I], the diagonalizing transformation Ta is isometri
cally implementable in the Fock representation of 'lr if and 
only if ITa 12 - I eBz,(jY), or equivalently, IT a+ IZ 

- I 
eB2,(Ta jY). The above calculations using the explicit for
mula for Ta show that for a in the interval (O,~], ITa 12 - I 
eB2,(jY), whereas fora in (!,1), ITa 12 - I EB2, (jY). Thus the 
diagonalizing transformation is isometrically implementa
ble in the Fock representation only for a in the range (O,!]. 
This is equivalent to the statement that the representation 
1TT (induced by the invariant state for the interacting auto
morphism group /3) is isometrically equivalent to the Fock 
representation for a in (O,!], but not for a in (~, 1). 

Note also that T is isometrically implementable in 1T T if 
and only if I TTT + 12 - IeB2, (T jY); because TT + is the pro
jection onto the range of T, this is equivalent to 
IT IZ 

- IeB2, (T jY). Because the range of T has finite codi
mension, this is in tum equivalent to ITI2 -IeB2,(jY), so 
that we conclude Ta is isometrically implementable in 1T T 

for a in (O,n, but not for a in H, 1). 
(2) Unitary impiementability of the automorphism 

groups: We know that the automorphism group/3° trivially 
has unitary implementation in the representation 1Tl> for all 
values of a. The general results in [I] establish that /3 has a 
unitary implementation in the Fock representation if and 
only if I T + 1

2efJi H( T jY), that is, if and only iff or some m > 0, 
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Pm(IT+1 2-I)eB2,(TjY) and [IT+12,A(I-Pm)H] 
eB2,( T jY). Similarly, the group /3 ° has a unitary implemen
tation in 1T T if and only if IT 12efJi HQ (jY). The calculations 
above show that for all a in (0,1), both automorphism groups 
are unitarily implementable in each of the representations 1T I 

and 1TT • (It should be noted that this situation is a peculiarity 
of the model under study; there are examples of such auto
morphism groups/3 ° and /3 which are concurrently unitarily 
implementable in only one, or in neither, of the representa
tions induced by the corresponding invariant states.) From 
the general theory in [I], we know that in either representa
tion 1TI or 1TT we may choose the unitary families which 
implement /3 ° and /3 to be strongly continuous unitary 
groups. Thus in either representation, for all values of a, 
there exist self-adjoint ("second-quantized") generators for 
each of the free and interacting time developments. 

The second half of the analysis concerned the properties 
of Ta which govern the existence of the wave morphisms and 
scattering morphism. 

(3) Wave morphisms: According to Theorem 2 in [I], 
the limits 

f1 ± = s-lim T+e'AHTe-'AH"p~c 
t_± 00 

on ~ exist and are symplectic transformations if TD (H 0) 
=D(H)and 

(I - Pm)(AHT - TAHO)(I - P~)eBI'(jY). 

To illustrate the application of this theorem to the model 
under study, we have in the above calculations verified these 
conditions for all a in (0,1). The symplectic transformations 
f1 ± which induce the wave morphisms thus exist for all 
values of the coupling strength. 

We were able, however, to obtain much more informa
tion by calculating f1 ± explicitly. We found that f1 + = T + 
andf1_ = T + S, where Sis the partial isometry given earlier, 
with initial and final spaces equal to the finite-codimension 
"field" subspace T~ = P~ ~ in~. Note that these re
sults for f1 ± reveal the important fact that for a in (~, 1), the 
wave morphisms are implementable in neither 1TI nor 1T T' To 
see this, recall that (I - IT +) is a finite-dimensional projec
tion, and that S * S = SS * = TT +. Thus from the general 
theory in [I], we have the following. 

(a) f1 + implementable in 1TI 

<=>1f1+ 12 - IeB2,(f1! f1+ jY) 

<=>IT+12 - IeB2,(TjY). 

(b) f1_ implementable in 1TI 

<=>1f1_12 -IeB2,(f1~ f1_jY) 

<=>IT+S 12 - IeBz,(TjY) 

<=>S*(IT+1 2 -I)S + (S*S -I)eB2,(TjY) 

<=>1 T + 12 - IeB2,(TjY). 

(c) f1+ implementable in 1TT 

<=>1 Tf1+T+ 12 - IeB2,(Tf1! jY) 

<=>IT+12 - 1- TH(I - IT+)T+eB2,(TjY) 

<=>IT+12 -IeB2,(TjY). 
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(d) IL implementable in 'ITT 

{:}I TILT + 12 -leB2r(TI1~ J¥') 

{:}I TT + ST + 12 - 1eB2r (TJ¥') 

{:}IST + 12 - 1eB2r(TJ¥') 

{:}IT+1 2 -I - T*+(1 - TT+)T+eB2r(TJ¥') 

{:}IT+12 -leB2r(TJ¥'). 

So in this model, 11 ± are implementable in 'lT1 and in 'ITT if 
and only if Tis irnplementable in the Fock representation. 
We therefore conclude from our earlier results that for a in 
(!, 1), the wave morphisms are not implementable in either of 
the representations 'lT1 or 'ITT' 

(4) Scattering morphism: The scattering morphism is 
induced by the partial isometry S= (11+)+11_, which of 
course has a partial-isometric implementation in the Fock 
representation. On the other hand, Sis implementable in 'ITT 

if and only if ITST+1 2 - 1eB2r(TS + J¥'), or equivalently, 
SIT 12 - IT 12 SeB2r (T J¥'). The calculations above show that 
foraE(!.!), Sa ITa 12 - ITa 12SaEtl12r(Ta J¥'), that is, the scat
tering morphism is not implementable in the representation 
'ITT induced by the state invariant under the interacting dyna
mical automorphism group. 

v. PHYSICAL INTERPRETATION 

The model system we have analyzed furnishes a simple 
situation in which a single representation of the observable 
algebra does not accommodate the computation of all physi
cally interesting quantities. We have found that for the weak 
low-energy -coupling range 0 < a';;;!, the diagonalizing trans
formation T can be isometrically implemented in the Fock 
representation, or equivalently, the representation 'ITT is iso
metrically equivalent to the Fock representation. This is the 
standard situation envisioned in scattering theory in which 
the state invariant under the interacting dynamics is a vector 
state in the (Fock) representation carrying the unitary imple
mentation of the free dynamics. If r (T) is the isometric oper
ator implementing T, the state invariant under the automor
phism group f3 is the (suitably normalized) vector state 
r(T)*I1. 

For! < a < 1, however, the situation is different. The 
diagonalizing transformation Ta cannot in this case be im
plemented in the Fock representation by an isometric opera
tor, and the natural state (on the algebra Jr) that is invariant 
under the interacting dynamics is not a vector state in the 
Fock representation. In particular, any search for the "inter
acting ground state" in the Fock representation would be 
fruitless. We have seen that the reason for the inequivalence 
of the representations 'lT1 and 'ITT for! <a < 1 lies in the 
strength of the low-energy coupling of the oscillator to the 
massless field, and is thus a type of "infrared problem." 

We have seen, though, that for this model the inequiva
lence ofthe free and interacting ground states is no impedi
ment to the concurrent unitary implementation of the two 
time-development automorphism groups f3 Q and /3. In fact, 
we may implement both f3 Q and /3 in each of the two natural 
representations 'lT1 and 'ITT' Suppose, for example, that f3~ 
and f3, are implemented in the Fock representation by the 
continuous unitary groups r (f3~) and r (/3,), respectively, 
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thatis,r(f3~)W(f)r(f3~)* = /3~(W(f))forallfEK, with a 
similar formula for r (f3,). As in [I], the (second-quantized) 
M011er wave operators W ± would then be given by the lim
its W ± tfJ = lim,~ ± 00 r ( f3,)r ( /3 0_ ,)tfJ for tfJ in a suitable 
subspace ofthe Fock space Y(J¥'). 

These limits, however, cannot possibly exist. We saw in 
[I] that W ± ' if they were to exist, would be implementations 
of the partial symplectic transformations 11 + on .JY. We 
have seen here, however, that 11 ± are not implementable in 
'lT1 • Neither are they implementable in 'ITT' Thus attempts to 
formulate time-dependent scattering theory in either of 
these representations would result in nonconvergent expres
sions for the wave operators. 

The cure for these apparent difficulties is, of course, to 
formulate the scattering theory in terms of wave morphisms 
on the CCR algebra Jr. As we have seen, the wave mor
phisms induced by the partial symplectic transformations 
11 ± yield a scattering morphism induced by the transforma
tion S = 11 ! 11_ on .JY. Because S is unitary on T.JY, it has 
a partial isometric implementation r (S) on Fock space. That 
is, r (S) is unitary on the Fock asymptotic scattering state 
vectors Y(TJ¥') (which, speaking intuitively, consist of all 
field excitations with the oscillator ground state), and r (S) is 
the S matrix of the theory. 

Therefore, despite the fact that the M011er wave opera
tors for this model fail to exist in either natural representa
tion 'lT1 or 'ITT' it is possible to formulate a well-defined scat
tering theory by working in a representation-independent 
framework to construct a scattering morphism. We have 
thus demonstrated that the failure to converge of second
quantized limit expressions for wave operators does not pre
clude the existence of an S matrix (nor does it preclude the 
existence of wave morphisms). The nonexistence of wave op
erators in some representation of the observable algebra can, 
as we have seen, be due to the fact that the wave morphisms 
happen not to be implementable in that particular represen
tation, despite the concurrent unitary implementation of the 
two constituent time-development automorphism groups. 
These facts show that an algebraic treatment is essential, 
even for the linear models here. 

In this connection we make three remarks. First, the 
scattering morphism induced by the partial isometry S is not 
unitarily implementable in the representation 'ITT' Thus the S 
matrix is not a unitary operator in the representation in
duced by the natural invariant state for the interacting sys
tem. Second, the Fock vacuum state is the asymptotic scat
tering-state vacuum, is invariant under the S matrix, and is 
invariant under the uncoupled time development. It is easy 
to see, however, that the Fock vacuum is not invariant under 
the interacting time development, because the symplectic 
transformation T + Vt T is not for all times t a real isometry. 
Third, the convergence as It I~oo of the morphisms 1"t in
duced by the partial symplectic transformations I1 t 

= T + Vt TVo_ t p~ is rather weak. In particular, the fam
ily [1", ItER} is not strongly continuous because the map 
.JY3f~W(f)EJr is not (e*) norm continuous. We have 
only that if E is a quasifree state on Jr, then the strong 
convergence s-limH ± 00 11, = 11 ± on cW" induces the con
vergence limH ± 00 II ['lTE(1",(A )) - 'lTE(1" ± (A ))} tfJll = 0 for 
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any AE?r and any f/JEK E' Here T ± are the morphisms on 
?r defined by T ± (W(fn == W{n ± f) forjE2, and 1TE is 
the representation determined by E, with carrier space K E' 

The model presented here is a specific example of a dia
gonalizable linear system with infinite number of degrees of 
freedom. The results of [I] are applicable to a variety of sys
tems ofthis type, and can be directly applied once the parti
cular symplectic transformation T which performs the dia
gonalization to "normal modes" is found. It is thus clear that 
even linear model field theories generically exhibit phenom
ena which necessitate algebraic treatment. Features already 
present in linear models include inequivalent free and inter
acting vacua, free and interacting automorphism groups po
tentially not concurrently implementable, the existence of 
M0ller wave morphisms not implementable in the represen
tations determined by the vacua, and S matrices implemen
table only in certain representations. These phenomena can 
occur even in a setting free of complications involved in the 
specification of more realistic dynamical laws. 

APPENDIX A: PROPERTIES OF INTEGRAL KERNELS 

In the first half of this appendix, we verify the assertions 
made in Sec. III A regarding the operator .dy{E). In the sec
ond half, we construct the functions F L (E)(p,q) arising in Sec. 

M 

III C. 
In Sec. III A, we defined the function .dy{E)(p,q) for 

0< r < 1. We consider first the case E = O. 
Lemma: For fixed r with 0 < r < 1, let 

.dy{O){p,q) = (mpmq)l/2mp- Y{m; -m~)/{m; -m;). 

Then for allf ,gEL2{R3
), the integral 

Iy(f,g) == f d 3p d 3q .dy{O)(p,q) f(P)g{q) 

converges absolutely, and IIy(f,g)I<{constlllfll·lIgli. 
Proof: To simplify notation, we define two auxiliary 

bounded operators on L 2{R3
), the spherical average 1/1 and 

the dilatation 8a • 

Let f ,gEL2{R3
) and define 1/1: L2{R3~L2{R3) by 

(I/If)(p) = (41T)-ISdnf{lpln). Clearly 1/1 2 = 1/1 = 1/1. and 
111/111 = 1. Since (I/If)(p) depends only on Ipl, we write 

(I/Ifll/lg) = 41T Loo dp p2 (l/If)(P)( I/Ig)(P). 

Let a> 0 and let 8a :L2{R
3)-+L2{R3) be the dilatation giv

en by (8a flIp) = a3/2f{ap). Clearly, [8a , 1/1] = 0, and 8a is a 
unitary operator. 

We first note that if 0 < r < 1, then 

("/2 
Jy == Jo dO {cos lJ)-y < 00. 

To prove the lemma, consider non-negative functionsf 
and g in L 2{R3

), and let 0 < a < 1 and 0 < b < 1. Then 
IIfllllgll>(1/I8a fI1/l8b g). Multiply each side by a- y, put 
a == cos 0 and b = sin 0 for 0 < 0 < 1T /2, and integrate to get 

Jyllfllllgil > L"12 dO {cos O)-Y(1/I8cosofI1/l8sinO g). 

Because (sin 0 + cos 0 » 1 in the integration range, we have 
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[

/2 {sin 0 cos 0 )3/2 

Jyllfllllgll> dO ( Ot(' 0 + O)2- y o cos sm cos 

X 41T Loo r dr (I/If)(r cos 0 ) (I/Ig)(r sin 0 ). 

Now, for positive a and b, and for 0 < r < 1, we have 
(aY - bY)/(a - b) < {a + b )Y - I. Substituting this ratio for 
{sin 0 + cos 0 t- I in the above, and making the change of 
variables x == r cos 0 and y = r sin 0 in this absolutely con
vergent integral, we get 

(41T)- IJyllfllllgll 

> (00 dx (00 dy (xy)3/2 xY - yy (l/If)(x)(l/Ig)(y) 
Jo Jo xY(x + y) x - y 

= (41T)-2 f d 3p d 3q .dy(O)(p,q)f(p)g(q). 

Because the kernel .dy(O)(p,q) is positive, the considera
tion of non-negative f and g suffices to show that for arbi
trary f ,gEL2{R3

), the integral I y (f,g) is absolutely convergent 
and satisfies IIy(f,g) I < 41TJyllfllllgll for allf,gEL2{R3

). / / / 

Because Iy:L2(R3)XL2(R3~C is a bounded quadratic 
form, for each r between 0 and 1 there exists a bounded 
operator .dy:L2(R3)-+L2(R3) such that (fl.d y g) = Iy(f,g) 
for allf,gEL2(R3

). Furthermore, because the double integral 
I y (f,g) is absolutely convergent for arbitary fand gin L 2{R

3), 
by Fubini's theorem the single integral Sd 3q .dy{O)(p,q)g(q) 
exists for almost all p, and (.d y g)(p) = Sd 3q .dy{O)(p,q)g(q). 
Thus the function .dy(O)(p,q) is the integral kernel for the 
bounded operator .d y' 

We now consider the case E;60. Because l.dy(E)(p,q)1 
<.d y (O)(p,q), it is clear from the analysis for the operator .d y 

that the integral kernel .dy{E)(p,q) induces a bounded opera
tor .dy{E):L2{R3)-+L2(R3) given by 

(.dy{E)g)(p) = f d 3q.d y{E)(p,q)g{q), 

where the integral is absolutely convergent for almost all p. 
Clearly .dy{O) = .d y, and II.dy{Elil < II.d y II for all E> O. Fur
thermore, it follows easily that s-limE_+ o .dy{E) =.d y and 
s-lim~ + 0 .dy{E)· =.d ~. 

We turn next to the construction of the functions 
F L (E)(p,q). Consider first the operator {M (E) - I )(M (E)· 

M 

- I). It has the kernel 

{M (E) - /){M (E)· - I )(p,q) 

Am1/2m1l2{m2 _ m2 )(m2 - m2 1o{plo{q) 
= p q 0 p 0 q J (m2 m2) 

D { 2)D ( 2) P' q' + mp _ mq 

where 

J{m2 m2 ) =fd 3k Ap(kf . 
p' q (2 2 ')( 2 2 • ) mk mp - mk + IE mq - mk - IE 

It is convenient to rewrite this integral as follows. Using the 
identity for p2, we find that J (m; ,m;) = Jo{m; ,m;), where 

J,s{s,t)= (21Ti)-1 Loo dy 

X D_{y) - D+(y) 

yl/2{y _ S - iE){y - t + iE){y -m~ - i8) 
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Note that because there is no singularity in the integrand 
evenwhen£5 = 0, we have limo.-.o J.s{s,t) = Jo{s,t) = J{s,t ) for 
s>Oand t>O. 

We next rewrite J.s{s,t) as a contour integral. Let 
0<£5 < E, and choose the square root function Z---+ZI/2 to have 
branch cut along the positive real axis, with 0.;;;arg{zl/2) < 1T. 
Consider the following contours in the complex plane, for 
R> 1/£5: 

YI = {x + i/R IXE[O,R ]}, 

Y2= {z+i/R IImz;;;'O and Izl =R}, 

Y3 == {x + i/R IXE[ - R,O]}. 

Y4 = {x - i/R IXE[O,R ]}, 

Ys = {z-i/R IImz,;;;O and Izl =R}, 

Y6 = {x - i/R IXE[ - R,O]}. 

We take the line segments YI' Y3' Y4' and Y6 to be oriented in 
the positive Re z direction, and we take the semicircles Y2 
and Y 5 to have counterclockwise and clockwise orientations, 
respectively. Thus YI + Y2 + Y3 encloses both points s + iE 
and c:u~ + i£5 in the positive sense, whereas Y4 + Ys + Y6 en
closes the point t - iE in the negative sense. In terms of these 
contours, 

J.s{s,t) = lim (21Ti)-1 r dz 
R __ oo JY1 + Y4 

X -D{z) 
ZI/2{Z - s - iE)(Z - t + iE)(Z - C:U6 - i£5) 

Because the corresponding integrals over Y 2 and Y s vanish as 
R---+oo, we find 

D (c:u2) 
J{s,t) = 2- + 0 2 

C:Uo{s - C:Uo + iE)(t - c:uo - iE) 

+ -D{s+iE) 
(s + iE)I/2{S - t + 2iE)(S - C:U6 + iE) 

+ D{t-iE) 
(t - iE)I/2{t - s - 2iE)(t - C:U6 - iE) 

+ lim (21Ti)-1 r dz 
R_oo JY3 + Y6 

D{z) X , 
ZI/2{Z - S - iE)(Z - t + iE)(Z - C:U6) 

where the first three terms are residues. Here we have taken 
the limit £5---+0 after the contour rearrangement. The fourth 
(integral) term may be written as Y M{S + iE,t - iE)/1T, where 

Y M{Z,W) = Loo dy D ( - y) . 
o yl/2{y + C:U6)(y + z)(y + w) 

Thus 

(M (E) - I )(M (E)* - I )(p,q) 

= - C:Uo- 1c:u~/2c:u!/2Q {p)Q (q) \ 

X { {c:u; - c:u~ )(c:u~ - C:U6) } 
(c:u; - C:U6 + iE)(C:U~ - C:U6 - iE) 

- JL{E,q)(M (2E) - I )(p,q) 

- JL{E,p)(M (2E)* - I )(p,q) 
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where 

C:Up {C:U6 - c:u;)D (c:u; + iE) 
JL{E,p) = --'--.:...----".:...-'--"----

(c:u; + iE)I/2{C:U6 - c:u; - iE)D+{c:u;) 

Because the expression in curly brackets and the function 
JL{E,p) are bounded functions with limits equal to 1 almost 
everywhere as E---+ + 0, the strong limit of the first term is the 
dyadic - IC:UO-I12c:u1/2Q) (c:uo- 1/2c:u1/2Q I, and the middle two 

terms are kernels for operators which have strong limits 
equal to (I - M) and (I - M *), respectively. 

Now consider the last term, which we denote by 
FM{E)(p,q). We have FM{E)(p,q) = KM{E)(C:U;,p~), with the 
functions KM{E) defined by 

A (C:U6 - s) (c:u~ - t ) 
K (E){st)=-------

M , - 1T D+{s) D_{t) 

Xp{SI/21o{t 1/2)(st )1/4y M{S + iE,t - iE). 

It follows from the form of Y M{S + iE,t - iE) that the func
tion F M{E)(p,q) is a jointly continuous function of the varia
bles p,q, and E in the region P#O, q#O, E;;;'O, and that, fur
thermore, on any compact subset ofJR3 X JR3 which excludes 
the points with p = 0 or q = 0, F M{E)(p,q) tends uniformly to 
F M (O)(p,q) as E tends to zero. Let D be the dense subspace of 
L 2{JR3) consisting of functions with compact support not in
cluding the origin. Then for any E;;;'O the function F M{E)(p,q) 
defines a quadratic form ( IF M (E) I) with form domain D X D, 
and for any f and g in D, we have 

lim (fIFM{E)lg) = (fIFM{O)lg). 
E--+ + 0 

Now, because the strong limits as E---+O of the uniformly 
bounded families Ma (E) and Ma (E)* are equal to Ma and 
M:, respectively, it follows that S-limE--++O Ma {E)Ma (E)* 
= MaM:. Therefore, because of the strong-limit properties 

of the other terms in the formula for (M (E) - 1)(M (E)* - 1) 
above, we have 

(fIFM{O)lg) = (fIFM g), for f and g in D, 

where F M is the bounded operator 

FM = MM* - I + IC:UO-1I2c:u1/2Q )(C:UO-I12c:u1/2Q 1 

defined in Sec. III C. It now follows from the continuity 
properties of the function F M{O) that F MEB2{L2{JR3)) if and 
only if the function F M (O)(p,q) is an element of L 2{JR6). 

In exactly the same way, we show that the operator FL 
defined above is in B2(L2{JR3)) if and only if FL (O)(p,q) is in 
L 2{JR6), where FL (E)(p,q) = K L (E)(C:U; ,c:u~) for E;;;'O, with 

K (E){S t) = - A (C:U6 - s) (C:U6 - t) p{sl/21o{t 1/2) 
L ,- 1T D+{s) D_{t) {st)I/4 

X YL (s + iE,t - iE), 

and 

Y
L 

(z,w) = Loo dy yl/2D ( - y) . 
o (y + C:U6)(y + z)(y + w) 

We thus conclude that 
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(LL • - I )EB2(L2(R
3

)) iff FL (0)EL2(R6), 

(MM· - I)EB2(L2(R3
)) iff FM(0)EL2(R6

). 

APPENDIX B: ESTIMATES FOR INTEGRAL KERNELS 

In this appendix we derive some bounds for the integral 
kernels F which appear in the text. First we establish a 
lemma which is of use in this appendix and elsewhere in the 
text. 

Let Z and w be complex numbers which are neither neg
ative real numbers nor zero, with arguments taken to lie in 
the interval ( - 1T,1T). For - 1 <{3 < 1, define 

E (z,w) = y y . 
Sa

'" Pd 

p 0 (y + z)( y + w) 

It is not difficult to show that 

Ep(z,w) = 1I"(sin 1T{3)-I(zP - wP)/(z - w), 

where the arguments of z p and w p lie in the interval ( - 1T I 
2,1T12). For {3 = 0 we have Eo(z,w) = (In z - In w)/(z - w), 
and for z = w we have Ep(z,z) = 1T{3(sin 1T{3 )-IZ-(I-P). 

We now specialize to the situation in which z and ware 
positive real numbers and 0 <{3 < 1. 

Lemma. Let s> 0, t> 0 and 0 <{3 < 1. Then, 

(1) 21- PAp(s+t)-(I-P) 

<Ep(s,t )<{3 -IAp(s + t) -11 - P), 

where Ap == 1T{3 (sin 1T{3) -1, and 

(2) 21 + p Ap(s + t) - (I + P)(st f 
Bp(fJ ) 

<Ep(S,t)<S8(I_P)t ll _ 8)(I_P) , 

where 0 < fJ < 1 and where 

Bp(fJ) = [ 11"(1- 2fJ(I-{3)) 
sin 11"( 1 - 2fJ (1 - {3 )) 

11"(1- 2(1 - fJ)(1 -{3)) ]112 X . 
sin 11"(1 - 2(1 - fJ)(1 - {3)) 

Proof: The left inequality in (1) is due to the fact that 
(y+s)(y+t)«y+(s+t)/2)2, and thus holds for 
- 1 <{3<0 as well. The right inequality in (1) follows from 

the fact that for s > 0, t> 0, and 0 <{3 < 1, (tt - tP)/(s - t) 
< (s + t jP - I. The left inequality in (2) follows from the left 
inequality in (1) and the identity Ep(s,t) 
= (st)-IE_p(S-I,t- I). The right inequality in (2) follows 

from the application of Schwartz' inequality 

Sa
'" yll2 - 8(1 -P) yll2 - (I - 8)(1 -P) 

Ep(s,t) = dy'-----~-----
o y+s y+t 

<[r'" dyi - 28(I-P)]1I2 
Jo (y +S)2 

x[r'" dyi - 2(1-8)(I-P)]1I2 

Jo (y+tf 
and from the fact that Ep(s,s) = 1T{3 (sin 1T{3 )-IS - (I - P). I I I 

Note that estimates for {3negative can be obtained using 
the identity Ep(s,t) = (st )-IE _p(S-I,t -I). In particular, for 
{3 negative, Ep(s,t)< 1{31-IAp(st) -IPI(s + t) - (I -IPD. 

We now derive estimates for the functions FL(E)(p,q) 
and F M(E)(p,q) which are defined for E>O in Appendix A. 
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Because the behavior of the function D (a; - y) changes at 
the parameter values a = ~, it is convenient to treat the cases 
o < a < ~ and ~ < a < 1 separately in deriving bounds for the 
functions Yand K. 

Suppose first that 0 < a <!. From the explicit form of 
D ( - y) it is easy to see that in this case the function 
I(y+{()~)-ID( -y)1 is bounded by a constant a l for 
O<y< 00, because (yl12-o - 1)/(y - 1)«y + 1)-(0+ 112). 
Thus for s > 0, t> 0, and E>O, 

I Y L (s + iE,t - iE) I 
M 

Sa
'" y± 112 

<a l dy -:-----=-------:-
o I (y + s + iE)( Y + t - iE) I 

Sa
'" y± 112 

<a l dy = alE ± 112 (s,t). 
o (y + s)( y + t ) 

Now, E I/2(s,t )<1I"(s + t )-1/2 and 

E_ 1/2(s,t) = (st)- IE I/2(s-l,t -I) < 1I"(st )-1/2(S + t)-1/2. 

Thus for 0 < a < !, s> 0, t> 0 and E>O, 

I YL(s + iE,t - iE)I<1Ta l(s + t)-1/2, 

I Y M(S + iE,t - iE)1 <1Ta l(stj-1/2(s + t)-1/2. 

To estimate K L, recall that ID+(t)1 >bl>O for O<t< 00. 

M 

Because D + (t ) is continuous and lim,_", D + (t )It = - 1, it 
follows that the quantity I ((()~ - t )/ D + (t ) I is bounded by a 
fixed constant CI for 0 < t < 00. Taking into account the fact 
that p(SI/2) = s - 0/2(1 + S)-1/2, we find, for 0 <a <!, s> 0, 
t> 0, and E>O, 

IK £!E)(s,t)1 
M 

<dl(St)-1/4(1 + S)-1/2(1 + t)-1/2(St) - 0/2(S + t)-1/2, 

where d I = Aa lei is a positive constant. Note that this esti
mate is the same for K L andK M' and is independent of E. For 
future convenience we set 

W(s,t) = (St)-1/4(1 + S)-1/2(1 + t)-1/2. 

Then the above estimate becomes 

IK L (E)(s,t)1 <dl W(s,t )(st) - 0/2(S + t )-1/2. 
M 

We now consider the situation when ~ < a < 1. In this 
case it is helpful to decompose each of the functions Y and K 
into two terms, a tame term and a more singular term which 
reflects the essential behavior of the functions near the ori
gin. 

Rewrite the explicit form for D ( - y) as 

D( - y) _!- ( ) 2~A 1 
---'----=-...:... - ~ y + --
(()~ + y 0 sin 1I"(a _ !) yO - 1/2 

where 

A 2~A y(3l2-0) - 1 
to(Y) = 1 +------'-----

(()~ + y sin 1I"(a - !) y - 1 

Note that, because! <a < 1, the function to (y) is bounded in 
magnitude for ally>O by some positive constant, saya2 • 

Corresponding to this decomposition of 
D ( - y)({()~ + y) - I, we may write 

Y L (z,w) = Y(2(z,w) + Y(;!(z,w), 
M M M 
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where 

Y '2(z,w) = roo dy y± 112~a(Y)(Y +Z)-I(y + W)-I 
M Jo 

and 

M 

roo ± 112 
XJo dy ;-112 (Y+Z)-I(Y+W)-I. 

Then K L (E)(X,t) = K 12 (E)(S,t ) + K If (E)(S,t ), with, of course, 
M M M 

=FA (w~ -s) (w~ - t) p(SI/2lo(t lIZ) 
K(J'(E)(S t) = --------.... ..:.....--"--'--'-! ,- 1T D+(s) D_(t) (st)±114 

X y'f(s + iE,t - iE), 
M 

and Flf(E)(p,q) = Klf(E)(W;,W~). 
M M 

First we analyze y(l) and K(l). Because l~a(y)1 <a2 for 
y>O, we note that as above I Y'2(s + iE,t - iE)J <azE ± liZ (s,t ) 

M 

for s,t>O and E>O. From the explicit form of D+(t), we see 
that for ~ < a < 1, the quantity Iw~ - t lit a - IIzD +(t )1- 1 is 
bounded by some positive constant Cz for all t> O. Thus we 
find, similar to the above estimate, for ~ < a < 1, s > 0, t> 0, 
andE>O, 

IK I2(E)(S,t)J <dzW(s,t)(st) -11-aVZ(s + t)-I/Z, 
M 

where dz ~az~ is a positive constant. 
We now analyze ylZ' and K IZ,. We have 

Yi'(z,w) = 2rA (sin 1T(a - ~))-IEI_a(Z,W) 

= bz(a)(zl - a _ Wi - a)/(z - wI, 

whereb2(a) = 2rA (sin 1T(a - ~)sin 1T(1 - a))-I. Similarly, 

y~(z,w) = 2rA (sin 1T(a - m-IE_a(z,w) 

= b2(a)(z - a - W - a)/(w - z). 

We note that for s,t > 0 and E>O, we have the upper bounds 

I Yi'(s + iE,t - iE) I <b2(a)(s + t) - a, 

IY~(s + iE,t - iE)I<b2(a)(st)-a(s + t)-II-a,. 

These imply, for s > 0, t> 0, and E>O, 

IKi'(E)(S,t)J<k2(a)W(s,t)(st) -11-a,/2(s + t) -a, 

IK~(E)(S,t )1 <k2(a)W(s,t)(st) -a/2(s + t) -II-a" 

where k2(a) = AC~ b2(a)l1T is a positive constant. 
We require one further estimate, a lower bound for 

Klf(O)(s,t). We note that according to the lemma above, 
M 

Yi'(s,t) = bz(a)(sl - a - t I - aI/Is - t) 

>b2(a)(1 - a)2a(s + t)-a, 

y~(s,t ) = b2(a)(t - a - S - aI/Is - t) 

>ab2(a)(st) - a((s + t )12) - II - a'. 

From the explicit form of D+(s) it is easy to see that 
I~ - 1/2 D + (s) I is bounded on any finite interval. Thus there 
exists a constant ez>O such that Iw~ -sll~-I/2D+(s)J-I 
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> e2 for all s between zero and v = w~/2, say. 
This implies that for O<s < v and O<t < v, 

IK i'(O)(s,t ) I 
> (1'- a)2ah2(a)W(s,t)(st)-II-aV2(s + t)-a, 

IK~(O)(s,t)1 

>a21-ahz(a)W(s,t)(st)-a/2(s + t) -II-a, 

where h2(a) = (1T/A )e~b2(a) is a positive constant. 
In the second half of this appendix, we derive estimates 

for the functions FL (E)(p,q) and F M(E)(p,q) which are defined 
for E>O in the text by 

F L (E)(p,q) = K L (E)(W; ,w~), 
M M 

where 

K L (E)(S,t) = ± ( - A /1T)(St) ± IIp(SI12lo(t 1/2) 
M 

X Y L (s + iE,t - iE), 
M 

with 

- LOO (y +w~) 
y L(Z,W) = dy . 

M 0 y± 112D( - y)(y +z)(y + w) 

These estimates are substantially easier than those in the first 
half. 

To obtain upper bounds, note that from the explicit 
form for D (a;z) we have 

D (a; - y) > y + w~, for all aE(O, 1). 

Thus I Y L (s + iE,t - iE) I <E ± 1/2 (s,t ), whence as before 
M 

IYds + iE,t - iE)J<1T(St)-1/2(S + t)-1/2, 

IYM(s + iE,t - iE)I<1T(s + t)-I/Z. 

Therefore we find that for 0 < a < 1, s> 0, t> 0, and E>O, 

IK L (E)(s,t)1 <A W(x,t )(st) - a/2(s + t )-1/2. 
M 

To obtain lower bounds on Y L (s,t ) for ~ < a < 1, we re-
M 

call that for these values of a, 
_D-:-(_-....::;Y...!...) + a2(/2 - 1) <a2 , 
w~ + y y«-1I2 

where 

12(a) =1 + 2rA /azlsin 1T(a - ~)J. 

Then, usingthefactthatyP <y + 1 forO<p < 1 andy>O, we 
conclude that 

w~ +y 1 y«-1I2 
--->---. 
D ( - y) a2 Y + 12 

Therefore, 

and 

- - I Loo y« dy YM(S,t) > a2 . 
o (y + s)( y + t )( Y + 12) 

We next use the inequality (y +s)(y + t)«y +s + 1)2 for 
positive s, t, and y, and upon differentiation of the explicit 
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formula for Ep(z,w) with respect to z, we find 

Y'ds,t) >h ( - (1 - a))(s + t) - (2 - a) 

XF _ (I _ a) ((s + t )/i2(a)), 

Y M(S,t) > h (a)(s + t) - (I - a)Fa ((s + t )/i2(a)), 

where the positive constant h ( /3 ) is given by 

h (/3) = tr/3 la2 i2( /3 )sin tr/3, 
and where 

Fp(x) ==/3 -1(1 - X)-2{(l- /3)x _Xl-P +/3 J. 
This function Fp(x) is a continuous strictly positive mono-
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tonically decreasing function of x on [0, 00 ) for every value of 
/3 in ( - 1,1), and Fp(O) = 1. The behavior atthe origin ofthe 
(s,t I-plane of Y L is thus given by the factors (s + t ) - (2 - a) 

M 

and (s + t) - (I - a) in the expressions above. 

tH. Warchall, J. Math. Phys. 26,1264 (1985). 
2F. Schwabl and W. Thirring, "Quantum Theory of Laser Radiation," in 
Ergebnisse der Exacten Naturwissenschaften. edited by G. Hohler (Spring
er, Berlin, 1964), Vol. 36. 

3A. Arai, J. Math. Phys. 22, 2539 (1981). 
4E. M. Henley and W. Thirring, Elementary Quantum Field Theory 
(McGraw-Hill, New York, 1962). 

Henry A. Warchall 1297 



                                                                                                                                    

Gauge theory of the post-Galilean groups 
Aristophanes Dimakis 
Instit~tfiir Theoretische Physik, Universitlit Gottingen, Bunsenstr. 9, D-3400 Giittingen, West Germany 

(Received 23 July 1984; accepted for pUblication 9 November 1984) 

By means of an extension of the field of real numbers we construct post-Galilean groups, which in 
a sense lay between the Galilean group and the Lorentz group. By gauging these groups we obtain 
a frame theory of gravitation, which comprises Newton-Cartan theory, general relativity, and an 
infinite number of intermediate theories. This leads to a better understanding of how the 
structural differences of the two main theories of gravitation arise. 

I. INTRODUCTION 

The purpose of this paper is the structural comparison 
of the Newtonian theory of gravitation and the general the
ory of relativity. Notwithstanding the quantitative differ
ences of the two theories, interest rested, almost from the 
first days of general relativity, also on their qualitative struc
tural differences. 1

•
2 The four-dimensional covariant formu

lation of the Newtonian theory of gravitation leads us to 
apply the mathematical tools and the conceptual content of 
general relativity to the Newtonian theory of gravitation. 
After the recognition that general relativity is a kind of gauge 
theory of the Lorentz group an improvement of this ap
proach is possible: first formulate the Newtonian theory as a 
gauge theory of the Galilean group and then compare the 
two theories using the concepts of gauge theories, now com
mon to both. This course is not straightforward, however, 
since, first, general relativity is not quite a canonical gauge 
theory3 and, second, the gauge theory of the Galilean group, 
called here the Newton-Cartan theory of gravitation, is not 
exactly the Newtonian theory of gravitation. 4.5 Both compli
cations are not insurmountable, since, first, the additional 
structural element of general relativity, the metric tensor, in 
comparison to other gauge theories, appears also in the New
ton-Cartan theory. Second, this theory is just a little bigger 
than Newtonian theory-it contains, in addition to the New
tonian potential, a kind of "magnetic" gravitational poten
tial. 

The principle motivation for the comparison of the two 
theories is the question raised in Ref. 4: if and in what sense 
the Newtonian theory of gravitation is a limit of the general 
theory of relativity. To answer this question one notices that 
the Galilean group is the limit of the Lorentz group as the 
parameter E( = c-2) tends to zero. If this limiting process of 
the group can be carried over to the corresponding gauge 
theories, then the limit of general relativity as E-o must be 
the Newton-Cartan theory. That, strictly speaking, this is 
not the case can be seen from an independent formulation of 
the Newton-Cartan theory. Differences appear both in the 
mathematical structure and in the physical interpretation of 
the two theories. The main differences are (i) the metric ten
sor of the Newton-Cartan theory does not uniquely deter
mine a Newtonian torsion-free connection, (ii) there is no 
variational principle as Hilbert's for the field equations of 
Newton-Cartan theory, (iii) the equations of motion of the 
matter fields do not follow from the field equations of New
ton-Cartan theory, and (iv) the metric field ofthe Newton-

Cartan theory does not correspond to the gravitational po
tential, as is the case in general relativity. 

To see how these and other differences arise we formu
late, as in Ref. 4, a frame theory, comprising Newton-Car
tan theory, general relativity, and an infinity of intermediate 
theories. To obtain this we must carefully study the role 
played by the parameter E in the limit "Lorentz group--+Ga
lilean group" and in the less precisely defined limit of the 
corresponding gauge theories. The fundamental objects lay
ing behind the two groups and their gauge theories, and 
which characterize their structural differences are without 
doubt the Minkowski metric gM = g(E = c-2), h M 
= h (E = c-2) and the Galilean metric gG = g(E = 0), 
h G = h (E = 0)4. 

Relating the differences of the groups to differences of 
the metrics, we find that these are expressed by integers, 
particularly by their ranks and signatures. These numbers 
change discretely, when Ebecomes zero. In this process there 
is nothing like a continuous limit, but only a transition from 
E> 0 to E = O. On the other hand, between these two cases we 
find the various post-Newtonian approximations of general 
relativity. These approximations have nothing to do with the 
numerical value of the parameter E, as long as E remains 
small and positive. But E plays a decisive role in this process. 
Its powers ~, N> n are neglected, i.e., set equal to zero, in 
the nth post-Newtonian approximation. We conclude that it 
is not the analytic, but the algebraic properties of E, which 
are of importance here. The relevant algebraic properties of E 

are (i) ~#O, N = 0, ... , n, (£'l: = 1), (ii) E"+ 1 = 0, and (iii) 
lE=E. 

From (i) and (ii) it follows immediately that, for finite 
n#O, E cannot be a real number. Thus, in the following we 
introduce the symbol 0 in place of E. 

We extend the field of real numbers H by adding to it the 
new "number" o and denote the new set by R[n]. Here, H[n] 

is a commutative ring with unit element. To obtain groups, 
which in some sense lay between the Lorentz group and the 
Galilean group, we introduce, for n = 0,1, ... , the n-post Ga
lilean metrics by means of the definition gin]: = g(E = 0), 
h In]: = h (E = 0). Since the components ofthe n-post-Gali
lean metric are H[n] numbers, the space on which they are 
defined must be a H[n] module. We obtain such a module 
from a real linear space by a method similar to the complexi
fication of real linear space. The isometry group of the n
post-Galilean metric is the n-post-Galilean group. The next 
step is the definition of an n-post-Galilean manifold. We take 

1298 J. Math. Phys. 26 (6), June 1985 0022-2488/85/061298-10$02.50 @ 1985 American Institute of Physics 1298 



                                                                                                                                    

as basis a real differentiable manifold M, and, as in the con
struction of the R[nl module, we "complexify" its tangential 
bundle. We can now define an n-post-Galilean metric field 
on M and with its help construct n-post-Galilean connec
tions and gauge theories, for n = 0,1, .... For the field equa
tions we postulate a variational principle similar to Hilbert's 
for general relativity. The field equations, obtained, are 
brought in a form appropriate for solution and physical in
terpretation. 

In this way we obtain, for every n, an exact gravitational 
theory, laying "between" the Newton-Cartan theory and 
general relativity and showing some of the characteristic fea
tures of both theories. Clearly, for n = ° we expect the New
ton-Cartan theory and for n = 00 in some sense, general 
relativity. That the latter is true can be seen from the proper
ties of E listed above. For n = 00, E may be any nonzero real 
number and thus can be set equal to c-2

• In this way we find 
how the structural peculiarities of the Newton-Cartan the
ory are shifted from step to step to finally coincide with those 
of general relativity as n tends to 00. Therefore, we actually 
reversed the direction of the question stated above and are 
now asking if and in what sense the post-Galilean gauge the
ories tend to general relativity. 

II. THE RING OF n-POST -REAL NUMBERS 

Let {~:N = O,I, ... ,n J denote the standard basis of 
Rn + I. We define a multiplication on Rn + 1 as the bilinear 
map 

Rn + 1 X Rn + I-+Rn + I; (p,q)-+pq, 

with the following properties. 

(i) ef: = I is the unit element of the multiplication. 

(ii) ~~=~+M, N,M=O,I, .... 

(iii) 0" + 1 = 0. 

The linear space Rn + 1 with the above defined multipli
cation becomes a commutative ring with unit element. We 
call it the ring of n-post real numbers and denote it by R [nl. 

One can easily prove that R[nl is isomorphic6 to 
R[x]l/" + 1, where R[x] is the ring of real polynomials of 
one variable and In + 1 is the ideal of R[x] defined by 

{
CO} n+l. _ N. _ _ _ 

I . - 2: aNx .ao - ••• - an - ° . 
N=O 

From the definition above we see that 0 is fixed in R[nl 

but not in R[x]//" + I. SO for every element a ofR[nl we have 
a unique decomposition 

n 

a = 2: ~a(N), a(N)eR. (2.1) 
N=O 

Here, a(N) is called the N-part of a. For later use we intro
duce also the notation 

m 

a[ml: = 2: ~a(M), m<n. (2.2) 
M=O 

Wecalla[ml the [m]-partofa. Clearlya[nl = a. IfE is a fixed 
real number we define the real linear map 

f}J E:Rlnl-+R; f}J E(~) =~, N = O,I, ... ,n. (2.3) 

Here, f}J E is not a homomorphism of rings. If we let E be a 
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real parameter, then we have the following useful identities: 

a(N) = 1. d N (f}J E(a)) I ' N = O, ... ,n. (2.4) 
n! d~ E=O 

For convenience we also write aE in place of f}J E(a). Using 
(2.4) we can easily prove that for a,.8eR[nl 

I d
N I (ap)(N)= N! d~(aEPE) E=O' N=O, ... ,n (2.5) 

and, if a(O)t=O, then 

(a-I)(N) = ~ d
N 

(aE)-11 ' N = O, ... ,n. (2.6) 
N. d~ E=O 

Otherwise, a-I is not defined. 
In order to generalize the above formulas let/be a R[nl_ 

valued C co function on R 

fiR-+R[n l. 

SettinglE: = f}J EOl we extend Ion R[n l by means ofthe de
finition 

n 

I[nl(a): = 2: ~[f(a)](N), 
N=O 

with 

(2.7) 

(2.7') 

[f(a)](N): = ~! :; [/E(aE)] I E=O' N = O, ... ,n, (2.8) 

where we assume that (2.8) is well defined. 
Letting g be a real-valued function on R we can easily 

prove the consistency of this definition with the composition 
of functions, that is, 

[fog] [nl = I[nlog[nl. (2.9) 

Finally, we find a real (n + I)-square matrix representation 
ofRlnl in terms of the correspondence, for N = O,I, ... ,n, 

~-+(~)'s: = ors+ N ' r,s = O,l, ... ,n, 

where ors is the Kronecker symbol. 

III. THE n-POST-LINEAR ALGEBRA 

(2.10) 

Let V be a finite-dimensional real linear space. We set 

v[nl:=R[nl®RV' (3.1) 

the tensor product ofR[nl and V over the reals. On v[n l we 
define an operation for the elements ofR[nl by means of 

Rlnl X Vlnl-+v[nl, p(q ® v): = (pq) ® v, (3.2) 

wherep,q,eR[nl andveV. With this operation V[nlbecomesa 
R[nl module, an n-postlinear space. Because of(2.1) we have 
a unique decomposition of v[n l in N-parts and so we may 
identify Vwith theO-partofV[nl. Here, Vlnl is a free module 
since every linear basis of Vbecomes an n-postlinear basis of 
V [nl by means of the above identification. One can also prove 
that the O-parts of the elements of an n-postlinear basis of 
v[n l make a linear basis of V. So v(nl over Rlnl has the same 
dimension 7 as V over R. 

For the space L Inl,(vlnl, Vlnl) of n-postlinear transfor
mations of vlnl, 

(3.3) 
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holds, where L (V, V) is the space of real linear transforma
tionsof V. Thus, foranelementAeL [n1(V[n1,V[nl)wehavea 
unique decomposition 

n 

A = L ~A (N), A (N)eL (V, V). (3.4) 
N=O 

As for the n-post-real numbers the map A is invertible if 
and only if A (0) is invertible. The set of invertible elements of 
L [n1( V [n1, V [nl) forms a group Gvnl( V), the general n-post
linear group. One can also show that under n-post similarity 
transformations of A the rank of only A (0) remains invariant. 

The space L [n1(V[n1,R[n1) = :v[n1• will be called the 
dual of V [n 1. If {a 1t!J.l = 1, ... } is any n-postlinear basis of 
v[n1, then by means ofthe relations 

1f(avJ = 8' v;1feV[n1·, J.t,v = 1, ... ,dim V, (3.5) 

an n-postlinear basis of v[n1• is uniquely defined as the dual 
basis of { alt } . 

IV. THE n-POST-GALILEAN METRIC 

Let Vbe a four-dimensional real linear space. The pair 
of symmetric n-postlinear maps 

g: = (gltv):v[n1_v[n1·, 

h: = (hlt,:v[n1·_v[n1, 

with decompositions 
n n 

gltv = L ~gN)ltV' h ltv = L ~h (NlI'v, 
N=O N=O 

(4.1) 

is called an n-post-Galilean metric, if the following condi
tions hold: 

gO) and _ h (0) are positive semidefinite 

of rank 1 and 3, respectively, (4.2a) 

and 

hJ.'Pgpv = 0tY'v' (4.2b) 

Condition (4.2a) is motivated from the definition of a Gali
lean metric.4

•8•9 Since g(O) is positive semidefinite of rank 1, 
we can find a one-form t/J(O), such that 

...(0) = .1.(0) .1.(0) 
5 pv If' J.''f/ y' (4.3a) 

We also write 

h (O)ltv = - Y°ll'v. (4.3b) 
Theorem: There exists a not-uniquely determined in

vertible 4 X 4 matrix 
n 

(J'1t = L ~(J(N)'It' 
N=O 

with the inverse 
n 

e"'j = L ~e(NlI'o 
N=O 

i.e., 

e"'i(J'1t = B~, 

such that 

gij: =gltve"',evi = t/J,t/Jj - 0rij 

[ = diag(l, - 0, - 0, - 0)], 
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(4.4a) 

(4.4b) 

(4.4c) 

(4.5a) 

h ij: = h Itv(J 'It (Jiv = - r j + 0vV 
[ = diag(0, - 1, - 1, - 1)]. (4.5b) 

For later convenience we have introduced the symbols 
.1, ~o . . ..~. ,,' ~AB 
'f/' = U i' V' = B'o, y" = U'AUBU , 

with i,j= 0,1,2,3 andA,B = 1,2,3. 
For the proof see Appendix A. 
Now let {alt:J.t = 0,1,2,3} be the linear basis of VC v[n1 

and {1f!J.l = 0,1,2,3} its dual to which the components of 
the metric (gltv,h It, refer. From the above theorem we obtain 
an orthonormal basis lO {e,: = e"',alt:i = 0,1,2,3} and its dual 
{ (J ': = (J 'It 1f:i = 0,1,2,3}. 

For some pair of matrices ((J,e) satisfying the conditions 
of the above theorem, we set 

.1, • _ .1. (J' .pv. - .)j-# eV 
'f/It'-'f/' It' , .-,t:", i' 

(4.7) 
11': = v'e"'o rltv: = rij(J '1t(J 'v, 

From these definitions we find from (4.5) and (4.6) the de
composition 

gltv = t/Jit t/Jv - 0rltv' 

h ltv = - -y'v + 011'vv 

(4.8a) 

(4.8b) 

of the n-post-Galilean metric. We note that t/J1t,-y'v,rltv, and 
II' are n-post-real numbers. We also stress that the decompo
sition (4.8) of the metric depends on the pair ((J,e), which is 
not uniquely determined. 

The tensors defined in (4.7) satisfy the relations 

-y'vt/Jv = 0, 

1I't/J1t = 1, 

rltvvv = 0, 

(4.9a) 

(4.9b) 

(4.9c) 

(4.9d) 

From (4.9a) follows that the pair (-y'v,t/JIt ) formally is a Gali
lean metric. From the rest of (4.9) follows also that rltv for
mally is the v-associated covariant space metric of (-y'v,t/JIt)' 8 

V. THE n-POST-GALILEAN GROUP 

An n-postlinear mapA:V[n1_V[n1 is called an n-post
Galilean transformation if it is an isometry of the n-post
Galilean metric, that is, 

h k'A 'kAj, = h ij, gk,A k/A ~ =gij' (5.1) 

With the aid of (4.5) we determine the general form of an n
post-Galilean transformation to be 

A ~ = Wk - 0[v'Bk/(1 - 0v'Bd])R kj 
+ (1 - 0v'B,)v't/Jj + rkBkt/Jp (5.2) 

where the parameters R ' and B k are restricted by the condi
tlOns 

and 

viBi + !(rj - 0VV)BiBj = 0, 

yk'R 'kRi, = rJ + 0yikr J/BkB" 

R ~t/Ji = 0, R ~v' = O. 

One also has the following useful relations: 
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I I I k I I R j = (15 k - V "'k)A 1(15 J - V "'J)' (5.6a) 

and 

(5.6b) 

From (5.2H5.4) we recognize that R ~ is the spatial rota
tional part and B; the boost part of A ~. Here, A [nl is ob
tained from a Lorentz transformation A (c- 2

) through the 
substitution c-2---+0. 

The symbols defined in (4.6) are not invariant under n-
post-Galilean transformations. They transform as follows: 

""I = "'I - 0Bp (5.7a) 

V,I = (1 - 0v jBj )vl + rijBj , (5.7b) 

r'ij = rij + 0yi/cr j/BkBI + 0(1 - 0vkBk)v(lr J1iBI 
+ eJ3(ykIBkBtJViJ, (5.7c) 

and 

r'ij = rij - "'(IB/) + 0BIB}" (5.7d) 

Here and in the following the (anti-)symmetrization symbols 
are used without numerical coefficients. 

As we see from these formulas these symbols are trans
formed only by the boost part of the n-post-Galilean trans
formations. The special case of (5.7), in which 0BI = 0 
holds, is of particular interest. We have 

""I = "'I' r'ij = r
i
, 

V,I = Vi + riBj, r'ij = rij - "'(iB,), 

and from (5.3) 

(5.8a) 

(5.8b) 

vlBI + !riBIBi = 0, (5.8c) 

where the second term of (5.8c) is present only for n = O. 
The set of all n-post-Galilean transformations forms a 

group, the n-post-Galilean group so[nl(I,3). (We restrict our 
discussion to the special n-post-Galilean group.) The 
so[nl(I,3) is a subgroup ofGLlnl(4,lR). In general so[ml(1,3) 
is not a subgroup of so[nl( 1,3) for m < n. From (5.2) we ob
tain the Galilean group for n = 0 and the Lorentz group for 
n= 00,0=c-2

• 

An element w~ of the Lie algebra .?o[nl(1,3) of the n
post-Galilean group must satisfy the relations 

k(I~~~ k h WOk = 0, gk(IW,l = O. (5.9) 
From these relations, or from (5.2), we find 

w~ = Ii + rkbk"'J + 0vlbJ, (5.10) 

where 

Ijv' = 0, "'JrJI = yk(ir'\ = 0, (5.11a) 

and 
vibl = O. (5. lIb) 

A R[nl-linearbasis of .?o[nl(I,3) is given by the six matri
cesL ab, a,b = 0,1,2,3, with 

(L ab)~: = _ h l[ac5b I}" (5.12) 

The commutation relations of these generators are as 
for the orthogonal groups 

[L ab,L cd] = _ h adL be + h acL bd 

_ h beL ad + h bdL ac. (5.13) 
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The structure constants are n-post-real numbers. Here, 
.?olnl(I,3) is a Z-graded Lie algebra over the reals. We set for 
NeZ 

t(2N): = (~L AB:A,B = 1,2,3 j, 

t(2N+ I): = (~LA0:A = 1,2,3j, tIN): = (OJ, N <0. 
(5.14) 

From these definitions we easily find 

.?o[nl(I,3) = E9 tIN); [t(N),t(M)] Ct(N+M). (5.15) 
NeZ 

In the limit n-00,0 = c- 2, we have a Z2 gradation with 

.?o(I,3) = nz(O) E9 nz(l), [nz(a),nz(b)] Cnz(a+b), (5.16) 

where nz(O) denotes the set of spacelike rotations, nz(l) the 
boosts, and a,b, a+beZ2• 

VI. THE n-POST-GALILEAN MANIFOLDS 

On a real four-dimensional C 00 manifold M we define 
the n-post-tangential bundle as 

(6.1) 

where TpM is the tangential space on peM. In an obvious 
way we also define the n-post-tensor bundles on M. A real 
four-dimensional C 00 manifold with an n-post Galilean met
ric field (g[nl,h [nl) will be called an n-post-Galilean manifold. 
As in (2.3) we introduce the map f!J1 £:TM[nl_TM,€ER, 

(6.2) 

where 1T:TM_M, 1T[nl:TM Inl_M are the obvious bundle 
projections. As in Sec. III we identify TM with the zero-part 
ofTM[nl. 

Since M is a real manifold the coordinate transforma
tions are real maps and the holonomic bases of TpM have 
vanishing N-parts, N> O. We introduce now the concept of 
an n-post diffeomorphism. Letfbe a (lR4 )[n t valued C 00 map 
on lR4 with the decomposition 

(6.3) 

Then f is called an n-post-diffeomorphism of R4 if 
f£: = f!J1 £ Of is a diffeomorphism of R4 for all € in an open 
neighborhood of € = OeR. Suppose faa' is an n-post-diffeo
morphism ofR4 and (Va ,t/Ja), (Va ',t/Ja') are charts of M, such 
that t/J;; lo( f!J1 £ 0faa ')0t/Ja' is defined for all € in some open 
neighborhood of € = O. Also letfpp', (V,8,t/Jp), and (Vp',q7P') 
be another triple, which satisfies the above condition. We 
call the two triples equivalent faa' - f,8f3', if the following rela
tion 

I" ' = m [nlol" 'oJ. ' , J,8f3 T,8a :Jaa 'f"a,8 (6.4) 

holds, whenever the coordinate transformations 
t/Ja',8': = t/Ja' 0t/J,8---; I, t/J,8a: = t/J,80t/J a- I are defined. Here, t/J!;) is 
defined as in (2.7). With the aid of (2. 9) it is easy to prove that 
- is an equivalence relation. The equivalence classes of -
define objects on M, which will be called n-post-diffeomor
phismsofM. 

Setting 

(6.5) 
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one can easily prove, using (2.8), that if/aa' -/pp', then/~a' 
and/'!' meet at E = ° to the nth order. That is, for any pair 
of charts (Vy,tPy), (Vy"tPy') the relations 

1 d
N 

(faa') 1 
N! d~ £ yy' £=0 

N=O,I, ... ,n (6.6) 

hold, whenever the maps (f~a'jyy, = tPyo/~a'0tP;: I and 
(f~p')yy, are defined. In this case 

/ IN), = _1_ d N (faa') 'I (6.7) 
yy N! d~ £ yy £=0' 

where/yy' is defined with the aid of (6.4). This allows us to 
simply write.!: instead of/~a'. 

We now give the transformational behavior of scalar 
functions, vector fields, and one-forms under an n-post dif
feomorphismj. We derive them in analogy to the real case. 
Let Sbe a R[nl-valued C co function on M. We then have the 
decomposition 

n 

S= L ~SIN). (6.8) 
N=O 

Then/ transforms S into 
n 

/.S= L ~(f.S)(N), (6.9a) 
N=O 

with 

(f.S)(N): = { ~! :; (S£o/£-I° tP a-I) 1 £=J0tPa, (6.9b) 

where S£: = & £oS and tPa is an appropriate chart of M. 
Since d / dE commutes with the exterior derivative, we obtain 
from (6.9) the transformation of a one-form. Let XIt be an n
post-one-form. Then 

n 

(f.X)1t = L ~(f.X)t"), (6. lOa) 
N=O 

with 

(f.X)t"): = liN! :; { [(J £ ItltU'£lv] 0/£-1 J 1 £=0' 
(6. lOb) 

whereJI • is the Jacobian of.!:. Similarly, for an n-post vector 
field X It we obtain 

n 

(f.X}I' = L ~(f.X)(Nlp" (6.11a) 
N=O 

with 

(f.X)(Nlp,: = ~! :; {[(J1.}I'v(X£t] o/£-IJ 1£=0' 
(6.11b) 

From these formulas we obtain the transformational behav
ior of any tensor. 

By an extension of the arguments used on lR we can 
show that any closed R[nl-valued one-form, whose zero-part 
never vanishes, can be locally transformed to ~ . 

The definitions given here can be naturally formulated 
by use of jet-bundle formalism. 
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VII. TORSION-FREE n-POST-GALILEAN 
CONNECTIONS 

Let r~v denote the components of an n-postlinear con
nection with respect to some coordinate system. If the con
nection is to be torsion-free, then we must have 

rfltvl =o:::::}r(N~ltvl =0, N=O, ... ,n. (7.1) 

Such a connection will be called an n-post-Galilean connec
tion if the n-post-Galilean metric is covariantly constant 
with respect to it, that is, 

Vpgltv =0, Vphltv=O, (7.2) 

where V denotes the covariant derivative, with respect to r. 
In the following we solve these equations for the con

nection coefficients. Substituting the decomposition (4.8) of 
the metric in (7.2) we obtain 

(V p .,p(p ).,p v) = 0V p r ltv' 

Vp r"'v = 0v(PVpvV
). 

Using (4.9) we find 

Vp.,plt = -0rltvVpvv, 

0Vpif = - r"'VVp.,pv' 

and, since the connection is torsion-free, 

.,p[It,vl = -0rp[1t Vvlv P. 

From this equation the condition 

¢f0) [It,v I = ° 

(7.3a) 

(7.3b) 

(7.4a) 

(7.4b) 

(7.5a) 

(7.5b) 

follows immediately. We now introduce the two-form 

Xltv: = rp[1t Vvlv P. (7.6a) 

Then we have 

.,p[It,vl = - 0Xltv' (7.6b) 

Using (7.1), (7.2), and (4.2b) we easily find 

(7.7) 

We see that, for finite n, the n-part of the connection is 
not determined from (7.7). Substituting (4.8) in (7.7) we find 

" " 
0rp ltv = 0{ r p ltv + 0vPr O'lt V vVO' - !h pO"X ur,p .,pv) J, 

(7.8) 

where 

" r p
ltv = !rPO'(rur,p,v) - rltv,O') !vp.,p(p,v) (7.9) 

is formally the v-special "Galilean" connection of (.,plt,rltl 
" (see Ref. 11), and V is the covariant derivative with respect 

" to r. For this connection we have the following identities: 

(7.10) 

and 

" 
V It.,pv = - !.,p[It,vl =0kltv' (7.11a) 

" V p r"'v = 0!v(PXV )O'XpO' , (7.11b) 
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v v 

V prl'V = - rP(J<rV)u v pVu. (7.11c) 

We also have 

Vprl'v = - rP(J<rV)u Vpvu. (7.12) 

Using these identities, after lengthy calculations, we obtain 
v v 

rpl'v = FPl'v +0vPrul' VvvU-!hpO'XuIJ<rPv)' (7.13) 

This does not mean that the n-post-Galilean, torsion-free 
connection is completely determined, since because of (7.6a) 
r appears also on the right-hand side of (7.13). 

Freeing ourselves from (7.6a) and letting (7.6b) be the 
definition of XI'V' we see that its n-part in)l'v is undeter
mined. Thus, there remains an indeterminacy in F expressed 
by the free choice of the real two-form in)l'v' This is a char
acteristic of the Galilean theory, which is retained here. 
With the aid of (7.7) and (5.8) it can be shown that (7.13) is 
independent of the particular decomposition of the metric 
used in (4.8). 

We can now simplify (7.13) by choosing the decomposi
tion (4.8) such that 

(7.14) 

holds. It is shown in Appendix B that this choice is locally 
possible. It restricts the [n - 1]-part of the boost B; in (5.7). 

Using (7.14) we find 
v v 

rpl'v = r PI'V + 0vPrul' V vvu + !rPUxuIJ<rPv)' (7.15) 

with 

XI'V = 0"i
n

)l'v, (7.16) 

where in)l'v is an arbitrary real two-form. In the following 
we always use a decomposition of the metric for which (7.14) 
holds. 

From the transformational behavior of the connection 
F under an n-post diffeomorphismfwe find, as in the real 
case, that 

r f.r 

f. V = V f. (7.17) 

holds. 

VIII. THE CURVATURE TENSOR AND THE NEWTONIAN 
CONDITION 

Setting 
v 

Il'v : = rul' V vV
u

, (8.1) 

we find for the curvature tensor 
v v 

RPul'v = R P UI'V + 0 V [1'(v
P 

Iv]u ) 

I(V ) 1 v +"2 V [1'X'v I rPu - "2 rP[1' V vI X'u 

+ l~AxA[l'rPvlrPu, (8.2) 

where 
v v v v 

R p '--FP _rA r p 
UI'V' - u[I',V I 0'[1' vIA (8.3) 
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v 

is the curvature tensor of F and 

X!u: = rpAxAu' (8.4) 

The last term of(8.2) (quadratic in X) is present only for 
n = 0 because of (7.16). Since the connection is torsion-free 
we have the identity 

R I'[vpul = O. (8.5) 

From the metric compatibility of the connection we also ob
tain 

hA(J<RV)APu =0, gA(J<RAv)Pu =0. 

Using these identities we find the condition 

0(h PAR I'vAu - h ~R P uAv) = O. 

If we set 

v v 

Pl'vpu = R I'vpu +0V [p(vl' I ulv )' 

then, because of (7. 16) and (8.2) 

(8.6) 

(8.7) 

(8.8) 

0(h PAp I' vAu - h I'ApP uAv) = O. (8.9) 

Adding to the n-post-Galilean metric (n + 1 I-parts, 
such as to obtain an (n + 1 )-post-Galilean metric for which 
.1,[ n + II [ I = 0 holds we find that the [n]-part of P [n + III' If' p,,'V' vper 

equals P [nll'vpO" Since we proved (8.9) for every n, it also 
holds for n + 1, hence it follows that in place of (8.9) the 
stricter result 

(8.10) 

holds, where P = P [n l . From (8.2) and (8.10) we find that 

hPARl'vAu -h~RPuAv =0 (8.11) 

is equivalent to the condition that the two-form XI'V is closed, 
or 

X[l'v,p1 = O. (8.12) 

In this case we can choose the n-part of the boost free
dom remaining after the assumption (7.14) such as to make 
XI'V locally disappear (see Appendix C). 

Definition: An n-post-Galilean connection is called an 
n-post-Newtonian connection if its curvature tensor is the 
[n]-part of the curvature tensor, an (n + 1)-post-Galilean 
connection. We summarize the above results in the following 
theorem. 

Theorem: An n-post-Galilean connection is Newtonian 
if and only if 

hPAR I'vAu = h~R puAv ' 

In this case there is a decomposition (4.8) of the metric, such 
that 

v v 

rpl'v = F PI'V + 0vPrl'u V vV
u (8.13) 

and 
v v 

R P UI'V = R P UI'V + 0 V [I' (v P I vlu ) (8.14) 

(for n = 0 see Ref. 8). 
In the following we restrict ourselves to Newtonian 

connections and use the decomposition of the metric for 
which (8.13) and (8.14) hold. In this case, the Ricci tensor is 
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v v 

Rl'v: = RPI'VP = R I'V -0V P (vP..!'l'v) (8.15) 

and the curvature scalar 
v v 

R: = hl'VRl'v = R + 0 V pvP, (8.16) 

v v 

where R : = h I'V R I'v' 

IX. VARIATIONAL PRINCIPLE AND FIELD EQUATIONS 

In order to postulate a variational principle similar to 
Hilbert's principle for general relativity, we need some scalar 
density as is the determinant of the metric tensor. Since here 
the components of the metric tensor are ]R[nl.valued func
tions, it is not obvious how to construct from them such a 
scalar density. Note that the formal determinant of gl'v van
ishes for n < 3. To avoid this problem, we use tetrad fields 
and the calculus of differential forms adapted to our prob
lem. 12 

Let lel:i = 0,1,2,3} be a local n-post-Galilean ortho
normal tetrad field with its dual I () I:i = 0,1,2,3}. We write 
'TJljkl for the totally antisymmetric tensor, with 'TJ0123 = 1. 
(Latin indices refer to lei I, I () I}). Here, 'TJ Ijkl is numerically 
invariant under n-post-Galilean transformations. We now 
introduce the differential forms 

'TJ = (1I41)'TJljkl() I 1\ () 11\ () k 1\ () I, (9.1a) 

'TJI = (1I3!)'TJljkl()i 1\ () k 1\ () I, (9.1 b) 

'TJ1j = (1I21)'TJljkl()k I\()I' (9.1c) 

'TJljk = 'TJljkl() I. (9.1d) 

Here, 'TJ is the volume four-form. With the aid of these defini
tions, we can prove the following identities: 

(() 1'1\ ••• 1\ () I,) 1\ 'fl. . 
W1h·"Js 

_ 1 1 {)I, ... I, 
- ,-( _ )' 'TJ[i"':1,_, J'-Hl":1,l' r. sr. 

with r,s = 1, ... ,4 and 
1:1, ... 1,. 1:1, 1:1, 
Vj"':1,' = Vu, '''vi,]' 

(9.2) 

(9.3) 

These identities are independent of the metric. If R ~kl 
are the components of the curvature tensor referred to I () II 
and lei I, we set 

(9.4) 

for the curvature two-from. As in general relativity we set for 
the Lagrangian density 

!£' = hikn~ l\'TJlk + 20A'TJ + 20K!£' M' (9.5) 

where A is the cosmological constant, !£' M the Lagrangian 
density of the gravitating matter fields, and 20K the coupling 
constant chosen in analogy to general relativity. With the aid 
of(9.2) one can easily prove that the first term of(9.5) equals 
R'TJ. 

Using the fact that h Ij and 'TJ Ijkl are numerical constants, 
and the identities 

{)'TJI, ... I, = {)() r+ 11\ 'TJI, ... I,+ I' (9.6) 

we find after varying (9.5) (see Refs. 12 and 13) 
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(9.7) 

where tl is the energy-momentum three-form defined by 

{)!£'M={)()ll\tl • (9.8) 

Using (9.4) and the identities (9.2) we find for the first 
summand of (9.7) 

hikn Ii 1\ 'TJlkl = 2(hikRkl - !h kIRkl{jl;)'TJj. (9.9) 

Also setting 

tl = glk Tkj'TJi' (9.10) 

where TIj is the energy-momentum tensor, we find from (9.7) 
the field equations 

(9.11) 

Referring these equations to a coordinate system, we 
have 

hl'PRpv -!{)I'vR +0{)I'vA = -0Kgvp TIlP. (9.12) 

A more useful form is 

h I-'PRpv = 0{)1' vA - 0K(gvp{)l' U - !gpu{)l'v)TuP. (9.13) 

Using the Bianchi identities we also derive the equa
tions of motion for the matter fields 

0gIlP VvTl'v=0. (9.14) 

Using the decomposition (4.8) of the metric and the 
Newtonian condition (8.11) we deduce from (9.13) the two 
equations 

and 

RI''' - tPl' tP,,(vPvuRpu) = - 0rl'vA + 0K(tPp tPfp. r,,)u 

- 0rI-'Prl'u - !gpurl'v)TPU 
(9.15a) 

0vPvURpu = 0A - 0(K/2)(tPptPu + rpu)TPu. (9.15b) 

From (9.15) we see that the n-part ofifvuRpu remains 
undetermined by the field equations. This becomes critical 
for n = 0, since it is Eq. (9.15b) which corresponds to the 
Poisson equation. From (9.14) we obtain the two equations 

0tPpV"TPv=O (9. 16a) 

and 

~VvTI''' = O. (9. 16b) 

Therefore the full equations of motion follow from the field 
equations only for n>2. 

X. DECOMPOSITION OF THE FIELD EQUATIONS IN 
VACUUM 

Since tPl' is a closed one-form with never-vanishing 
zero-part we can transform it by means of an n-post-diffeo
morphism to tP I' = VlO)I" where all N-parts with N = 1, ... ,n 
vanish. This does not induce a restriction of the coordinate 
system, since coordinate transformations do not mix parts of 
different order. In what follows tPl' will be of this particular 
form. 

Let ul' be an arbitrary real vector field for which 

ul'tP I' = 1 ( 10.1 ) 

holds. Setting 
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PI": = - Y,.v uv + MYaPuauP)tP,., 

we find 

v" = u,. + y,.vpv' 

We also define the tensor field 
u 

Y ,.v: = Y,.v + tPfpPv)' 

(10.2) 

(10.3) 

(10.4) 

u 

The four tensors tP,. ,Y "v,u", and Y,.v satisfy the relations 

(4.9), but they do not form a decomposition (4.S) of the met
ric. Conversely, if we postulate (10.3) and (10.4), then the 

u 

tensors tP,.,y"v,u",y,.v satisfy (4.9), if and only if 

u"P,. + !y,.vp,.Pv = O. (10.5) 

With the aid of(1O.3) and (10.4) we find 14 

v u 

r P,.v = rp,.v + !yP"Ko(p. tPv)' (10.6) 

and 

(lO.S) 
v 

Using this decomposition of r we easily find 

u u u 

where R,.v is the Ricci tensor of r, and V the covariant 

derivative with respect to it. In the derivation of (10.9) we 
u 

used the fact that r is formally the u-special "Galilean" 

connection of tP,. ,Y'v. 
u 

With the aid of tP,. ,Y'v,u", and Y ,.v we can decompose 

the Ricci tensor as follows: 

u "" 
R,.v = n/I,.tPv + r' YafptPv) + rzP Y a,. Y pv' (10. lOa) 

where 

r: = R,.vu"uv, r': = R,.vu"yva, r'P: = R,.v~YvfJ. 
(10. lOb) 

Substituting (10.9) in (10. lOb) we obtain 

v u (" ) 1 r = r - V P~" U,. - 4 (~Kp")' (10. 11 a) 

v u 1 (" ) ra=r a __ V~ 
2 p'.' 

(10. lIb) 

v " 
raP = rzP, (lO.llc) 

vv v uu u 

where r,r', rzP and r, r', rzP are defined as in (10. lOb) from 
v u 

R ,.v and R ,.v' both with u,.. Setting 

cfZP: = ~;PV~,.v' 
we find from (S.I) 
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(1O.12a) 

(10.13) 

and if ~,.v is decomposed in the same manner as R,.v in 
(10. lOb), then 

U' = - PpcfZP, q = PaPPcfZP. (10. 12b) 

We also have 

v " 
V p(vPcfZP) = V p(vPcfZP) + !qP(a~). (10.14) 

Using these relations, we find for the decomposition of 

rzP=;aP- 0 [V p(V PcfZP)+ ~ qp(a~l (1O.15a) 

r' =;a - ~ (v p~) +pp( ;a
p 

- rzP), (10. 15b) 

With the aid of these equations we find from the field equa
tions (9.15) with A = 0 = T"v 

[ 

u I] " ° Vp(vPcfZP) + TqP(aK!,} =r'P, (10. 16a) 

(10. 16b) 

and 

0[ ( Vp~ )u" + ! ~UKpu] = 0(; - ;aPPaPti). 

(1O.16c) 

These equations must be complemented by (10.5). Of 
particular importance is the case in which 

PI" = UtP,. +S,p (10.17) 

holds, where U,SareR["l-valuedfunctionsonM. Substitut
ing (10.17) in (lO.S) and (10.16) we find 

(1O.1Sa) 

(10.ISb) 

0AU=0(; -~S,aS,p), (1O.1Sc) 

where 
u 

AU: = yP"V pu.u (10.19) 

" is the Laplace operator formed with r . From (10.5) we also 

have the Hamilton-Jacobi equation 

uPS.p + !yP"S .pS,u + U = O. (10.20) 

As we see from (1 O.ISc), U corresponds to the Newtoni
an potential. The n-post-Galilean metric we obtain from 
these equations has the form 

h"v = - y"v + 0(u" + S,~)(UV + S,1 (1O.21a) 

and 
u 

g,.v = (1 + 20U)tP,.tPv + 0tPfpS,v) - ° Y,.v' (1O.21b) 
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XI. CONCLUSIONS 

In Sec. VII we found that as in the Newton-Cartan 
theory, the n-post-Galilean metric does not uniquely deter
mine an n-post-Galilean connection nor even a Newtonian 
connection. However, the indeterminacy, which is expressed 
by a real two-form, is present only in the last (n-) part of the 
connection. At every step n-.n + I it is shifted from the n
part to the (n + 1 )-part of the connection and disappears 
when n tends to infinity. 

In Sec. IX we postulated a variational principle which 
for n = 00 goes over into Hilbert's variational principle of 
general relativity. For finite n the field equations, obtained 
from it, do not determine all field variables up to the n-part. 
Although the metric is completely determined by these 
equations, since it does not contain vln)1-' and yn)wv ' the con
nection, which contains such terms, remains undetermined. 
Forn = 0, the field equations (9.IS) are not those of the New
ton-Cartan theory RI-'v = - (K/2)7/JI-'7/Jv(7/Jp7/JuTPj (see Ref. 
8); moreover, the variational principle does not even give the 
Poisson equation. 

The full equations of motion follow from the field equa
tions only for n~2. For n = I we obtain only a part of them 
(9.16a), which can be identified with the continuity equation. 

As can be seen from ( 10.17) the gravitational potential is 
not contained in 7/J I-' or yPv, but in if. This vector field enters 
the metric only for n~ 1. For n = 0, we can interpret if as 
part of the orthonormal Galilean tetrad field, but not as part 
of the metric. 

Finally, we remark that the n-post-Galilean theories of 
gravitation can be seen as exact gauge theoretic formulations 
of the n-post-Newtonian approximations of general relativi
ty. The missing n!-post-Newtonian approximations can be 
obtained if we allow the holonomic (but not the anholono
mic) components of the metric and consequently also the 
components of the tetrad field to depend on the square root 
of0. This is also necessary for the formulation of the n-post
Galilean Dirac equation. 
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APPENDIX A: CANONICAL FORM FOR THE n-POST
GALILEAN METRIC 

Proofofthe theorem in Sec. IV. 
Since in the proof we use induction on n we write 

(g[nJ ,h [nJ) for the n-post-Galilean metric. We also write e[nJI-', 

and () [nJ'1-' for the pair of matrices to be constructed in the 
nth step. 

From (4.2b) and (4.3) follows immediately 

yo)pvt/J°)v = O. 

Therefore the pair (yO),t/J0)), which is equivalent to (g[oJ ,h (0)), 
is a Galilean metric, for which the pair (e[O) ,() (0)) can be con
structed up to Galilean transformations. 

Now let e[mJ ,() [m) be constructed, such that g[mJ ,h [m) 

take the form (4.5). Clearly elm) is the [m]-part of elm + 11, that 
is, 
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elm + 1)1-', = e[m)l-'i + 0'" + le(m + l)pi' 

Hence, we only need to construct elm + I). Since elm) is inverti
ble, we may write 

elm + III-' i = e[m)l-'j(co/i + 0'" + I~'::. t lli/), 
where 

elm + lli .. = (e[m + I)I-'.() [mJj )(m + I) 
[m) " 'I-" 

From a similar definition of () \'::. t I)i} we find that (4.4c) is 
equivalent to 

e(m+ 1)/ + ()(m+ I)i - 0 
[m) j [m) j - . 

If we now set 

....(m+I) .. = [glm+11 e[m)v.e[m)I-'.](m+l) 
~tml if' I-'V' J ' 

and similarly for h, we find 

(AI) 

g [m+ I) .. =glm) .. + 0"'+ I/....(m+ I) .. + .1. e(m+ I)k .1. ) 
IJ 'J 15lml 'J 'f/k [m) (/'f/J) 

(A2) 

and 

h 1m + I Jij = h [mJij + 0'" + I(h (m + I)i] _ () (m + I)(i rJ)k) 
[m) [m) k • 

(A3) 

From (4.2b) we now find 

h Im)ikglm) kj + 0'" + I( - y'kgll'::. t I)kj 

+ .1 •• 1. h (m + I)ki) _ nU:i 
'f/j'f/k Iml -lUUj' (A4) 

We must distinguish now between the two cases m = 0 
and m > O. In both cases Eqs. (A I) to (A4) reduce to consis
tency conditions for elm + I) and () (m + I), which can be used to 
produce elm + I) and () [m+ I). 

APPENDIX B: CLOSENESS OF 7/Jp 

We prove here that it is possible to choose the decompo
sition (4.8) of the n-post-Galilean metric such that 7/JII-'.v) = 0 
holds. 

Equations (S. 7a) and (5.3) in the coordinate system used 
are 

7/J'I-'=7/J1-'- 0BI-' 

and 

vl-'BI-' + !(rl-'V - 0vl-'v")lJI-'Bv = O. 

Since 7/J(O)p is a closed one-form, we demand 

.1.' = .1.(0) _ 0K 
'f/ I-' 'f/ I-' .1-" 

where K is a Rlnl-valued function on M. Also setting 

(BI) 

(B2) 

(B3) 

(0) -
7/J1-' = 7/J I-' + 07/J1-" (B4) 

we find from (B 1) 

0BI-' =0(¢-1-' +K,I-')' (BS) 

Multiplying (B2) by 0 and substituting from (B5) we obtain 

0[vl-'(K,1-' + ¢-I-') + !(rl-'V - 0vl-'vl-') 

X(K,p + ¢-v)(K.v + ¢-v)] = O. 

This is a partial differential equation of the form of the Ham
ilton-Jacobi equation, which can be locally solved to give 
0K. From (BS) we obtain BI-'up to its n-part, which is free. 
With this B we have 7/J' [I-',V I = O. 
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APPENDIX C: ELIMINATION OF XI'V 

Equations (5.8) in the coordinate system we use are 

and 

ifBI' + ~t'vBI'Bv = 0, 

where we assumed that 

0BI' =0 

(CI) 

(C2) 

(C3) 

(C4) 

holds also. For the v-special "Galilean" connection (7.9) re
lated to (v'I"Yl'v) we find 

v' 

r PI'V = r PI'V + ~rfXTKofp.¢lv" 
where 

(C5) 

Kl'v: = - B[I',v]' (C6) 

Since Xl'v is closed and 0 XI'V = 0 [cf. (7.16)] we can choose 
B I' such that 

(C7) 
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Now substituting (C5) in (7.15) we find with (C4) 
~ v' 

r p - r P + 0v,py V 'tT I'V - I'V tTl' vv. 
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In the presence of a nonzero cosmological constant A, we classify the anisotropic cosmological 
models of the Kantowski-Sachs type by means of the quantities ~, qo, 1:0 corresponding, 
respectively, to the relative root-mean-square deviation from isotropy, the deceleration 
parameter, and the density parameter ofthe perfect fluid at a given time t = to' We obtain for 
A > 0 a set of big-bang models of zero measure as well as a set of cosmological models of nonzero 
measure evolving toward the de Sitter solution. 

I. INTRODUCTION 

In a recent article, 1 we have analyzed the anisotropic 
cosmological models of the Kantowski-Sachs (KS) type2 in 
the presence of a nonzero cosmological constant A and con
taining a perfect fluid. These models are an exceptional case 
in the class of spatially homogeneous cosmologies, in that 
they contain an isometry group G3 whose orbits are two di
mensional and of constant positive curvature, contrary to 
the Bianchi classification, whose isometry groups G3 have a 
simply transitive action on the three-dimensional spacelike 
hypersurfaces. 

The evolution of the KS models was analyzed by means 
of a three-dimensional autonomous system. The method 
transforms the Einstein field equations together with the 
conservation equation into an autonomous system of differ
ential equations and it is well known in the two-dimensional 
case, both in theory3 and in its applications to cosmology.4,6 
It is not so familiar, however, in the three-dimensional case. 
The study is mainly qualitative, except around the singular
ity points, where we obtain a quantitative asymptotic behav
ior for quantities like the average distance I (t ), where t is the 
cosmic time, or the density f.L( t ) of the perfect fluid. The main 
results are, besides two new singularity points, two sets of 
solutions (one of measure zero, one of positive measure), 
which become isotropic in an infinite cosmic time. 

In this paper we reexpress those results in the formalism 
of the Stabell-Refsdal7 classification generalized8 to three 
dimensions. We obtain that the two sets ofKS solutions tend 
asymptotically to the de Sitter model (dS) when A > O. This is 
an interesting complementary result to the one of Wald9 

(even if it was derived earlier10
), but obtained by a different 

method. Let us indicate that our matter stress-energy tensor 
satisfies Wald's assumptions of dominant and strong energy 
conditions. The classification is based on physical quantities 
close to observation, like the deceleration parameter q and 
the density parameter 1:. The third parameter, c, describes 
the relative root-mean-square deviation from isotropy. 

II. THE (tfo. qo. 1:0) CLASSIFICATION 
We take the Kantowski-Sachs metric2 in the form 

d~ = dt 2 _ X2(t)dr - y2(t )(dO 2 + sin20 dq; 2) (2.1) 

in coordinates (t,r,O,¢ ), where r is a radial coordinate and 0, ¢ 

.J Present address. 

the usual spherical coordinates. HereX(t) and Y(t) are two 
unknown functions of t. The Einstein field equations 1 be
come functions of X, Yand their first and second derivatives 
with respect to t, which are related to the density of matter f.L 
and the pressurep. 

Using the geometric quantities 11 0 = XX -1 + 2 IT -1, 

the volume expansion, and u = 3- 1/2(XX- 1 
- Y'Y- 1

), the 
shear, we can express the field equations as follows: 

o +!O 2 + 2~ + !tu + 3p) - A = 0, (2.2) 

u + uO - 1/.j3y2 = 0, 

0 213 - ~ + 1/y2 
- A = f.L. 

(2.3) 

(2.4) 

Equation (2.2) is the well-known Raychaudhuri equa
tion for the case of a perfect fluid and a nonzero cosmological 
constant. Together with Eq. (2.4), it transforms to 

o +!O 2 + 2~ + ((3r - 2)/2)f.L - A = 0 (2.5) 

and 

(2.6) 

where we use the barotropic equation of state p = (r - 1)f.L 
and the Ricci scalar 3 R = 2 Y -2. The values of the constant r 
lie in the range 1<r<2. 

In terms of the average distance I = I (t) ( = XY 2 in the 
case of the KS models), the Hubble parameter H may be 
generalized to anisotropic cosmological models: 

H= 013 = ill. 

FIG. 1. The planes A = 0 and 3 R 10 = O. and theirintersection for r = 1 in 
the (~.qo.:Io) coordinates; dS and EdS denote. respectively. the de Sitter and 

Einstein-<le Sitter models. 
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TABLE I. We have indicated the dift'erent singularity points at finite distance as well as the asymptotic behavior of the average length scale I, the fluid density 
p., and the fluid expansion 9. These variables are expressed as functions of the cosmic time t. 

p=(r-llu 
A (x,P',z) 

1<r<2 (0,2,0) 

A>O (0,-2,0) 
A<O (1,0,0) 

r=2 (x-I-P"/4, 
A>O - 2<P' <2, 
A<O z=O) 

l<r<2 (O,O,3/A) 
A>O (0, - 2,9/A) 

The deceleration parameter q becomes 

q= -11/j2= -(8+!{P)/3H 2. 

We define the density parameter 1: by 

1: = p,/6H 2
• 

P. 9 

( ±t)1/3 (±t) Y t I 

(± t)1/3 ( ±t)-Y t-I 

(+ t)2I3Y (± t)-2 t -I 

(± t)1/3 (± t)-2 t-I 

e ± (.Ii /3}lllt e±(3A)lllyl =F,fjA 
e±(A/3)"2t e±(A )lIlrr =F$ 

and 

31:0 + ~Co - qo-l = 0, for 3R 10 = O. 

The shear u will be replaced by the relative root-mean
square deviation from isotropy,S defined as 

Analyzing the evolution of the KS models by means of a 
three-dimensional autonomous system, we obtained 1 the fol
lowing singularity points at finite distance in the coordinates 
(x, {J' ,z), where x is the dynamical importance of the fluid, 
i.e., x = 3p,/{} 2, {J' the dynamical importance of the shear, 

3 

~=! L ~ 
v=1 

and related to uby ~ = ~a2/H2. 
In terms of these parameters, Eqs. (2.5) and (2.6) be

come 

and 

A = 3H2[(3r - 2)1: + ~ - q] 

=3HH(3r-2)1:0+~ -qo] 

3R 10 = 6H~ (3r1:o + ~Co - qo - I], 

(2.7) 

(2.8) 

where the index 0 indicates the value of the parameter at a 
time t = to, which can be our present time. 

Equations (2.7) and (2.8) generalize the (1:o,qo) equations 
of Stabell-Refsdal to the case of anisotropic but spatially 
homogeneous cosmological models. 

When we put A = 0 in (2.7) and 3R 10 ~ 0 in (2.8) we 
obtain in the two cases a plane instead of a straight line. 
When r = 1 the equations of the two planes (see Fig. 1) read 

1:0 + Co - qo = 0, for A = 0 

i.e., {J' = - 2,j3u/{}, and z is defined as z = 3x/p,. For 
1 < r<2, A > 0, we have the set {( 1 ,0,0), (0,2,0), (0, - 2,0), 
(0,0,3/A), (0, - 2,9/A )); for l<r<2, A<O, we have only 
{ (1,0,0), (0,2,0), (0, - 2,0)); for r = 2 we have, both for A > 0 
and A <0, a continuous line of singularity points (z = 0, 
4 - 4x - {J,2 = 0) as well as the points { (0,0,3/ A ),(0, - 2,9/ 
A)) when A >0. 

Using the parameters Co, qo, 1:0 and the quantitative 
asymptotic behavior around the singularity points (see Table 
I), we get the following points in the (Co, qo,1:o) classification 
(see Table II): {(2,2,0),(0,(3r - 2)12,!), (0, - 1,0), (2, - 1,0)) 
when 1 <r < 2 and {(0,2,!), (0, - 1,0), (2, - 1,0)) when r = 2. 

The global picture of the integral curves of the three
dimensional system 1 contains a double infinity of cosmologi
cal models for A <0 starting at (Co = 2,qo = 2, 1:0 = 0) and 
coming back to that point. There is a simple infinity of mod
els starting at the point (Co = 0, qo = (3r - 2)/2, 1:0 = !), 
which corresponds to the Einstein-de Sitter (EdS) model, 
and tending to (Co = 2,qo = 2,1:0 = 0) in a finite cosmologi
cal time. When A > 0 there is a simple infinity of models 

TABLE II. The singularity points, presented in the (x, p', z) coordinates of the three-dimensional autonomous system and in the (~,qo,:Io) coordinates of the 
generalized Stabell-Refsdal classification. 

l<r<2 

r=2 
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(x,P',z) 

(0,2,0) 

(0,-2,0) 

(1,0,0) 

(O,O,3/A) 
(0, - 2,9/A) 

(1 - P'2/4, - 2 <P' < 2,0) 
(O,O,3/A) 

(0, - 2,9/A) 

(2,2,0) 

(0,(3r - 2)12,!) 
(0, -1,0) 
(2, -1,0) 

(O,2,!) 
(0, -1,0) 
(2, -1,0) 
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starting at EdS and tending to (Co = O,qo = - l,l:o = 0), 
which represents the de Sitter (dS) model, in an infinite cos
mological time. These are nonempty big-bang models. No
tice that these models become anisotropic during the evolu
tion and isotropize finally in an infinite cosmic time. Finally, 
there is a double infinity of KS models starting at 
(Co = 2,qo = 2,l:o = 0) and tending to the point dS. These 
models have an important anisotropy at the beginning of 
their evolution where the matter is negligible; in the end both 
the anisotropy and the density parameter are zero although 
matter is not negligible between these two points. 

For r = 2 and A ..;0, all the KS models start at EdS and 
come back to it; when A > 0 there are, in addition, cosmolo
gical KS models evolving from EdS to dS. 

For empty KS models (l:o = 0) we may restrict the dis
cussion to the plane (~,qo). There are KS models starting at 
(~ = 2,qo = 2,l:o = 0) and coming back to it for A < 0 and 
A > O. Some start at (2,2,0) and tend to dS. There is only one 
model starting at (~ = 2, qo = - 1, l:o = 0) and tending to 
dS, and only one from (~ = 2,qo = 2,l:o = 0) to 
(~ = 2,qo = - l,l:o = 0). 

III. CONCLUSION 

We have classified Kantowski-Sachs models with a 
cosmological constant and containing a perfect fluid, in 
terms of the parameters ~, qo, l:o. From the interpretation 
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of the cosmological models found by the method of three
dimensional autonomous system in these parameters, we 
have obtained, in particular, a class of big-bang models for 
the KS line element, which evolve toward the de Sitter model 
in an infinite cosmological time. Clearly anisotropic cosmo
logical models, i.e., the Bianchi models, can be analyzed by 
the same method. This will be reported on elsewhere. 12 
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To avoid the restrictions that the Born rigidity supposes for the motions in relativity, the 
definition of a weakly rigid almost-thermodynamic material scheme is proposed. From it the 
relativistic incompressibility condition given by Ferrando and Olivert is obtained. Moreover, it is 
proved that, for the weakly rigid irrotational and geodesic almost-thermodynamic material 
schemes, the scalar curvature of the Landau manifolds is constant along the streamlines. 

I. INTRODUCTION 

In a previous paper'! we proposed a definition of rigid
ity for the almost-thermodynamic material schemes that ful
filled the incompressibility condition given by Ferrando and 
Olivert.2 There, we joined to the Born condition the vanish
ing of the spatial change of the relativistic stress tensor of the 
scheme and we obtained, for the hypoelastic Carter-Quin
tana almost-thermodynamic material schemes and for the 
hypoelastic Maugin ones, the inexistence of principal shock 
waves associated with Hadamard's discontinuities of the 
four-velocity of the scheme. 

Since the Born-rigidity condition supposes a strong re
striction to the motions described in general relativity, as 
Pirani shows in Ref. 3, we propose in this work a less restrict
ed definition of rigid almost-thermodynamic material 
schemes. This definition also fulfills the relativistic incom
pressibility condition. Moreover, some specifications on the 
congruence of scheme world lines will lead to the primitive 
definition. 

In Sec. II we propose (Definition 2.1) the definition of a 
weakly rigid almost-thermodynamic material scheme. In 
Proposition 2.2 we prove that such schemes verify the in
compressibility condition of Ferrando and Olivert. We close 
this section with an equivalence theorem (Theorem 2.3) that 
expresses, in the absence of the expansion velocity scalar, the 
weak rigidity condition by means of the vanishing of the 
Ricci tensor Fermi derivative with respect to the four-veloc
ity of the scheme. 

This equivalence is used in Sec. III in a very particular 
kind of weakly rigid congruences. We work there in geodesic 
irrotational almost-thermodynamic material schemes (De
finition 3.1). The use of Gaussian normal coordinates asso
ciated to the Landau manifolds and to the streamlines of one 
of these schemes allows us to prove (Theorem 3.2) that in 
such a scheme, weak rigidity leads to the constant character 
of the Landau manifolds scalar curvature along the stream
lines. We relate this fact to the Gauss egregium theorem. 

Let us explain now some questions of general type. 
We will consider the space-time as a set of three compo

nents (M,g, V), where M stands for a connected four-dimen
sional pseudo-Riemannian manifold of Hausdorff type,4 g 
will be a hyperbolic metric tensor field [of signature (3,1)], 
and V is the unique linear connection that M possesses, com
patible with g and without torsion. 

Everywhere throughout this paper we will work in an 

almost-thermodynamic metal scheme D in the space-time 
manifold M; D is a domain of the space-time in which a 
second-order energy momentum tensor Tis defined which is 
normal with four-velocity u and associated eigenvalue - p 
(p > 0). We will also admit the Taub decomposition,5 

p = r(1 + E), (1.1) 

p being the proper mass-energy density of the scheme, r its 
matter density, and € its specific internal energy. 

The spatial projector tensor is given by 
y=g+ u®u; , 

thus, the energy-momentum tensor has the form 
T=p(u ® u) + t, 

(1.2) 

(1.3) 
where t is the relativistic stress tensor, spatial projection of T 
by means of the projector y. 

In every case, Latin labels symbolize values of indices 
from 1 to 4 and Greek labels are used for indices from 1 to 3. 

We will introduce now the strain rate tensor d and the 
rotation tensor n of the scheme. They are defined, respec
tively, by means of the tensor symmetrization and skew sym
metrization of 

eij = y"iY!jVkU!. 

(Note that the strain rate tensor is given by 

d= !LuY, 

(1.4) 

(1.5) 

where Lu symbolizes the Lie derivative with respect to the 
four-velocity u ofthe tensor that follows it.) 

The tangent space of peM will be represented by TpM. 
By the spatial tensor field in D we will mean the one which, in 
every point, is orthogonal to the four-velocity u of D. To 
conclude this section let us say that measure units have been 
chosen in such way that the light speed in the vacuum has the 
constant value 1. 

II. WEAK RIGIDITY 

As we indicate above, we have been interested in the 
study of the rigid motions in almost-thermodynamic materi
al schemes with the purpose of obtaining a definition from 
which we could derive the relativistic incompressibility con
dition2 and the absence of perturbations. The Born rigidity, 
given in general relativity by the vanishing of the strain rate 
tensor d of the scheme, was enough for these purposes in 
elastic Synge almost-thermodynamic material schemes! but 
not for the elastic Carter-Quintana ones6 nor for the elastic 
Maugin ones.7 To pass over these insufficiencies, in Ref. 1 we 
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added to the Born condition the vanishing of the spatial 
change of the relativistic stress tensor. 

However, we know the critiques that in the relativistic 
literatures are outlined about the restrictions that suppose, 
for the motions of a scheme, the Born condition. Thus, in 
Ref. 3, is obtained, from this condition and after some dyna
mical considerations, the constant character of the angular 
velocity along the streamlines; this scalar being defined by 

w2 =! nijn ij. (2.1) 

Let us remember that, according to Ref. 1, a rigid al
most-thermodynamic material scheme D in the space-time 
manifold M verifies the following conditions: 

(i) d=O, 

(ii) Fut = 0. 

(2.2) 

(2.3) 

In the expression ofEq. (2.3) the formalism of the Fermi 
derivative with respect to the four-velocity of the scheme,4,9 
besides the spatial character of the relativistic stress tensor t, 
have been used. 

We now suggest the following definition as a less strong 
rigidity condition than the one proposed in Ref. 1. 

Definition 2.1: An almost-thermodynamic material 
scheme D in the space-time manifold M will be called weakly 
rigid if the next conditions fulfill in it 

(i) Fu t = 0, (2.4) 

(ii) Vur = 0, 

(iii) VuE = 0. 

(2.5) 

(2.6) 

As a first consequence of Definition 3.1 we derive a 
result already obtained in Ref. 1. 

Proposition 2.2: Every weakly rigid almost-thermody
namic material scheme is incompressible. 

Proof: Let us consider the dynamic volume tensor2 de
fined by 

K=!~ ~~ 

!being the tensor index of the scheme, given by 

!= (1 + E)r + t Ir. (2.8) 

Remember that the incompressibility condition of Fer
rando and Olivert, written in the Fermi derivative formal
ism, gives 

(2.9) 

Thus, our purpose is to verify Eq. (2.9). Taking into 
account that 

FuK = Fu (fIr) = Fu (l/r)! + (l/rlFu ! 
= Fu(l/r)! + l/r[(FuE)r + (1 + ElFur 

+ Fu(l/r)t + (l/rlFut], 

which follows from the Fermi derivative properties, the re
sult claimed is obtained after simple application of Defini
tion 3.1. 

This section concludes with a result which will be used 
below and that may be considered as an equivalent definition 
of weakly rigid; it follows from the consideration in our ma
terial scheme, weakly rigid, of the Einstein equations. 

Theorem 2.3: A necessary and sufficient condition for 
an almost-thermodynamic material scheme D to be weakly 
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rigid is the fulfillment of the following relations: 

(i) Fu Ric = 0, (2.10) 

(ii) V·u = 0. (2.11) 

Proof: Here, Ric symbolizes the Ricci tensor of the 
space-time defined in the scheme D. Equation (2.11) ex
presses the vanishing of the expansion velocity scalar of the 
scheme,3,6 given by 

(2.12) 

We first consider the weak rigidity hypothesis. After 
using the Taub decomposition it is possible to assert, from 
Eqs. (2,5) and (2.6), 

(2.13) 

and, by virtue of the form of the scheme energy-momentum 
tensor [Eq. (1.3)], we obtain 

FuT=O (2.14) 

from the Fermi derivative properties and weak rigidity hy
pothesis. 

Now we use Einstein's equations 

Ric - ~ Rg = ET, (2.15) 

where E is the Einstein constant and R stands for the scalar 
Riemannian curvature 

R = (Ric)/. (2.16) 

Taking into account the Fermi derivative properties 
and Eq. (2.15), we derive 

FuR = 0, (2.17) 

after applying Fermi derivatives with respect to u in Eq. 
(2.16) and contracting with the metric tensor field g. 

From Eqs. (2.17) and (2.15), we deduce 

Fu Ric = 0. (2.18) 

Besides, from the continuity equation 

V'(ru) = 0, (2.19) 

we obtain the vanishing of the expansion after considering 
Eq. (2.5). 

To prove the converse we start from Eqs. (2.10) and 
(2.11); the continuity equation (2.19) leads us to Eq. (2.5). 

Moreover, by contracting Eq. (2.10) with g, we derive 
Eq. (2,17); consequently, from Einstein's equations we ob
tain Eq. (2.14). 

Since the scheme is normal with four-velocity u and 
associated eigenvalue - p, 

T(u) = -pu, (2.20) 

thus, 

FuT(u) + T(Fuu) = - (Fup)u -p(Fuu) (2.21) 

and so 

Vup=Fup=O, (2.22) 

which implies, by virtue of Taub's decomposition, the fulfill
ment of Eq. (2.6). 

Ifwe now develop Eq. (2.14), making use of the decom
position (1.3), we arrive, after consideration of the Fermi 
derivative properties, at Eq. (3.4) which completes the con-
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cept of a weakly rigid almost-thermodynamic material 
scheme. 

After this result, the weak rigidity can be expressed by 
means of purely geometric quantities: the Ricci tensor asso
ciated to a congruence of world lines in the absence of expan
sion. In the next section, this version will be used. 

III. GEODESIC IRROTATIONAL WEAKLY RIGID 
ALMOST· THERMODYNAMIC MATERIAL SCHEMES 

In the present section we will consider a very special 
kind of almost-thermodynamic material schemes that, un
der the weak rigidity hypothesis proposed in Sec. II, will 
verify a geometrical condition on the scalar curvature of the 
hypersurfaces orthogonal to their four-velocity. At the end 
of this section we intend to give a signification to this condi
tion. 

Everywhere throughout this section we will work in 
almost-thermodynamic material schemes which fulfill the 
following definition. 

Definition 3.1: An almost-thermodynamic material 
scheme D will be called irrotational and geodesic if the fol
lowing conditions are verified. 

(i) The scheme D has irrotational motion,1O i.e., for ev
eryxED, 

ilx =0. (3.1) 

(ii) The congruence of streamlines of the scheme is geo
desic, so 

VuU = 0, in D. (3.2) 

Let us remember that under the irrotationality hypoth
esis on an almost-thermodynamic material scheme D, every 
Landau manifold Lp associated to an arbitrary point P ED 
(see Ref. 11) is orthogonal to the four-velocity U of the 
scheme at every point. 

Previous to proving the result we claimed, let us consid
er a point qED and a system of Gaussian normal coordi
nates 10.12 in a neighborhood of q, associated to the Landau 
manifolds of the scheme and to the geodesic congruence of 
the steamlines of it. 

In this particular coordinate system, we get 

(3.3) 

Moreover, by virtue of the orthogonality of the Landau 
manifolds to the four-velocity u, 

g4a = 0, ~4 = - 1. (3.4) 

So, noting by 
gp = z;g (3.5) 

the induced metric of L p ' P ED, by the natural immersion II 

ip:Lp-+D, 

we can also assure l2 the relations 

gap/Lp = gpafJ' (3.6) 

Besides, the Christoffel symbols of the second kind as
sociated to the Riemann connection V calculated in the cho
sen coordinate system, have the values 

(3.7) 
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r a _ ,.arr 4 
4P -IS rP' (3.8) 

Here, 

ra~/Lp = - HpafJ (3.9) 

are the components of the extrinsic curvature or the hyper
surface Lp (see Refs. 12 and 13). Also take into account that, 
in the chosen coordinate system, 

HpafJ = - dpafJ = dap/ Lp' (3.10) 

dap being the spatial components (components nonzero in 
our coordinate system) of the strain rate tensor of D, accord
ing to its definition given in the Introduction. 12 

Now we state the following theorem. 
Theorem 3.2: In every geodesic irrotational weakly rig

id almost-thermodynamic material scheme D, the scalar 
Riemannian curvature Rp of the Lp hypersurfaces (Landau 
manifolds), P ED, is constant along the steamlines of D. 

Proof: We work in a Gaussian normal coordinate sys
tem as it is shown above and, to simplify the notation, we will 
omit the p subindices everywhere; it must be clear that, in 
each point of the considered neighborhood, the barred ex
pressions will be the ones induced from those corresponding 
to D on the (unique) Landau manifold that contains it. Ac
cording to Definition 2.1, and by virtue of the equivalence 
theorem (Theorem 2.3), every weakly rigid almost-thermo
dynamic material scheme verifies the relations 

Fu Ric =0, 

V·u=O. 

Note that, in the general case, 

FuRij =VuRij -Rkj(UiVuUk-U~uUi) 

- Rik(UjVuUk - U~uUj)' 

(3.11) 

(3.12) 

taking into account the congruence geodesic character 

FuRij = VuRij' (3.13) 

In particular, after using Eq. (3.7), we get 

Fu R44 = VuR44 = a4R44 - 2r4:Ra4 = a4R44. (3.14) 

Besides, we can use the following coordinate expres-
sionlO•12: 

(3.15) 

From Eqs. (3.9)-(3.11), (3.14), and (3.15), we obtain 

a4[a4(daa)+daf3daf3] =0. (3.16) 

As from Eq. (3.12) we deduce 

Eq. (3.16) gives 

a4(daf3d ap ) = O. 

Take into account the Gauss relation l2
,13 

2G4
4 = - R - daf3daf3 + (da a)2, 

where Gij is the Einstein tensor 

(3.17) 

(3.18) 

(3.19) 

Gij = Rij - !Rgij = ETij' (3.20) 

By virtue of Eq. (2.14) and working in our Gaussian 
normal coordinate system, we obtain, as in the Ricci case, 

FuG44 = a4G4
4 = 0, (3.21) 
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which applied to Eq. (3.19) gives us the result expected if 
previous use of Eqs. (3.17) and (3.18) has been made. 

The theorem just proved suggests to us the result of the 
egregium theorem of Gauss in the sense that the Gauss cur
vature of a surface is invariant with respect to the flexions 14; 

these are understood as some kind of deformations in the 
surface which maintain the distance of points in it. Thus, the 
Gauss theorem considers, in a certain way, a classical rigid
ity for surfaces. 

In the theorem just presented, the scalar curvature of 
theLp seems to replace the Gauss curvature and some weak
ly rigid motions (not all of them) would take the role of the 
flexions. 

It should be noted that the absence of expansions or 
contractions is already implicit in Eq. (3.12) but we need to 
add irrotationality conditions and assume the congruence of 
steamlines to be geodesic, so restricting the weakly rigid mo
tions considered, in order to prove Theorem 3.2 after also 
taking into account Eq. (3.11). 

These restrictions make of Theorem 3.2 a generaliza
tion of the well-known result for rigid congruences in the 
Minkowski space, i.e., for congruences of straight parallel 
world lines. Here, the Landau manifolds would be replaced 
by hyperplanes orthogonal to the straight lines of the con
guence and, obviously, have zero scalar curvature in every 
point; thus, Eq. (3.11) is evidently verified. 

IV. DISCUSSION 

We have proposed in this paper a definition of weakly 
rigid almost-thermodynamic material schemes (Sec. II) 
which leads us in a straightforward manner to the relativistic 
incompressibility condition of Ferrando and Olivert. This 
definition does not present the restrictions on the strain rate 
tensor that the one given in Ref. 1 does. Besides, for the 
geodesic irrotational weakly rigid almost-thermodynamic 
material schemes (Sec. III), the scalar Riemannian curvature 
of the Landau manifolds is constant along the steamlines. 
With respect to this point, note that the equivalence theorem 
2.3 and the vanishing of the Fermi derivative of the metric 
tensor field g allows us to obtain this result for the scalar 
curvature R of the scheme without additional hypothesis. 
So, the irrotationality of D and the geodesic character of the 
congruence modify the outcome in the explained way. 

We now indicate some particular cases in which the 
imposition of additional restrictions to a weakly rigid al
most-thermodynamic material scheme D leads us to a rigid 
scheme in the way proposed in Ref. 1. 

Assume first that the four-velocity u of D moves paral-
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leI to the Landau manifolds, i.e., for every v E TpLp, P ED, 

(4.1) 

and suppose that the motion is irrotational. The assertion 
made above follows from a result of Ref. 1. A trivial example 
of such a situation would be a congruence of parallel straight 
lines in the Minkowski space as the one quoted in Sec. III. 

The physical meaning ofEq. (4.1) could be the vanish
ing of the relative velocities of the points of L with respect to 
p if we use a similar definition to the one established in Ref. 
15. 

A case in which a weaky rigid almost-thermodynamic 
material scheme D becomes rigid in the sense given in Ref. 1 
would be found if D were irrotational and its four-velocity a 
Killing vector field. 1 

A deeper analysis of Definition 2.1 of weak rigidity may 
be the subject oflater work. In it, the method of Hadamard's 
discontinuities for the study of the velocities of the shock 
waves associated to the infinitesimal discontinuities of the 
four-velocity u would be used. Furthermore, the application 
of techniques of parametrized post-Newtonian approxima
tion in general relativity is being considered. 
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A useful relation between the metric component goo and the scalar field (J is obtained for a static 
gravitational field in Nordtvedt's general scalar tensor theory where the parameter m is a variable. 
A simple method for generating the solutions of Nordtvedt's field equations from the 
corresponding Einstein's vacuum solutions is obtained. Static axially symmetric field equations 
are solved in prolate and oblate spheroidal coordinates. Simple cylindrically symmetric solutions 
are also given. 

I. INTRODUCTION 

Nordtvedt l proposed a modification of the Brans
Dicke2 theory to the effect that in the former the parameter 
m is no longer a constant quantity. It is rather a variable 
being a function of the scalar field. A fairly large number of 
static and nonstatic solutions are obtained in the modified 
theory (Banerjee and Duttachoudhury,3 Banerjee and San
tos,4.5 Barkar,6 Rao et al.,7 and Van den Bergh8•9). Banerjee 
et al. 10 have recently discussed a static spherically symmetric 
field in this general scalar tensor theory for charged and 
uncharged sources, where all possible exact solutions for 
coupled Einstein-Maxwell-Nordtvedt fields are obtained 
and their properties analyzed. The present paper refers to a 
static axially symmetric metric in Nordtvedt's theory. Field 
equations are written in Dicke's conformally transformed 
units. II Though less appealing compared to the original 
Brans-Dicke2 version, the revised units are advantageous in 
many respects. The field equations now look simpler and for 
axial symmetry one can use Weyl's canonical coordinates in 
view of the fact that R ~ + R g = 0 in new units, while in the 
original Brans-Dicke version it is not possible. 

In Sec. II a relation between goo and the scalar field is 
deduced under certain physical conditions. This relation is 
useful for providing a technique to generate exact solutions 
in Nordtvedt's scalar tensor theory provided the corre
sponding Einstein's vacuum solutions are known. The pro
cedure is described in Sec. III. In Sec. IV explicit monopole 
and dipole solutions are given using prolate and oblate 
spheroidal coordinates as was done by Misra, 12 Zipoy, 13 and 
others for Einstein's field. The only assumption made in or
der to obtain such solutions is that the scalar field (J is a 
function of only one of several variables such as u in spheroi
dal coordinates. It implies that (J remains constant over any 
ellipsoidal surface. These particular solutions can be verified 
to be asymptotically flat and their behavior is like that of 
Schwarzchild's solution of a large distance. Last, in Sec. V 
simple cylindrically symmetric solutions are given as special 
cases. 

The solutions are dependent on the functional form of 
m((J ) only when they are expressed in the original atomic 
units. 

II. STATIC FIELD EQUATIONS AND grw-t/J RELATION IN 
NORDTVEDT'S THEORY 

The field equations in the metric formulation of Nordt
vedt's general scalar tensor theory can be written as 

_ 817" T m (.I. .I. 1 - .1..1. a) - -7 I'V - -;J2 'l'1''I'v - ~I'V'I'a'l' 

- (1I(J )((JI';V - gl'v4), (2.1) 

4 -(J I' _ (Ja(J a dm 
= :I' - - (2liJ + 3) d(J , (2.2) 

where TI'v's are the components of the energy-momentum 
tensor. The subscript in (J I' ' etc. corresponds to the ordinary 
derivative and a semicolon corresponds to the covariant der
ivative. The bars indicate that the variables are in the units 
where G varies and particle masses remain fixed (Brans and 
Dicke2). The line element for a static space-time is given by 

(2.3) 

where i, j, run from 1 to 3 and goo' g;k are functions of the 
space coordinates. 

From the field equations one can obtain a relation like 
-0 0 0 ,n ... (JR 0 = - (m/(J)(J (Jo - (J ;0 - ~. (2.4) 

Again for a static metric (2.3) we have 

Jig =(1/2~ -g)ni~ -ggooJ).;' (2.5) 

Here the time derivative of (J, that is, t/Jo, is zero and 
t/J ~o = noo.;(J ;. Using these and Eqs. (2.2) and (2.5) in (2.4), 
one obtains 

(2.6) 

Now, 

4 ==(J ~ = (1/ ~ - g )(~ - gli(Jj ).; 

= (1/~ - g) [(~ - glj).;(Ji + ~ - ggii(JIj]. (2.7a) 

So, from (2.2) 

_if ~ _ -if'---:: !(d /d(J)(2liJ + 3) 
(gl" - g).;(Ji -j-" -g(J1j - (2liJ + 3) 

X ~ - ggJ(J;(Jj" (2.7b) 

With (2.7) and thefactthat [d (2liJ + 3)1d(J ](J; can be written 
as (2liJ + 3).;, Eq. (2.6) results in 

li(X - Y).;(Ji = 0, (2.8) 

where 
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x = In[nooJ~ )/~j + 1], 
Y = In [(2m + 3)1/2]. 

(2.9a) 

(2.9b) 

For a nonvanishing scalar field ~j =1=0, Eq. (2.8) implies that 
either (X - Y),; is zero or the two vectors (X - Y),; and~j are 
mutually orthogonal. However, for a bounded distribution 
of matter as a source, the gradients of both (X - Y) and ~ 
would tend to be orthogonal to r = const hypersurface in the 
asymptotic region and thus would be parallel to each other in 
that region (Raychaudhuri and BandyopadhyayI4). So, in 
order that relation (2.8) is valid everywhere in space we must 
have (X - Y),; = 0. Or, in other words, X = Y + InA, where 
A is a constant of integration. With X and Y given by (2.9), we 
have 

nOOJ~ +~j =A(2m+3)1/2~j' (2.10) 

The same relation can also be derived for any arbitrary 
source when goo and ~ are functionally related (see Banerjee 
and Duttachoudhury3) and t j ~j =1= 0. 

In Dicke's conformally transformed units, where 
glj = ~glj (variables without a bar indicate that they are in 
the transformed version), particle masses vary and G re
mains constant (Dickel I ). In this version, the field equations 
assume the much simpler form (Raychaudhuri 15) 

R/j = [(2m + 3)/2] "'; "'j , (2.11) 

where", is equal to In ~ and plays the role of the scalar field in 
the revised version. On the other hand, expressing the scalar 
field and the metric in the transformed units, one can write 
Eq. (2.10) as 

e"'gOO(e - "'gOOJ - e - "'goo"'j) + "'j = A (2m + W12",j' 
(2.12) 

Now, sinceg~ = 1, Eq. (2.12) immediately leads us to 

(goo)-2goo,;gOOJ = A 2(2m + 3)"';"'j' (2.13) 

Combining (2.11) and (2.13), one arrives at the relation 

R/j = - (l/2A 2)(l/goo)2goo,;gOOJ' (2.14) 

III. GENERATION OF SOLUTIONS IN NORDTVEDT'S 
THEORY FROM EINSTEIN'S VACUUM SOLUTIONS 

A very simple technique for generating solutions in the 
presence of a scalar field in Nordtvedt's theory from the 
corresponding Einstein's vacuum solutions in axial symme
try is described in what follows. 

The general axially symmetric static metric is given by 
(SyngeI6) 

(3.1) 

where the metric components are functions of P and z. In 
Dicke's revised units (gpv = ~gpv and '" = In ~), the field 
equations are given by Eq. (2.11) and the wave equation be
comes 

(3.2) 

In the case of axial symmetry, '" is a function of P and z, 
and using (2.11) one can write 

R~ +Rg =0, 

allowing us to write the metric in Weyl's canonical form 
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d~ = eU dt 2 - e(2V-U)(dp2 + dzZ) _p2e-U d<l>2, 
(3.3) 

where A and v are functions of P and z. Ricci tensor compo
nents, calculated from the metric (3.3), are 

R33 = _p2e- 2v(A l1 +A22 +AI/p), (3.4) 

RII - R22 = 2(A t - A~) - 2vl /p, (3.5) 

(3.6) 

Subscripts 1 and 2 on A, v represent differentiation with re
specttop andz, respectively. In viewof(3.4) to (3.6), the field 
equations (2.14) in scalar tensor theory can now be written 
explicitly as 

Al1 + A22 + AI/p = 0, 

VI =p(At -Ai)(l + l/A2), 

V2 = 2pAIA2(1 + l/A 2). 

(3.7a) 

(3.Th) 

(3.7c) 

On the other hand, Einstein's field equations in the absence 
of the scalar field are R/j = 0, which explicitly yield 

Al1 +A22 +AI/p =0, 

VI =p(A t - i), 

V 2 = 2pA IA2• 

(3.8a) 

(3.8b) 

(3.8c) 

It is now possible to conclude that if AE and VE are solutions 
of the set of equations (3.8) for empty space, the correspond
ing scalar field solutions are given in view of (3.7a)-(3.7c) as 

AN = AE, and VN = vE(1 + l/A 2), 

where the SUbscripts Nand E correspond to Nordtvedt's and 
Einstein's solutions, respectively. 

Later, in Sec. IV, a method for generating such simple 
solutions in spheroidal coordinates is given. 

IV. STATIC SOLUTIONS IN PROLATE AND OBLATE 
SPHEROIDAL COORDINATES 

In this section, static solutions of the field equations will 
be obtained directly in prolate and oblate spheroidal coordi
nates. In Dicke's revised version, the field equations are giv
en by (2.11). For static axially symmetric case "'3 = "'0 = 0, 
and the metric can be written in the form (3.3). Suitable com
binations of the field equations would look like 

Al1 +A22 +AI/p = 0, (4.1a) 

VI =p(A t -A i) + !p(2m + 3)(t/It - ~), (4.1b) 

(4.1c) 

VII +V22 +At +Ai = - [(2m+3)/4Ht/It +~). 
(4.1d) 

The wave equation is 

"'11 + "'22 + ~I = - (2m + 3) ~; (t/It + ~). (4.2) 

Equation (4.1d) is a consequence of the other three field 
equations in empty space-time in the absence of the scalar 
field, but in the presence of the scalar field, it is an indepen
dent equation with the wave equation being a consequence of 
the field equations. 
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A. Solutions In prolate spheroidal coordinates 

If we transform the equations in prolate spheroidal co
ordinates [(x,y) or (u,O)] defined by 

p = a(x2 - 1)1/2(1 - y2)1/2 = a sinh u sin 0, (4.3a) 

z = axy = a cosh u cos 0, (4.3b) 

the field equations will take up the form 

! [(x2-1)A.x]+~[(1-y2)A.y]=0, (4.4a) 

av = (1 - y) [ x(x2 _ 1)A.; 
ax (X2_y) 

- x(1 - y2) A; - 2Y(X2 - l)A.xAy 

+ [(2w + 3)/4 ](X(X2 - l)tfx - x(l _ y2)~ 

-2y(x2-1)~x~yJ], (4.4b) 

av = (x
2 

- 1) [ (x2 _ 1U 2 _ (1 _ • .2u 2 
ay (x2 _ y2) Y Y' x Y y Y' y 

+ 2x(1 - y)A.xAy + [(2w + 3)/4]{Y(X2 - l)tfx - Y 

x(1 - y2)~ + 2x(1 - y2)~X~y J], (4.4c) 

(x2 - l)vxx + (1 - Y)Vyy + xVx - YVy 

+ (x2 -1)A.; + (1- y2)A.; 

= - [(2w+3)/41[(x2-1)tfx +(1_y2)~], (4.4d) 

and the wave equation becomes 

(x2 - 1)~xx + (1 - y2)~yy + 2x~x - 2y~y 

= -(2w~3) [(x2-1)tfx+(I-y2)~] ~;, (4.5) 

where sUbscripts x and y indicate differentiation with respect 
tox andy, respectively. 

For the sake of simplicity, we would assume that ~ de
pends on x alone. Physically it implies that the scalar field ~ 
is uniform on the ellipsoidal surfaces u = const. Now the 
integration ofEq. (4.5) directly gives (with ~y = 0) 

(2w + 3)1/2~x = CI/(X
2 - 1), (4.6) 

where CI is a constant of integration. 
Equation (4.4a) is the Laplace equation in prolate spher

oidal coordinates and has the solution 
00 

A = L a/Q/(x)p/(y), 
/=0 

where ai's are constants and Q/(x) and Pity) are Legendre 
functions of the second and first kind of different orders. If 
I = 0, one obtains the so-called monopole solution for A 

A = - (ml/2) In((x + 1)/(x - 1)), (4.7) 

m I being a constant of integration. 
Using (4.7) and (4.6), one can obtain by integration of 

the Eq. (4.4b), 

v = [(4mi + ci)l8] In((x2 - 1 )I(x2 - y2)) + 1(Y), (4.8) 

wherel(Y) is an arbitrary function ofy. Differentiating (4.8) 
with respect to y and comparing it with (4.4c), one finds that 
l(y) is a constant. This constant may be put equal to zero from 
the consideration of asymptotic flatness. Therefore, we ob
tain 
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(4.9) 
Then I = 1 gives the dipole solutions of the Laplace equation 
(4.4a), 

A = m2Y[l- (x/2)ln((x + l)1(x - 1))), (4.10) 

m2 being an arbitrary constant. With (4.6) and (4.10), the 
corresponding solution for v can be obtained from (4.4b) and 
(4.4c), 

where A is an arbitrary integration constant. 

B. Solutions for the scalar field ¢ 

Assuming the exact functional dependence of (c) on ¢ 
one can integrate Eq. (4.6) to get the solutions for ~ and 
hence ¢ (¢ = exp ~) in the prolate spheroidal coordinates as 
follows. 

(1) For Brans-Dicke2 theory, (c) = (c)o (const), 

¢=e"'=a l((x-l)1(x+ 1W,/~2<.>o+3. (4. 12a) 

(2) For Barkar6 theory, 2W + 3 = 1/(¢ - 1), 

¢ = e'" = 1 + tan2{ (c l /4)ln a2((x - l/x + 1)) J. (4. 12b) 

(3) For Schwinger theory, 2w + 3 = l/a¢, 

¢ = e'" = [(crJa/4)ln a3((x + l)1(x - 1))] -2. (4. 12c) 

(4) For curvature coupling, 2 (c) + 3 = 3/(1 - ¢), 

,/, __ e'" __ 4a4((x - 1 )/(x + 1 W,/v'J . 
'I' (4. 12d) 

[1 - a4((x - l)/(x + 1W,/v'JP 

Here aI' a2, a3, a4 are arbitrary constants. For Schwinger 
theory and curvature coupling, see Van den Bergh8 and re
ferences therein. 

c. Solutions In oblate spheroidal coordinates 

Solutions can be obtained in the oblate spheroidal co
ordinates also, where 

p = a(x2 + 1)1/2(1 - y2)1/2 = a cosh u cos (), (4.13) 

z = axy = a sinh u sin (), (4.14) 

x andy being sinh u and sin (), respectively. Here we would 
present the solutions directly without giving details of the 
procedure. The wave equation becomes, with the transfor
mation of coordinates, 

(x2 + l)~xx + (1 - y2)~yy + 2x~x - 2y~y 

1 [(x2 l)tfx (1 _ 2),f.] d(c) 
(2w + 3) + x + y y d~' (4.15) 

With the assumption that ~ depends on x alone, Eq. (4.15) 
readily integrates into 

(2w + 3)1/2~x = C2/(X2 + 1), (4.16) 

C2 being a constant of integration. 
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Proceeding in the same way as had been done in the case 
of prolate spheroidal coordinates, one obtains the corre
sponding solutions in the oblate spheroidal coordinates. 

For monopole solutions 

A = - nl tan-I(~). (4. 17a) 

v = [(4ni + c~)lS ]In((x2 + y2)1(X2 + 1)). (4. 17b) 

For dipole solutions 

A =n1Y[ l-xtan-I(~)], (4. 17c) 

V= -(nV2)(x2+ 1)(I-y2){tan-I(~)r +!n~y2 

+ !n~ In((x2 + 1)1(x2 + y2)) + n~x(1 _ y2)tan-I(~) 

+ lc~ In((x2 + y2)/(x2 + 1)) +B, (4. 17d) 

where n l, n2' B are arbitrary integration constants. 

D. Solutions for the scalar field tP 
Equation (4.6) will lead to the solutions for the scalar 

field tP in oblate spheroidal coordinates if the functional de
pendence of w on tP is given as follows. 

(1) For Brans-Dicke theory, 

tP = e'" = exp[c2 tan-Ix/~2wo + 3 + as]. (4.1Sa) 

(2) For Barkar theory, 

tP=e"'= [1 +tan2[1 + !(c2 tan- I x +a6)}]· (4.1Sb) 

(3) For Schwinger theory, 

tP = e'" = [(Ja/2)(c2 tan-I x + a7 )] -2. 

(4) For curvature coupling, 

tP = e'" = [ 4ag exp(c2 tan -I xl.,[3) ]. 
1 - a g exp(c2 tan -I xl.,[3) 

(4.1Sc) 

(4.1Sd) 

Here as, a6' a7, ag are constants of integration. 
Therefore, gl'v can be obtained from Eqs. (4.7), (4.9), 

(4.10), (4.11), (4.17), and (4.1S) in spheroidal coordinates. 
With the solutions for tP at hand, the corresponding Kl'v in 
the unrevised version can be obtained from the relation 
gl'v = tPKl'v' By suitable choice of the integration constant it 
is possible to show that A and v vanish as X-oo, which im
plies that the metric is asymptotically flat. Chatterjee l7 had 
previously considered dipole solutions for a special case of 
Nordtvedt's theory, that is for Barkar's choice of w(tP ). The 
solutions given by him for v and the scalar field", are, how
ever, incorrect. The modification in the relation between the 
parameter w and the scalar field, introduced due to the 
choice of Dicke's revised units, was apparently ignored. The 
solution for the scalar field was therefore wrong, leading to 
an incorrect set of metric components in the original atomic 
units of Brans and Dicke. 

The constants CI and C2 appearing in the solutions take 
care of the contributions from the scalar field. When these 
constants are put equal to zero one gets back corresponding 
Einstein's solutions for spheroidal symmetry (see Misral2 

and ZipoyI3). 
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In the following we give examples of obtaining very 
simple spheroidal solutions in Nordtvedt's theory by using 
the technique presented in the previous section for generat
ing them from corresponding Einstein's solutions. 

In prolate spheroidal coordinates, the solutions of(3.7a) 
and (3.7b) corresponding to the monopole solution of AE are 
given by (Zipoy13) 

k I (x + 1) k i ( x2 
- 1 ) 

AE = - -In --, VE = -In 2 2' 
2 x-I 2 x-y (4.19) 

kl being a constant of integration which determines AE • 

From (3.9b), the corresponding solution in Nordtvedt theory 
would be 

ki 2 (X2-1) 
AN = AE , V N = - (1 + A )In 2 2' 

2 x -y 
(4.20) 

which is consistent with the solution (4.9). 
In oblate spheroidal coordinates monopole solutions of 

AE and VE are given by (Misra l2 and Zipoy13) 

(4.21) 

where k2 is a constant of integration which determines AE • 

The corresponding Nordtvedt solution of Eqs. (3.Sb) and 
(3.Sc) will be 

AN = AE , V N = k ~ (1 +~) In (X22 + y2), (4.22) 
2 A x + 1 

which is consistent with the solution (4. 16b). 

V. STATIC CYLINDRICALLY SYMMETRIC SOLUTIONS 
IN NORDTVEDT'S THEORY 

If the static line element exhibits cylindrical symmetry 
(the variables are functions of p alone), the field equations 
(4. la)-(4. Id) become 

Al1 + A lip = 0, 

VI = PA i + !p(2w + 3)t/Ii, 

V l1 + A i =!(2w + 3)t/Ii. 

(5.1a) 

(5.1b) 

(5.1c) 

Equation (4.1c) will be trivially satisfied. The wave equation 
becomes 

(5.2) 

With (5.1a) and (5.1b), (5.1c) gives 

Vl1 + vl/p = O. (5.3) 

Integration of (5.1a) and (5.3) directly gives us 

A = b l lnp + c l , (5.4) 

v = b2 lnp + C2, (5.5) 

where bl , b2 , CI, C2 are constants of integration. These solu
tions can also be obtained following the method described in 
Sec. III. 

A. Solutions for the scalar field tP 
In view of(5.4) and (5.5) one easily obtains from (5.1b) or 

(5.1c) the following relation: 

S. B. Duttachoudhury and N. Banerjee 1318 



                                                                                                                                    

(5.6) 

where p2 = 4(b2 - b ~). 
We solve (5.6) for r/J in the following cases, an exact 

functional form of w = w(r/J) being already known in each 
case. 

(1) For Brans-Dicke theory, 

t/J = e'" =AI~2wo+3. 
(2) For Barkar theory, 

t/J = e'" = sec2 [In(A2 Ji'/2)] . 

(3) For Schwinger theory, 

t/J = e'" = In [A 3 P(1I2)p[ci] -2. 

(4) For curvature coupling, 

t/J = e'" = 4A4Ji'/(1 +A4Ji'f 

Here A I' A2, A3 , and A4 are constants of integration. 
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The field equations in the general scalar-tensor theory of gravitation proposed by Nordtvedt are 
studied for a static and spherically symmetric vacuum field. Closed-form exact solutions of the 
field equations are presented for the scalar-tensor theories in the form given by Barker and 
Schwinger. . 

I. INTRODUCTION 

Brans and Dickel have proposed a modification ofEin
stein's theory of gravitation through the introduction of a 
scalar field t/J in the field equations to make things more con
sistent with Mach's principle and less reliant on the absolute 
properties of space. But in view of the recent experimental 
evidence it is argued that if the Brans-Dicke theory of gravi
tation is to be a correct theory, the value ofthe parameter w 
in this theory has to be as large as, or even greater than, 30 
(see Ref. 2). With such a large value for w it is difficult to 
distinguish between the Brans-Dicke theory of gravitation 
and the general theory of relativity, at least from their conse
quences. On the other hand, since there is no a priori reason 
to exclude the introduction of any long-range scalar field in 
the evolution of the universe, which might be quite impor
tant at some epoch, one may explore the possibility of a gen
eral scalar-tensor theory with w as a time-dependent func
tion. Nordtvedt3 modified the Brans-Dicke theory where w 
now becomes a function of scalar field t/J instead of being a 
constant. Within the framework of Nord tvedt's general sca
lar-tensor theory Barker4 proposed a particular w-t/J rela
tion, which has a consequence that the local gravitational 
constant in the Newtonian approximation does not change 
with time. Also, Schwinger and Kimball and Yee6 have for
mulated a scalar-tensor theory as a mass-varying theory, but 
it can be put in the form of a standard scalar-tensor theory 
with a suitable choice of the function w(t/J) and after a trans
formation to "particle units" has been carried out.6 

Spherically symmetric static conformally flat solutions 
in the general scalar-tensor theory have been discussed by 
Rao and Reddy7 and Singh and Singh.s Recently Van den 
Bergh9 has given a conformal technique to generate exact 
solutions for the spherically symmetric vacuum field in the 
general scalar-tensor theory with vanishing cosmological 
constant in the frame in which particle masses vary but the 
gravitational "constant" G does not. By this method, one 
can generate exact vacuum solutions for general scalar-ten
sor theory from the corresponding solutions in Brans-Dicke 
theory. At the same time, he expressed doubt that even in the 
extremely simple case of a spherically symmetric vacuum 
field, equations do not lend themselves directly for analytic 
manipulations. 

In this paper with a quite different approach, we have 
obtained exact solutions of Nordtvedt's general scalar-ten
sor theory in the conformal frame in which G varies but the 
particle masses are constant. We take w(t/J ) in the forms given 

by Barker and Schwinger. These solutions are simple and 
different from the solution given by Van den Bergh.9 

II. FIELD EQUATIONS 

The vacuum field equations in the general scalar-tensor 
theory of Nordtvede can be expressed as 

Rij - !KijR = - (wlt/J 2)(t/J,/t/J,j - !Kijt/J,ht/J ,h) 

- (l/t/J )(t/J,/;j - gijDt/J) (1) 

and 

Dt/J = _ t/J,ht/J ,h dw 
(lw + 3) dt/J 

(2) 

Here a comma and semicolon denote partial and covariant 
derivatives, respectively. 

In the following section, we solve the field equations (1) 
and (2) for a static spherically symmetric metric in isotropic 
coordinates, 

dr = ea dt 2 _ e'" (dp2 + p2 dO 2 + p2 sin2 0 dt/J 2), (3) 

where a and (3 are functions of p only. 
Taking t/J as a function of p only and using (3) the field 

equations (1) and (2) can be written as 

(3" + 1 (3'2 + (2/p)(J' 

_ w ( t/J ' )2 t/J 'a' t/J ,2 dw 
- - 2" --;j" + 2t/J + (lw + 3)t/J dt/J ' (4) 

1 (3'2 + !a'(3' + (l/p)(a' +(3') 

= ~(.L)2 + L _ t/J'(3' t/J ,2 dw 
2 t/J t/J 2t/J + (lw + 3)t/J dt/J' (5) 

! (3" + !a" + la'2 + (l/2p)(a' + (3') 

= _ ~(.L)2 + t/J'(3' +.L t/J ,2 dw 
2 t/J 2t/J pt/J + (lw + 3)t/J dt/J ' 

and (6) 

~ [exp(a~~2t/J'] 

= 
exp [(a + (3 )/2 ]p2t/J' dw 

lw+ 3 dt/J 
(7) 

Here a superscript prime indicates differentiation with re
spect top. 

Equation (7) can be integrated at once to give 

t/J' = Ke-(a+ p )/2Ip2(lw + 3)1/2, (8) 

where K is an integration constant. 
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Adding Eqs. (5) and (6) and using (7) we have the solu
tion 

(9) 

where C and B are integration constants. Substituting Eq. (9) 
into (8) we obtain 

(2w + 3)1/2(J'/(J =K /Clp2 _B2). (10) 

Differentiating Eq. (9) once with respect to p and using Eq. 
(8), we have 

/3' = - a' _ 2tp' {I _ 2CB2(2tu + 3)1/2} . (11) 
(J pK 

Also, Eq. (9) can be written in the form 

e -fJ /(Jp4 = (Jea/C 2lp2 - B 2). (12) 

III. SOLUTIONS OF THE FIELD EQUATIONS IN 
BARKER'S THEORY 

We now discuss the solutions of the field equations (4)
(7) in the special case proposed by Barker4 with w((J ) in the 
form 

w = (4 - 3(J )l2((J - 1). (13) 

Using (13) in (10) and (11) we have, respectively, 

(J '/(J ((J - 1)1/2 = K /Clp2 - B 2), (14) 

/3'= -a'- ~' {1- PK~C~:)1/2}' (15) 

Integrating (14) we have 

(J = sec2[~ log ( (Jo[1p - B)l1p + B )]AIIl}], (16) 

where 

A/A=K/2BC, (17) 

and (Jo is another integration constant. ThenA and A are also 
constants. 

Making the substitution 

Y= e- a/2 (18) 

and using Eqs. (13), (14), (15), and (17), Eq. (5) can be rewrit
ten in the form 

(y")2 + 2F1p)YY' + HIp)y2 = 0, 

where 
2AB ((J - 1)1/2 

2F1p) = - A 1p2 _B2) , 

4B 2 [ (J (A )2] 
Hlp) = - 1p2_B2)2 1-"4 T . 

(19) 

(20) 

(21) 

The differential equation (19) can be expressed in a sim
ple form if the variables are changed to 11(s) and S by the 
transformations 

Yip) = 11(S) exp( - f F dp), 

s = f(H - F2)1/2 dp. 

Then Eq. (19) becomes 

(~;r +11
2
=0, 

which in turn gives us the solution 

1321 J. Math. Phys., Vol. 26, No.6, June 1985 

(22) 

(23) 

(24) 

1 {PIA 2 - 4,1, 2)1/2 ~ - B)} ea(J = -2 exp log -- , 
D U +B 

(25) 

eIl(J = C 2D2(1_ ;:r 
{ 

_p(A2_4A2)1/2 (P-B)} 
Xexp log -- , 

U p+B 
(26) 

where D is a constant of integration and P is another con
stant. 

The question of overdeterminacy in solving the field 
equations is settled by satisfaction of all the field equations 
by actual substitution of the values of a, /3, and (J. 

It can be seen that asp--oo the solution given by (16), 
(25), and (26) leads to ea

, ell, and (J, all of them tending to 
constants, which can be transformed to the standard form 
flat space-time of Einstein's theory with (J = const. 

IV. SOLUTIONS OF THE FIELD EQUATIONS IN 
SCHWINGER'S THEORY 

We now discuss the solutions ofthe field equations (4)
(7) in Schwinger's theory5.6 with w((J ) in the form 

2w + 3 = l/y(J, (27) 

where y is a constant. 
Using Eq. (27) in (10) and (11) we have 

(J '/(J (y(J )1/2 = K /Clp2 _B2), (28) 

/3' = - a' _ 2(J' {I _ 2CB 2 } (29) 
(J pK (y(J )1/2 . 

Integrating Eq. (28) one has 

(J = Yr{lOg[(Jo~ ~!rlll]r. (30) 

where A/A. is given by (17) and (Jo is an integration constant. 
From Eqs. (18), (27), (28), and (29), Eq. (5) can be written in 
the form 

(y")2 + 2FIp)YY' + HIp)y2 = 0, 

where 

(31) 

2FIp) = _2AB(y(J)1/2/Alp2_B2), (32) 

Hlp) = _ 4B2 [1 _ (1 + y(J) (~)2]. (33) 
1p2 _ B2)2 4 A 

Following the method adopted in Sec. III, the solution ofEq. 
(31) can be obtained in the form 

ea(J = -- exp log 4 {PIA 2 _ 4,1, 2)1/2 ~ - B)} 
yD~ U +B 

(34) 

(35) 

where Dl is a constant of integration. 
On actual verification it is found that the values a, /3, 

and (J satisfy all the field equations. It can be seen that as 
p_ 00, the solution given by (30), (34), and (35) leads to ea

, efl, 
and (J, all the three tending to constants which can be 
brought to the standard form offlat space-time of Einstein's 
theory with (J = const. 
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v. CONCLUSIONS 

The complete solutions are, therefore, obtained for a 
spherically symmetric matter-free space-time in the general 
scalar-tensor theory of Nordtvedt, which in a special case 
includes the Brans-Dicke theory. The solutions have the 
property of asymptotic flatness and reduce to the corre
sponding Brans-Dicke solutions in spherically symmetric 
matter-free space-time when we put liJ = const. It may be 
noted that one can obtain a vacuum solution to the general 
scalar-tensor theory from a corresponding solution in 
Brans-Dicke theory by a conformal technique given by Van 
den Bergh.9 In this paper a vacuum solution has been ob
tained by directly solving the field equations. 
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The Einstein equations in vacuum are written as a closed differential ideal of matrix
valued differential forms with constant coefficients. Several properties of the resulting 
equations, such as the existence of an associated integrability system and of conserved 
matrix currents, as well as the treatment of specific Petrov types, are briefly considered. 
We also show that the field equations can be expressed as a deformation (depending on a 
complex parameter A ) of the Bianchi identity for an adequate Poincare or de Sitter connec
tion. 

I. INTRODUCTION 

It is the purpose of the present work to formulate the 
Einstein equations in vacuum in such a way that the study 
and use of their geometric and invariance properties be
comes quite simple. In particular, we are thinking of the 
possible generalization of the solution-generating tech
niques already in use in general relativity to generic cases 
(no isometries and no special algebraic type of the gravita
tional field). The formulation in terms of Lie-algebra-val
ued differential forms seems to be quite appropriate to this 
end. In Sec. II, we discuss the vacuum field equations writ
ten in terms of matrix-valued differential forms, as well as 
an integrability system associated with them. 1 Some points 
that are discussed briefly are the group-theoretical aspects, 
as well as the conserved currents that appear naturally in 
this formulation, and the mechanism for dealing with spe
cific Petrov types. 

The two Cartan structural equations on which the for
mulation presented in Sec. II is based may be united into a 
single entity. In other words, torsion and curvature playa 
role in the theory which is, up to a certain point, symmetri
cal. The similarity between torsion and curvature has been 
emphasized by many authors; let us mention Ne'eman2 and 
Regge,3 where this point of view is adopted. In order to give 
a concrete meaning to this idea, the next section deals with 
central extensions and graded Lie algebras, which involve 
both the Lie and the Grassmann algebra structures. 

Such structures are used in Sec. IV, where the Einstein 
equations are formulated in terms of a Poincare connec
tion. The field equations tum out to be a generalization of 
the usual Bianchi equation for the curvature n, involving 
now a deformation n (A ) of the curvature depending on the 
complex deformation parameter A. As we are interested in 
the conventional Einstein theory, which is invariant only 
under the Lorentz subgroup of the Poincare group, it is 
appropriate that the resulting equations break the Poincare 
gauge transformation properties of the connection w down 
to gauge invariance under the SL(2,q subgroup only. 

Finally, in Sec. V we introduce a slightly different ap
proach, using again the structures described in Sec. III. A 
de Sitter connection depending on a contraction parameter 
f.l is considered, and the field equations are written in terms 
of a single Bianchi-type equation for nolA ), the latter being 

a contraction and deformation of the curvature n with val
ues in the de Sitter algebra. 

II. EINSTEIN EQUATIONS IN VACUUM 

The Einstein equations may be formulated as Cartan's 
structural equations by means of differential forms. Differ
ent versions of the equations put in this language may be 
seen in Refs. 4-6. We shall take Ref. 6 as our starting point. 
The basic ingredients are the vierbein of one-forms 
{k,m,t,t J (where k and m are real, and t is the complex 
conjugate of t ) (see Ref. 7), and the complex-valued connec
tion one-forms {u,v,w J. The structural equations take the 
form 

dk = ! (u + il) /\ k + Ii /\ t + v /\ t, 

dm = - ~ (u + il)/\m + w/\t+ w/\t, 

dt = - w /\ k - v /\ m + ~ (u - il) /\ t, 

dv - u/\v = C2m/\t + C1(k/\m + t/\t) 

+ Cok/\t - -bRk /\t +! Skkm /\t 

(2.1a) 

(2.1b) 

(2.1c) 

+! Skt(k /\ m - t /\ t) +! Sttk /\ t, (2.2a) 

du - 2w /\ v = - 2C1m /\ t - 2Co(k /\ m + t /\ t) 

- 2C_ 1k/\t - -b R (k /\m + t/\t) 

+ !Sk,m /\t 

+! St,(k /\ m - t /\t) -! Smt k /\ t, (2.2b) 

dw - w/\u = Com /\t + C_1(k/\m + t /\t) + C_ 2k/\t 

- n. Rm /\ t +! STtm /\ t 

-! Sm,(k/\m - t /\t) +! Smmk/\t, (2.2c) 

where the coefficients Co Sij' and R correspond to the de
composition of the Riemann tensor into its Weyl, traceless 
Ricci, and scalar-curvature parts. The vacuum equations 
are obtained from (2.la)-(2.1c), (2.2a)-(2.2c) by setting Sij 
= 0, R = O. Equations (2.2a)-(2.2c) take the form 

dv - u /\v = C2m /\t + C1(k /\m + t /\t) + Cok/\t, (2.3a) 

du - 2w/\v = - 2C1m /\t - 2Co(k/\m + t/\t) 

(2.3b) 
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dw - wAu = ComA! + C_I(kAm + tA!) + C_ 2kAt. 
(2.3c) 

The field equations (2. 1a)-(2. 1c), (2.3a)-(2.3c) may be put in 
a very compact form by introducing the matrix-valued one
forms 

[
-k 

1]= ! 
t] _[!u -vj , y- . 
m w -!u 

The forms 1] and y may be characterized in a coordinate 
and tetrad-free way by imposing their defining conditions 

1]t =1], r = y, (2.4) 

where the dagger denotes Hermitian conjugation, and the 
tilde of any two-by-two matrix p form M is defined by 

M=€M t€, 

where t denotes transpose and € is given by 

The connection form y is thus a sl(2,q-valued one-form 
(tr y= 0). 

The field equations (2.1a)-(2.1c) and (2.3a)-(2.3c) are 
now expressed as 

d1] = yA1] - 1] Ayt, 

dy - yAy = W A 1], 

where 

(2.5a) 

(2.5b) 

W= [- Co(k+m) - C_It+ C! 
C_I(k + m) + C_ 2t - Cot 

- CI(k + m) - Cot + Cl]. 
Cork + m) + C_It - Cit 

(2.6) 

In (2.5a), (2.5b), and in the sequel, the wedge product of ma
trix-valued forms is understood as matrix multiplication, 
with the ordinary product substituted by the exterior pro
duct. 

The fact that the spinor components of the Weyl tensor 
appear explicitly in Eq. (2.5b) through W has the following 
consequence: If one wants to consider a closed differential 
system, the integrability conditions for (2.5b) should be 
added to (2.5a) and (2.5b). [The integrability conditions for 
(2.5a) are satisfied by virtue of W A 1] A 1] = 0, with W given 
by Eq. (2.6).] Such integrability conditions (Bianchi condi
tions) are in the present case 

dWA1] = WAyA1] + yA WA1] 

(2.7) 

In order to avoid the extra equation (2.7), whose explicit 
consideration is unnecessary for the purposes of the present 
work, it is convenient to write Eq. (2.5b) in an implicit form. 
The vacuum field equation as expressed by (2.5b) is some
what unpleasant in that W does not transform in a simple 
way under the SL(2,q gauge transformations (see below); on 
the other hand, it is rather remarkable that Wis traceless and 
such that only three basic independent one-forms appear 
(the combination k - m is missing). 

It turns out that Eq. (2.5b), with W having the algebraic 
structure given by (2.6), is precisely equivalent to the condi
tion 

(dy - yAy) A 1] = O. (2.8) 

A trivial computation indeed shows that the general 
expression for dy - yAy satisfying Eq. (2.8) is of the type 
(2.5b) and (2.6). 

The field equations (2.5a) and (2.5b) are now substituted 
for by the equivalent formulation I 

d1] = Y A 1] - 1] A yt. 

(dy - yAy) 1\ 1] = O. 

(2.9a) 

(2.9b) 

The system (2.9a) and (2.9b) is now closed under exterior 
differentiation. Furthermore, the SL(2,Q invariance of the 
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I . d he' equatIons un er t e gauge tranSlormatlOns 

1]---+-1]' = S1]st, (2. lOa) 

(2. lOb) 

[where S is a matrix function with values in SL(2,C)] is now 
manifest. s 

The space-time metric g is given by the expression 

g = tr(1] ® ij), 

where the tensor product symbol refers to the product to be 
used among entries belonging to the matrix one-forms 1] 
and ij. In order to obtain a physically meaningful metric, 
Eqs. (2.9a) and (2.9b) should be supplemented by the re
quirement 

1] A ij A 1] A ij=/O, 

which expresses the fact that the one-forms entering into 1] 
should be independent, or, alternatively, that the space
time volume element should be nondegenerate. 

Equations (2.9a) and (2.9b) may be formulated in the al
gebraically equivalent form I 

d1] = Y 1\ 1] - 1] A yt. 

d (y A 1]) = y A 1] A yt. 

(2.11a) 

(2.11b) 

Let us define the torsion and curvature forms by 

Y = d1] - y A 1] + 1] A yt. ~ = dy - yAy. 

Equations (2.9a) and (2.9b) may be expressed as a system of 
homogeneous degree by writing 

ij I\Y = 0, 

ijA~ = O. 

(2.12a) 

(2. 12b) 

This is due to the fact that ij A Y = o<::>Y = 0 for Hermi
tianY. [Here ij has been used instead of 1] in Eq. (2. 12a) in 
order to have the correct gauge transformation properties, as 
ijt---+ij' = (St)-lijS -I; Eq. (2.12b) is the tilde transform of 
Eq. (2.9b).] An alternative system of homogeneous degree, 
equivalent to (2. 12a) and (2. 12b), is the following: 
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d (ii A 1/) = ii A 1/ A yt - yt A ii A 1/, 

d(yA1/) = yA1/Ayt. 

Again, this is due to the fact that Y A 1/ - ii A !T 
= O¢:>!T = 0 for nonsingular 1/. The field equations writ

ten in this form imply the existence of the conserved matrix 
currents. r!Jl and • cr, where. is the Hodge duality opera
tor and 

r!Jl = y A 1/ A yt, 

cr = ii A 1/ A yt - yt A ii A 1/. 

The form r!Jl satisfies r!Jlt = - r!Jl, and as a consequence it 
contains four real scalar forms, while ;- = cr, so that it 
contains six scalar forms. 

Let us mention here that the transformation ~fJ corre
sponds to time inversion in the flat space case, and has a 
related meaning in the general case, as it corresponds to the 
interchange k_m in the explicit form of 1/ given above. 
This in tum corresponds to an inversion of the exact one
form induced by the time coordinate when Gaussian nor
mal coordinates are used, such coordinates satisfying 
d (tr 1/) = o. Equations (2.9a) and (2.9b) are invariant under 
the discrete transformation ~fJ, ]'1--+ - yt. 

Equation (2.9b) has the following group-theoretic inter
pretation: The curvature fit transforms under gauge trans
formation as 

fltt---+fIt I = SfIt S - I, 

thus belonging to a representation space of SL(2,q. Equa
tion (2.9b) selects an invariant subspace, which in fact corre
sponds to an irreducible spin-2 representation of SL(2,q. 
The spin-2 representation becomes manifest when the spinor 
components of the Weyl tensor are explicitly introduced. 
Equation (2.9b) is a coordinate-free expression of this fact. 

Equations (2.9a) and (2.9b) were introduced in Ref. 1 in 
order to facilitate the development of solution-generating 
techniques for the general vacuum case, such techniques 
possibly being the generalization of certain methods al
ready known for the special case when two commuting iso
metries exist: Backlund transformations9-11 and the in
verse scattering method. 12 Integrability systems associated 
to nonlinear partial differential equations are at the root of 
the inverse scattering and Backlund transformation meth
ods currently in use for equations in two independent varia
bles. In searching for an integrability system of this type, 
related to the general case of the Einstein equations in vacu
um, one is guided by the following observation: The trivial 
solution to the equations (Minkowski space) is character
ized by the special case ofEqs. (2.9a) and (2.9b), given by 

d1/ = yA1/ - 1/ Ayt, 

dy- yAy=O. 

(2.13a) 

(2.13b) 

It is then easily checked that (2.13a) and (2.13b) are the 
integrability conditions for the system 

t/>1/t/>t = dt, 

dt/>= -t/>y, 

(2. 14a) 

(2. 14b) 

where t/> and t are matrix zero-forms with t/> E SL(2,q and 
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t t = t. The general solution of Eqs. (2.13a) and (2.13b) is 
obtained from (2. 14a) and (2. 14b): 

1/ = t/> -I dt(t/> t)-t, 

y= -t/>-Idt/>. 

(2.15a) 

(2.15b) 

Now 1/ and y given by (2.15a) and (2.15b) may be reduced to 
the standard form by using the gauge transformations 
(2. lOa) and (2. lOb) with S = t/>: 

1/0 = dt, Yo = o. 

Given the relation that exists between Eqs. (2.13a) and 
(2.13b) and (2.9a) and (2.9b), one could be tempted to think 
that the integrability system associated with Eqs. (2.9a) and 
(2.9b) would be 

t/>1/t/>t=dt, 

(dt/> + t/>y) A 1/ = O. 

However, this naive procedure fails due to the fact that 
A A 1/ = O=::}A = 0 for any matrix one-formA, so one would 
be led back to the trivial case (2. 14a) and (2. 14b). Fortunate
ly, this can be avoided by using a one-form (/J instead of the 
zero-form t/>. The relevant equations are l 

(/J A 1/ A (/J t = dt, 

d(/JA1/ = (/JAyA1/, 

(2. 16a) 

(2. 16b) 

where t is now a two-form satisfying t t = - t. It can be 
easily checked that the field equations (2.9a) and (2.9b) are a 
sufficient condition for the integrability of Eqs. (2. 16a) and 
(2.16b). They will also be a necessary condition if enough 
solutions of(2.16a) and (2. 16b) exist. The existence ofnontri
vial solutions is guaranteed by the fact that i:/J = y is always a 
solution by virtue of (2.9a) and (2.9b). Other integrability 
systems, with varying degrees of strength, have been consid
eredin the literature (see Refs. 13-17). Notice that both (16a) 
and (16b) have to be considered in order to obtain Eqs. (2.9a) 
and (2.9b). In particular, Eq. (2. 16a) is crucial for the metric 
condition (2.9a). 

The Hilbert-Einstein action for the gravitational field 
in vacuum takes on the simple expression 

Sf = -;f fJ A (dy - yAy) A 1/, 

where f is the identity matrix. 
One of the attractive features ofthe Newman-Penrose 

formalism is the ability to control the Petrov type under 
investigation by explicitly involving in the equations the 
spinor components of the Weyl tensor. Equations (2.5a), 
(2.5b), (2.6), and (2.7) are the exterior form analog of such 
equations. It is of interest to point out that, in spite of the 
fact that the Weyl components no longer appear explicitly 
in Eqs. (2.9a) and (2.9b), the possibility still exists of con
trolling the Petrov type of the solution. This may be 
achieved by incorporating additional conditions to the 
equations. For instance, for Petrov type N the additional 
equation is 

P (dy - yAy) = 0, (2.17) 

where 
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0] 
o' 

The complete set of equations, forming a closed differential 
ideal, is in this case 

dl1 = Y /\ 11 - 11/\ yt, (dy - y /\ y) /\ 11 = 0, 

P (dy - y /\ y) = 0, Py /\ (dy - y /\ y) = o. 
Alternatively, one may specify the residual gauge subgroup 
ofSL(2,C) that survives when a certain additional fixing con
dition such as (2.17) is given. 

III. CENTRAL EXTENSIONS, THE POINCARE 
GROUP, AND LIE SUPERALGEBRAS 

The results stated in the preceding section take an invar
iant form when one introduces some concepts related to the 
theory of group extensions and the theory of Lie superalge
bras. A comprehensive exposition of the topics involved 
here can be found in Refs. 18-21. 

Let us consider the exact sequence of multiplicative 
groups 

l-Go-G-GI-l. 

The elements of the group G can be written as pairs (gt,go) 
of elements gl and go in the groups GI and Go, respectively. 
Let a map I/I:GI-Aut Go be given, so that we can define the 
multiplication law in G as 

(gl,go)(g;,go) = (gIg;, [1/I(g;)-lgO]gO)' 

This is known as a central extension of GI by Go. In the 
present context Go will be a normal Abelian subgroup of G 
and GI = G /Go, the subgroup of equivalence classes deter
mined by Go in G. Thus, GI acts in Go by conjugation, and 
this permits us to define the map 1/1 as an element of 
Hom(GI,Aut Go) given by 

I/I(hl)go = hlgoh ~', hI E GI, go EGo· 

We apply the construction above to the Poincare group. 
By identifying GI with SL(2,C) and Go with the translation 
group T4 , the elements of the Poincare group are given by 
products gAgM' A E SL(2,C); ME Mat!(C) (M = Mt) [i.e., 
to the vector (M ;)~, M; E R of T4 we assign the self-adjoint 
matrix M = ~~ M;uo U o = I, c/, i = 1,2,3 the Pauli matri
ces]. Thus, the product rule is defined by 

gAgMgBgN = gAgBgiJ IgMgBgN = gAB [1/I(gB )-lgM ]gN' 

A,B E SL(2,C), M,N E Mat!(C). 

The homomorphism 1/1 is constructed with the help of the 
following outer automorphism 8 of SL(2,C): 

8(A) = (A t)-I. 

We take for 1/1 the natural action of SL(2,C) in Mat!(C), 
M-BMBt, 

I/I(gB)gM =gBMBt' 

and we get the desired extension by realizing the group 
elements gA,gM through the matrices 

gA = [~ 8~ J. gM = [~ ~], (3.1) 

for which 
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(3.2) 

In this way we have reduced the product rule for the ele
ments (gA,gM) of the extension of SL(2,C) by the translation 
group to the multiplication of ordinary matrices in GL(4,C) 
determined by the formula 

[A AM] [BO gAgMgBgN = 0 8 (A ) 
BN] 
8(B) 

AB(N +B -IM(Bt)-I)]. 

8(AB) 
(3.3) 

Next, we describe the Lie algebra structure induced by 
the extension above. It is given by the exact sequence 

D-go-g-gl-D· 

We denote by a E sl(2,C) and m E Mat!(C) the elements on 
the Lie algebras parametrizing the Lie algebra of the Poin
care group g. Let X, X 'Eg be given by 

X= (Xa,Xm)' X' = (Xb,Xn), 

a,b, E sl(2,C), m,n E Mat!(C). 

The corresponding formulas to (3.1)-(3.3) in the Lie algebra 
are now 

(3.4) 

u being the Lie algebra automorphism of sl(2,C): 
u(a) = - at determined by 8 in the group. We have also 

[
0 bm + mb t ] 

t,b(Xb),Xm =adXb,Xm = 0 0 ' (3.5) 

where the Lie algebra homomorphism 
t,b:sl(2,C)-Der Mat!(C) from sl(2,C) into the Lie algebra of 
derivations of Mat!(C) is the derivative at the identity of the 
group homomorphism 1/1. Hence, the commutation rule for 
the Lie algebra extension of sl(2,C) by Mat!(C) takes the fol
lowing form: 

[X,x'] = ([Xa,xb]' t,b (Xa),Xn - t,b (Xb)Xm)' 

In terms of matrices in gl(4,C) we have 

[X,x'] = [[a:] 
Dia) = - at. 

an + nat - (bm + mb tIl, 
u([a,b ]) 

(3.6) 

These formulas are all we need in order to get a consistent 
Lie-algebraic description for the Einstein equations. 

In Sec. II, use has been made of Lie-algebra-valued exte
rior differential forms. We shall now discuss in a somewhat 
more elaborate way some of the properties of vector-valued 
differential forms. 

Let g be a Lie algebra with linear basis Ie;). Let Mbe a 
smooth differentiable manifold and A (M) = $ k>oA k (M) 
the Grassmann algebra of differential forms defined on it. 
We shall denote by 9 = A (M) ® g the Z-graded algebra of 
differential forms on M with values in g. Thus, we have 
a Z grading on g induced by that of A (M): g 
= $ k>o9k,deg g = 0, deg 9k = k. 

For each OJk E 9k we have an expression of the form 
OJk = ~;OJ~ ® eo which we shall write simply as 
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(i)k = l:1(i)~ejO the (i)~'S being elements of Ak{M). More
over, in 9 is defined a natural product 

[(i)k,(i)d = L (i)~ /\(i)H ejOej ) 

IJ 

(3.7) 

determining a mapping 9k X 9r-~9k + I' It is easily seen that 
[(i)k,(i)I] is the {k + I)-form with values in 9 given by 

[(i)k,(i)I] :(X!>···,xk+ tl 
1 -- L E{u)[(i)dXojl),···,xojk))' 

(k + I)! UE@ 

(i)1{Xojk + Il'···,xojk + /) ], 

with the usual notation conventions, the X I"'" X k + I being 
tangent vectors to the manifold M. 

The following proposition is trivial. 
Proposition: (i) The algebra 9 is a Lie superalgebra21 

9 =90 ED9T, 

with 

90 = ED 92k' 9T = ED 92k + 1 . k>O k>O 
Iii) The algebra 9 = 90 ED 91 is a Z-graded Lie superalge

bra with the Z gradation (ijk )k>O consistent with the Z2 gra
dation of9. 

In fact, the commutation rule for g is determined by (3. 7), 
and as it is easily verified, the following relations hold: (a) 
graded skew symmetry, 

[ (i) k ,(i) d = ( - 1 )kl + 1 [ (i) I,(i) k ] ; 

and (b) graded Jacobi identity, 

{-I)km[(i)k,[(i)I,(i)m]] + {_I)lk [(i)I,[(i)m,(i)k]] 

+ { - Itl [(i)m' [(i)k,(i)d] = 0. 

It easily follows from these relations that go is a Lie algebra 
for the commutation given by the formula (3.7). 

IV. LIE ALGEBRA FORM OF THE EINSTEIN 
EQUATIONS 

In this section we consider the Lie superalgebra 
9 = A (M) ® g, where M = R4 and 9 is the Lie algebra of the 
Poincare group. A connection in g will be given by a one
form on M with values in g. According to the description of 9 
made in Sec. III as the central extension of sl{2,e) by the 
Abelian Lie algebra R4, a connection (i) is specified by a pair 
(i) = (r,7]), where r takes values in sl{2,e) and 7] in R4 [equiv
alently, in Matt{e)], the notation being the same we used in 
Sec. III. In order to get a more convenient expression for (i) 
we shall write it in the fotnl 

(i) = (i)y + (i)T/' (4.1) 

following Eq. (3.4), and setting 

(i)y = [~ _0 r t ]' (i)T/ = [~ ~], (4.2) 

7] being the same self-adjoint matrix differential one-form 
we were using previously. 

We define the curvature two-form by the expression 

IJ = d(i) - H(i),(i)], (4.3) 

with "components" f7t and .'T corresponding to the curva-
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ture and torsion in Sec. II, IJ = (f7t ,.'T). The explicit 
expression in terms of the matrices rand 7] is given by the 
formulas 

f7t =dr-Hr,r] =dr-r/\r, 

.'T = d7] - </J {r)'7] = d7] - r /\ 7] + 7] /\ rt. 

Furthermore, we can write 

IJ = IJ&? + lJy , (4.4) 

with 

(i)&? = [~ _ ~t]' lJy = [~ :], 
and the Bianchi identity for the curvature two-form IJ reads 

dlJ = [(i),IJ]. 

Weare now in a position to get the result we are looking 
for. Let A be a complex variable and define the A-dependent 
two-form IJ (A ) = (Af7t,.'T) starting from the curvature IJ. 
This can be put as 

(4.5) 

Notice that IJ (A) may be obtained by means of the linear 
map 

1J-I1{A) = [~ _0 ]IJ [AI 
AI ° ~], 

where I is the 2 X 2 identity matrix. One can think of IJ (A ) as 
a deformation of the curvature IJ depending on the defor
mation parameter A. 

The main result of this section may be formulated as the 
following theorem. 

Theorem: Let (i) be the connection form given by Eqs. 
(4.1) and (4.2), and letlJ (A) be the deformation of the curva
ture defined above. Then, the Einstein equations in vacuum 
are given by 

dlJ (A ) = [(i),1J (A )], 

IJ{O) = 0. 

(4.6a) 

(4.6b) 

Proof: From (4.6b) and (4.5) we get .'T = 0, which gives 
Eq. (2.9a). Thus, IJ (A) = IJ;.&? for the solutions of system 
(4.6a) and (4.6b). By taking into account this special form of 
IJ (A ), Eq. (4.6a) reduces to 

dlJ;.&? = [(i),IJ;.g; ] 

or 

dIJA&? = [(i)y,IJA&? ] + [(i)T/,IJ;.&? ], 

after introducing the decomposition (i) = (i)y + (i)T/ given by 
Eq. (4.1). From this last equation we obtain the relations 

dIJA&? = [(i)y,IJ;.&? ], [(i)T/,IJ;.g; ] = 0, 

by separating sl{2,e) and Matt{e) "components." The first of 
the last two equations is identically satisfied by virtue of the 
Bianchi identity for the sl{2,e) curvature f7t and the second 
one results in </J {Af7t)'7] = 0, or in terms of the matrices f7t 
and 7] reads 

Af7t /\ 7] +).,7] /\ f7tt = 0, 

which is nothing else but Eq. (2.9b) in view of the arbitrari
ness of A. This finally proves our assertion. 
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In the preceding formulation, the tetrad 11 and connec
tion r are combined into a single connection form W taking 
values in the Lie algebra of the Poincare group. Equation 
(4.6a) expresses the fact that the deformation of the curva
ture, 11 (A ), is covariantly constant for any value of A. This 
generalizes the Bianchi identity for 11 ==.11 (1), which is kine
matical and holds irrespective ofthe field equations, being a 
consequence of its definition (4.3). The second equation 
(4.6b) may be considered as an initial condition. It is worth 
pointing out that under a gauge transformation the connec
tion W undergoes the usual change 

liJI---+liJ' = gwg- I + dg.g- I , 

where g is an element of the Poincare group, of the form 
given by Eq. (3.1), 

g = [AO AM] 
(At)-I . 

This gauge transformation induces the following transfor
mation properties of 11 and r: 

~11' = A (11 - rM - Mrt + dM)A t, 
'J"r-+r' =ArA -I + dA A -I. 

The field equation (4.6a) is not invariant under a gauge 
transformation with arbitrary g; only those elements g with 
M = 0 leave it invariant. This has the effect of breaking 
down the Poincare symmetry to the SL(2,C) symmetry of 
Einstein's gravity. 

v. DE SITTER CONNECTIONS AND 
CONTRACTIONS 

The Einstein equations (4.6a) and (4.6b) admit an alter
native formulation which makes use of a contraction from 
the de Sitter to the Poincare Lie algebra. The use of a defor
mation of the curvature introduced in the last section is 
now supplemented by the introduction of a de Sitter con
nection depending on a contraction parameter p. This has 
the effect of combining (4.6a) and the vanishing torsion 
equation (4.6b) into a single equation. 

Let us consider the 4 X 4 complex matrix 

H= [aB! B], 
-aJ 

(5.1) 

where a E R, B = B t is a self-adjoint 2 X 2 matrix, and J is 
the identity in two dimensions. The (double covering of the 
connected component of the identity of the) de Sitter group 
SO(4, 1) may be defined as the set of those matrices 
IE GL(4,Q acting as a group of transformations as 

H' =IHI- 1 (5.2) 

and leaving the algebraic form of H invariant. The algebra
ic restrictions on H [which are equivalent to the generic 
form given by Eq. (5.1)] are the following: 

Ht= -uHu, H=pHp, trH=O, 

where 

u = [~ ~ E]' p = [~ ~]. 

(5.3) 

E being the 2 X 2 matrix defined in Sec. II. The transforma
tion (5.2) leaves invariant the traces of the successive pow-
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ers of H. From (5.1) or (5.3) we have tr H = tr H3 = 0; 
tr H 2 = 2(a2 

- det B); tr H 4 = !(tr H 2)2. Thus, there is 
only one non vanishing independent invariant of H under 
the transformation (5.2); such an invariant is in fact a non
degenerate quadratic form in RS with signature 
(+ + + + -). Conditions (5.3) impose the following re
strictions on I, which may be taken as the definition of the 
group: 

ItuI = u, I -Ip~ =p. (5.4) 

The explicit form of the group elements I may be easily 
calculated from Eq. (5.4). The corresponding elements 5 in 
its Lie algebra, so(4,1), will satisfy the conditions 

5tU+U5=0, 5P-pt=0. (5.5) 

The Lie algebra consists then of matrices 5 of the form 

5=[a_ btl, (5.6) 
-b -a 

with a,b complex 2 X 2 matrices with a = a(tr a = 0) and 
b t = b. It is easy to see that the Lie algebra, whose generic 
element is of the form (5.6), has the isomorphic realization 

btl, 
-a 

(5.7) 

with p > 0 and a,b as before. A contraction of the so(4, 1) to 
the Poincare algebra takes place when p-D. Let us now 
consider a so(4,1) connection of the form 

wp. = [ -:17 _l1

rt]. (5.8) 

We have the following theorem. 
Theorem: Let 

11p.(A) = [~ l~](dwp. _Wp.I\Wp.)[A: ~], 
wp. a de Sitter connection given by Eq. (5.8), and denote by 

l1o(A) the contraction lim 11p.(A). The Einstein equations in 
p.-o{) 

vacuum are equivalent to the equation 

dI10(A) = [Wp.,l1o(A)] (Vp>O, VAEC). (5.9) 

Proof: Equation (5.9) is equivalent to the following set of 
equations: 

17 1\ Y = 0, 17 1\ fIi = 0, 

dY = r 1\ Y + Y 1\ rt, dfli = r 1\ fIi - fIi 1\ r. 
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We present all the exact solutions ofthe Einstein-Maxwell equations for a special case of the 
Robinson-Trautman metric form. Gaussian curvature of the angularlike part of the chosen 
metric form is equal to zero. The solutions are of the Petrov types D or II. Eight of them are 
probably new. 

I. INTRODUCTION 

In this paper we present all the exact solutions of the 
Einstein-Maxwell equations (without currents) 

Gp,v = - Agp,v + 2(Fpp,FvP + lKp,vFprFpr), 

F[p,v,pl = 0, F p,v;v = 0, (1.1) 

assuming only the limitation 

ds2 = 4p2 dY dY + 2 dp dq + p-2(2mp + f)dq2. (1.2) 

The meanings of symbols are as follows: Gp,v' gp,v' and 
Fp,v are the Einstein, metric, and electromagnetic field ten
sors, respectively, A is the cosmological constant, Y is a com
plex coordinate, p and q are real coordinates, m is an arbi
trary real constant, andf=f(Y,Y,p,q) is a disposable real 
function that belongs to class C 2. Here and below every sym
bol with an overbar means a complex conjugate quantity of 
the given symbol. 

The signature is + + + -. 
The metric form (1.2) is a special case ofthe Robinson

Trautman one. 1 The Gaussian curvature of every two-di
mensional surface p,q = const (P#o) is equal to zero for 
space-times (1.2).2 Such a geometrical property of space-time 
has a special physical interpretation in the case of the Robin
son-Trautman type space-times. Namely, the interpretation 
has been given that the sources of fields, that produce the 
Riemannian curvature of these space-times, move with the 
speed oflight. 1.2 Thus the solutions presented below make it 
possible to find explicitly the detailed properties of all such 
space-times admitted by the Einstein-Maxwell theory with
in the limitation (1.2). 

In Sec. II some general properties of the solutions are 
briefly reviewed. In Sec. III a list of the explicit solutions and 
Petrov's classification are given. 

II. SOME GENERAL PROPERTIES 

When solving Eqs. (1.1) under condition (1.2) we used 
the known results3 that include expressions ready for inte-

-) Present and permanent address: Institute of Geophysics, University of 
Warsaw, Ul. Pasteura 7, 02-093 Warsaw, Poland. 

h) On leave of absence from the Institute of Physics, Polish Academy of Sci
ences, Warsaw, Poland. Present and permanent address: Institute of 
Physics, Polish Academy of Sciences, AI. Lotnikow 32/46, 02-668 War
saw, Poland. 

gration.4 After easy integration of a part of those expressions 
one finds that 

(2.1) 

and 

A =A, A,y =A,y =A,p =0, 

C,y = C,y = C'p = 0, A'q = 2Ce (2.2) 

for B = 0, where C is an arbitrary complex function of q 
only, and 

A =A, A,p =0, B,y =B,p =0, 
- - -2 

A,yyB - A,yB,y + 4B B'q = 0, 

(2.3a) 

(2.3b) 

A,yA,y - 8A'qBIi = ° (2.3c) 

for B #0. 
The electromagnetic field is given by the following 

equations: 

Fyy =Fyp =Fpq = 0, Fyq = C 

for B=O, and 

(2.4) 

F yp = 0, F yy = B - Ii, F pq = -! p-2(B + Ii), 
Fyq = !p-1B,y - AA,yIi -I (2.5) 

for B #0. 
It is well known that A is introduced into the Robinson

Trautman metrics in a very simple way.s This causes the 
absence of A in Eqs. (2.2) and (2.3). Thus Eqs. (2.2)-(2.5) are 
special cases of the more general equations that have been 
given by Robinson et a/.6 

It is easy to see from Eqs. (1.2) and (2.1) that real func
tion A is determined with an accuracy up to an arbitrary 
additive real constant since m is arbitrary. Thus condition 
A = const is equivalent to condition A = 0. 

The following transformations: 

Y=Y'+a, Y=Y'e ia
, q=q'+b (2.6) 

do not change Eqs. (1.2) and (2.1)-(2.5) for arbitrary con
stants a, a, and b, where a is complex and a and b are real. 

In each of our space-times the vector field k P,: = lY; de
termines a congruence of the principal null curves of the 
electromagnetic field since it is a conclusion from Eqs. (1.2), 
(2.4), and (2.5) that k[p,Fv1pk P = ° and kp,kI-' = 0. The last 
equation means that metric form (1.2) is also the Kerr-Schild 
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metric form since dq = k,. dx" . It is easy to prove (see, e.g., 
Refs. 3 and 4) that vector k" is geodetic, shear-free, rotation
free, its expansion does not vanish, and that it is a double 
Debever-Penrose vector. 

III. LIST OF SOLUTIONS AND PETROY'S 
CLASSIFICATION 

The explicit solutions of Eqs. (2.2) and (2.3) are as fol
lows: 

A = 2 f CC dq, B = 0, (3.1) 

A=O, B=t,6(Y), (3.2) 

where t,6 is an arbitrary analytic function of Yonly, 

A = 4ab (Y + Y) + 2a2q, B = beic, (3.3) 

A = 4abIT + 2a2q, B = bY, (3.4) 

A = - 8a2q- IeY+ Y, B = aeY, (3.5) 

A = - ja2(y + Yfq-1/3 + 4abi(Y _ Y) + 6b 2q1/3, 

B = aeicql/3, (3.6) 

A = 202 [ _ 2xIT + b (y2 + y2)](X2 _ b 2)-1 

+ [2ac(Y + Y) - c2](x + b)-I 

+ [2agi(Y- y)-g2](X-b)-I, 

B = aeih (x2 - b 2), (3.7a) 

where the auxiliary real variable x is determined by the equa
tion 

q = ~s _ tb 2X3 + 2b 4X, (3.7b) 

A = 4a2bi(ln Y -In Y) + 2a2b 2q,. B = aeibqy- I, 
(3.8) 

A = - 202(1 + bll1n Y - 202(1 - bll1n Y 

+ !a2(1 + b 2)ln q, 
B= aql+bi)12y- l, (3.9) 

A = - 4ab 2e"(a + ii)qyayii, 

B = beaaqya - I, aii + 2(a + ii) = 0, (3.10) 

A= _8a2kq-aiik yayii, B=aq2akya-l, 

k -I = aii + 2(a + ii)#O, (3.11) 

A = 2ab(y-2 + y-2) + 2a2q(yy)-2, 

B = eic(aqy-3 + by-I), (3.12) 

A = - jq-1/3(aYY + b )2, B = aql/3y, (3.13) 

where a is a complex constant arbitrary up to the appropri
ate limitations given in relations (3.10) and (3.11), and a, b, c, 
g, and h are arbitrary real constants. When integrating Eqs. 
(2.3) one obtains more complicated expressions for A and B 
than ours at right-hand sides ofEqs. (3.3H3.13). Those ex
pressions include more arbitrary constants but they can be 
reduced to Eqs. (3.3H3.13) by means of transformations 
(2.6). When obtaining solution (3.5) the transformation 
Y = cY', p = c-Ip', q = cq' has also been used. The same 
transformation has also been used to get a special case of 
solution (3.11), i.e., when Re a = 1 and 1m a # O. If a = 1, 
then solution (3.11) is a special case of solution (3.7). 
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The above list includes all the exact solutions of Eqs. 
(1.1) with limitation (1.2). A proof of this theorem is given in 
Appendices A, B, and C. 

Solution (3.1) has been given by Robinson and Traut
man, I solution (3.2) by many authors,3.6.7 and solutions (3.4), 
(3.5), and (3.13) have been given by Leroy.s The remaining 
solutions seem to be new [special cases of solutions (3.9), 
(3.10), and (3.11) have also been given in Ref. 8]. 

Each of our metrics is conformally flat if and only if 
2m +A =B = 0 (or equivalently m =A =B = 0). 

When determining the Petrov types of our solutions we 
used Lemma 1 from Ref. 3 (cf. Ref. 4) since the premise of 
that lemma holds in the case of our metrics. It appears that 
only solution (3.1) is of type [2,2] (Penrose's notation). The 
remaining solutions are of type [2,1,1] with possibilities of 
further degenerating to type [2,2]. More precisely, for each 
one of our solutions we have the following: if it is not confor
mally flat, then it is of type [2,2] if and only if all equations 

2(2m +A )A,yy - 3(A,y)2 = 0, (3. 14a) 

(2m +A )B,yy + 2A,yyB - 4A,yB,y = 0, (3.14b) 

3BB,yy - 4(B,y)2 = 0 (3.14c) 

hold together. 
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APPENDIX A: INTRODUCTORY REMARKS AND THE 
FIRST STEP OF THE PROOF 

Our proof of the theorem, saying that Eqs. (2.1) and 
(3.1 H3.13) are all solutions ofEqs. (1.1) with limitation (1.2), 
is too long to allow its presentation here in totality. There
fore, we give here only its scheme, putting emphasis on the 
more important items so as to permit anybody interested to 
easily carry out the proof himself in detail. 

Notation: D, E, F, ... are complex functions of two varia
bles, Yand q, analyticin Y (or ofYand q analyticin Y for the 
symbol with an overbar). K, L, M, ... are disposable complex 
functions of one real variable q; a is an arbitrary complex 
constant; a and b are arbitrary real constants. An integer 
SUbscript at any symbol does not change the above meaning 
of the symbol. 

Assuming B = 0 one immediately obtains (3.1) from 
(2.2). Thus, henceforth, we put 

B #0. (AI) 

Integrating (2.3b) we get 

A,y = - 4B (D + YB,q), (A2) 

where D is a disposable function. 
Assuming B,q = B,y = 0 we easily obtain from (A2) 

and (2.3c) that D = a and then solution (3.3). 

Let us assume B,q = 0 and B,y#O. If D = 0, then by 
(A2), (2.3c), and (AI) we immediately obtain solution (3.2). If 
D #0, then by the fact thatA,yy =A,yY and by (A2) we get 
B,yID=KI=K't#O, and then from (2.3c) we obtain 

- 2 -B,yyB,yK I + 2B,yBKI,q = O. Assuming B,yy = 0 we easi-
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ly get solution (3.4). Assuming B,yy#O we obtain solution 
(3.S) after a short calculation. 

Thus all possibilities are exhausted for B,q = 0 and 
henceforth, we put 

(A3) 

Assuming B, y = 0 we obtain by the fact that 
A,y'f =A,yy and by (A2) that B = Lleia and LI = II, and 
then taking (2.3c),yy and (A2) we find that D = YMI + N I. 
Now from (2.3c) we obtain among others that MI = aL )2 

andLI,qL i = (bLI + aa)1/2. Then after simple calculations 
we find solution (3.6) for b = 0 and solution (3.7) for b #0. 

Thus all possibilities are exhausted for B,y = 0 and 
henceforth, we put 

B,y#O. 
Assumption: 

1+ (B,yl B),y =0. 

(A4) 

(AS) 

From (AS) wehaveB = (Y +K2 )-IL2 and then by the 
fact that A,yy =A,yy and by (A2) we obtain D 
= (Y +K2)-2(I 2-IM2 -K2,qK2L 2) + (Y +K2)-IL2,qK2, 
whereM2 is real. Then from (2.3c) we getM2 = K2,q = 0 and 
L 2,qI2 = a#O. Putting L2 = N2 exp iP2, where N2 and P2 
are real, we obtain among others (N ~ ),q = a and then after 
short calculations we get solution (3.S) for a = 0 and solution 
(3.9) for a#O. 

Now we begin the more complicated part of the proof. 
Assumption: 

1 + (B,y IB),y#O. (A6) 

Since A,yy = A,yY we obtain from (A2) and (A6) that 

D = (BE),y, (A7a) 

B,q = (BF),y, (A7b) 

where 

E:= yI+K, K=K, 

F:= YM+L #0, M=M. 

(ASa) 

(ASb) 

Inequality F #0 results from (A3) and (A7b).9 Then the inte
gration of (A2) gives us 

A = - 4[BB(K +LY +Iy + MYY) +N], N=N, 
(A9) 

and by (A2) and (A 7)-(A9) we get from (2.3c) that 

B,y[G(Y +7)2 + 3BP(Y +7)] 

+B [H(Y+7)+B(P+2FJ,q)] +2N,q =0, (A 10) 

where 

G: = B,yF 2 + 3BFM, (All) 

H: = 3G + B (2F,q - 4FM), (AI2) 

J: =EF- I = (YI +K)(YM +L )-1, (A13) 

p:=LI-KM=P. (AI4) 

Assuming G = 0 we obtain M #0 and B = QF -3 from 
(All) and then from (A1O) we get N,q = H = P = J'q = 0, 
which leads via a short calculation to a special case of solu
tion (3.12) (Le., if b = c = 0 there). 

Henceforth, we put 

(AlS) 
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APPENDIX B: CONTINUATION OF ASSUMPTION (A6) 
FORP=O 

Relations (Al)-(A4) and (A6)-(AlS) hold here. As
sumption P = 0 gives us 

M#O, J=IM-I, A= -4(BBFFM- I +N). 
(BI) 

Integrating (A 1 0) we find B and then differentiating the 
result once with respect to Yand several times with respect 
to Y we get rid of B and the integrals. In consequence we 
obtain a product equal to zero of an expression different 
from zero and of a polynomial of Y. Thus the coefficients of 
the polynomial, which depend on Yand q, are equal to zero. 
This procedure should be conducted twice, separately for 
N,q = 0 and N,q #0. 

This gives us among others 

H = QIG, BFJ'q = Q2G 

for N,q = 0, and 

J'q = 0, H(H,y - G,y) = 0 

for N'q#O. 
Assumption: 

(B2) 

(B3) 

N,q =0. (B4) 

Assuming J,q #0 (<=>Q2#0) and taking into account 
(All) we find B from the second equation of (B2) and then 
substituting such a B into (A 10) we obtain a contradictory 
result J'q = O. Thus J'q = 0, which after the first transfor
mation from (2.6) gives us 

F=MY. (BS) 

Assuming QI = 3 we get from (B2), (A 12), and (BS) that 
M = - (2q)-1 and then from (A1O), (BI), and (2.3c) we ob
tain a special case of solution (3.12) (i.e., if b = c = 0 there). 

Assuming QI#3 we get from (B2) that InB = In Q3 
- [M2(S - 3QI) + 2M,q]M-2(3 - QI)-Iln Yand then by 

(BI) we obtain QI,q = 0 and an explicit expression of Q3(q) 
from (A2), (A 7a), and (2.3c). Putting QI = 1 - a we get 
2M,q + M2[aa + 2(a + all = 0 from (A1O) and then we 
obtain solution (3.10) for M,q = 0 and solution (3.11) for 
M'q#O. 

Assumption: 

(B6) 

Since J'q = 0 [see (B3)] thus (BS) holds also here. 
If we assume H = 0, then it is easy to see that B which 

fulfills both (A1O) and (AI2) contradicts (A6). Thus, H #0 
and we obtain H, y = G, y from (B3). Assuming G, y # 0 and 
differentiating (A 1 0) with respect to Y we get a contradiction 
with (A6). Thus we have G,y = H,y = O. 

Inequality H #3G contradicts (A6) by (AI2) and (BS). 
Thus,H = 3Gand weobtainM = - (2q)-1 from (AI2) and 
(BS). Then integrating (A 10) we get from (BI) and (2.3c), after 
a simple calculation, solution (3.12). 

APPENDIX C: CONTINUATION OF ASSUMPTION (A6) 
FORP#O 

Relations (Al)-(A4) and (A6)-(AIS) hold here. Apply
ing for P #0, the procedure that is described in the second 
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paragraph of Appendix B, we obtain 

(HG -l),y = 0, 

P+2FJ'q =0 

for N'q = 0, and among others 

(HG -1),y(G,y - H,y) = 0 

for N'q#O. 

(CIa) 

(Clb) 

(C2) 

Let us assume N'q = O. Relations (A4), (AW), (AIS), 
and (Clb) give us then H #0. Thus, from (CIa) we obtain 
H = RG and R #0. Then (AW) and (Clb) give us 
B=R1(Y + R2)-R , where R 2 =J +3BPG- 1.Substitut
ing such aBinto the latter [taking into account (All)] we get 
a polynomial of Yequal to zero. Its coefficients (equal to 
zero) give us a system of algebraic equations involving L, I, 
M, R, R 2, and R2• The system appears to be self-contradic
tory by the fact that F, P, R #0; Thus we have 

N'q#O. (C3) 

Let us assume H = 0 and split our considerations into 
two separate cases M = 0 and M # O. The procedures are the 
same in both cases. We integrate (AI2) getting B 's and then 
after substitution ofthoseB 's into (AW) we obtain contradic
tions with (A4) for M = 0 by (C3), and with (A6) for M # 0 by 
(C3), (A4), and (AIS). 

Thus we have H #0 and assuming H,y = 0 we get 
G,y = 0 from (C2). If H #3G, then from (AI2) we obtain 
contradictions with (A4) for M'q = 2M2 and with (A6) for 
M'q # 2M 2. Thus we have H = 3G. Integrating .(A II) we get 
B that after substitution into (A I 0) gives us a polynomial of Y 
equal to zero. Its coefficients give us a self-contradictory sys
tem of equations depending on Yand q. The contradictions 
are caused by (AIS) and equation H = 3G for M = 0 and by 
(A6) and assumption P #0 for M #0. Thus we have 

H,y#O. (C4) 

The most general solution of (C2) is 

H= GS+ T, (S-I)T=O, 

which by (C4) gives us 

G,yS#O. 

(CS) 

(C6) 

Differentiating (A 10) with respect to Y, then dividing it 
by B,J;,y and differentiating once again with respect to Y 
and Y we obtain 

- - -1 El + E 2(B,y B ),y = O. 

Assumption: 

E2 =0. 

This gives us by (C7) 

E1=0. 

Integrating (CS) and (C9) we get 

2GJ + 3BP = GU1 + U2, 

HJ + B (P + 2FJ'q) = GV1 + V2• 

(C7) 

(CS) 

(C9) 

(CW) 

(CII) 

Using (CIO) and (CII) in (AW) and differentiating (AW) with 
respect to Y, and then dividing (AW) by O,y and differentiat
ing once again with respect to Ywe obtain by (A4) an equa
tion that after integration gives us 
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(CI2) 

Now let us use J as a new variable instead of y. This is 
possible since J, y = F - 2 P # O. In the new variable language 
thereisF=P(I -JM)-l. 

Integrating (CW) and (CI2) with respect toJ [see (AI I)] 
we obtain two expressions for B. Equating those expressions 
and differentiating the obtained equation with respect to J to 
get rid of integrals we obtain a polynomial of J equal to zero. 
Its coefficients give us a system of algebraic equations in
volving I, M, U1, U2, WI' and W2• If M = 0, then the system 
gives us U2 = W2 = 0, which contradicts (AIS) by (CI2). If 
M #0, then the system gives us U2 #0 by (AIS) and (CI2) 
and then it gives us U~ = 4W1 and U1U2 = 2W2 (if L = 0, 
then U1 = WI = W2 = 0). This leads to a contradiction with 
(A4) by (CW) and (CI2). Thus, the case E2 = 0 is empty. 

Assumption: 

(C13) 

Relations (C7) and (C13) give us (B,y IB ),yy = O. This 
equation has only two solutions with respect to Y. The first 
one is B = U3e

UY but it contradicts (AW) by (A4) and (C3). 
The second solution is 

(CI4) 

Substituting such aBinto (AIO) and taking into account 
(A6), which implies V # - I, we analyze (AIO). Simple anal
ysis gives us 

T = 0, S = - 1, V = 1 (CIS) 

by (CS) and (C6). Then substitutingB from (CI4) into (AI2) 
and using (All), (CS), and (CIS) we obtain a polynomial of Y 
equal to zero. Its coefficients give us a system of differential 
(with respect to q) equations involving L, M, and V4 • Solving 
the system with the use of (ASb) we get M = (6q)-t, 
L = aq-l, and V4 = 6a. Then we obtain after a short calcu
lation solution (3.13) by (A7b), (A9), and (2.3c). 

This terminates the proof since all possibilities have 
been exhausted. 
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Gravitational contributions to the chiral anomaly in 4N space-time dimensions as well as the 
purely gravitational anomaly in 4N - 2 dimensions are expressed in terms of the Riemann
Christoffel tensor. Using this formula, we give a simple proof that if N~4 there is no way to cancel 
the gravitational anomalies using fields ofspin-~, -~, and-I. 

I. INTRODUCTION 

It seems that physicists and mathematicians have inde
pendently developed the same theory of the chiral anoma
ly.I.2 Motivated by the unification of gravity with other 
gauge fields in higher dimensions, many physicists have re
cently calculated the chiral anomalies due to gauge fields3 as 
well as the gravitational field4 in higher dimensions. They 
have searched for a consistent theory in which anomalies are 
canceled among fields of different representations of a gauge 
group and/or different spin. To arrive at their results they 
have resorted to Feynman diagram or path integral meth
ods, neither procedure being too difficult to apply for exter
nal spin-I fields. In the case of a gravitational field, however, 
it seems that the higher the dimension the more complicated 
the calculation becomes.4

,5 On the other hand, mathemati
cians2 have studied the subject in arbitrary dimensions from 
the beginning but have expressed their results in their own 
fashion, in a terminology slightly unfamiliar to physicists. 
The mathematicians' results have often preceded the physi
cists' derivation. 

Recognizing this fact, we shall express the mathemati
cians' expressions for the chiral anomaly (for "spin" -! and -~ 
fields) in terms of the Riemann-Christoffel tensor more fa
miliar to physicists. The newly discovered pure gravitational 
anomaly6 receives contributions from spinor fields and anti
symmetric tensor fields among others and it can also be writ
ten out in terms of the curvature tensor in a similar way to 
the chiral case. Finally, using the explicit formulas derived 
by us, we can discuss a cancellation of the gravitational 
anomaly among fields of different spin in arbitrary dimen
sions. 
II. THE GENERATING FUNCTION AND THE 
COEFFICIENTS 

Let us start by describing the mathematical terminol
ogy for the chiral anomaly in a gravitational background. 
The index theorem2 tells us that the contributions of one left
handed spino! and one left-handed spin-~ field to the chiral 
anomalyinD = 4Nspace-timedimensions are given, respec
tively, by 

A ~2 = CD IT . xJ2 
i = I smh(xJ2) 

( I) 

and 

At'2=CD IT xJ2 [2jI=/2ICOShXj-l] , (2) 
i= I sinh(xJ2) 

where 

CD = (41T)-DI2 (3) 

and the Xi'S are defined as follows. The curvature tensor can 
be regarded as an antisymmetric two-form matrix R, 

(R t b = R ab/Lydx'" AdxY. (4) 

This antisymmetric D X D matrix can be expressed in terms 
of "eigenvalues" Xi'S: 

0 XI 
0 

-XI 0 

0 X2 

R= 
0 -X2 0 

(5) 
Given (1)-(5), the anomaly is written as 

f dDxa/L(~ -gJ~)= f(A~2+At'2) (6) 

in the presence of one left-handed spino! and one left-handed 
spin-~ field in extended Minkowski space [i.e., one-time and 
(D - I)-space dimensions]. Here J t is a contravariant axial 
current composed of the spino!, spin-~, and associated Fa
deev-Popov-Nielsen ghosts. 

The problem is to express (I) and (2) in terms of R in (5). 
Instead of treating each case separately, let us develop the 
problem in a more general way. We define 

DI2 

AD = CD II fIx;) , (7) 
i=1 

where the functionf(x) is even in X and may take one of the 
forms (I) or (2) say. A simple computation, using (5), provides 
the relation between X and R: 

DI2 I L x~m = - Tr(iR j2m . 
i=1 2 

(8) 
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In terms of the lhs of (8), (7) is expanded and expressed in 
terms of R: 

AD = CD exp[~ Tr lnf(iR)] . (9) 

Suppose the functionf(x) possesses the series expansion 
00 

fIx) = 1 + I bnx2n. (10) 
n=1 

Then, with the help of the logarithmic function series, we 
may write (9) as 

00 1 [ 00 1 {OO }m]1 AD =CD I., Tr I -- - I bn(iR)2n . 
1=0 I. m=1 2m n=1 

(11) 

Hence the quantity AD assumes the form 

00 1 [00 ]1 AD = CD I., Tr I amR 2m , 
I=O/' m=1 

(12) 

whereupon the desired final expression which includes only 
D-form terms reads 

X (a l Tr R 2)nt(a2 Tr R 4t2 .•• (aN Tr R 2NtN. (13) 

Here the summation over ni runs from zero to a certain in
teger such that the constraint 

n l + 2n2 + 3n3 + ... +NnN =N ' 

is obeyed. 
The problem is thus reduced to discovering how to ex

press the {am) in terms of the {b n }. This can be done by 
picking up only R 2m terms within the square brackets of (11). 
The answer is 

(-It+1 ~jnj=m (n l +n2+ ... +nN -1)! 
a - '5' 

m - 2 (;;;J n
l
!n2! ... nN! 

(14) 

where one should notice that the summation is actually over 
a set of {ni : 1 <i<m}. The last step to our goal consists in 
replacing the constraint over the {n i }, essentially a Kron
ecker delta, by 

8 = _1_ (21T dO /iOlnt + 2n2 + ... + NnN- m) • 
m.nt + 2n2 + ... + NnN 21T Jo 

(15) 

[The factor of 2 in the exponent on the rhs of (15) is chosen 
for later convenience.] Then (14) can be written as 

a = - dOe- 2imO ( l)m+ I Sa21T 

m 41T 0 

Since m <N, we may add terms like zz,N + 1 (I> 1) within the 
brackets of (16) without affecting the residue. In other words 
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the interior of the bracket can be replaced by f(z) - 1. This 
finally yields the elegant result 

i( - l)m+ Ii 
am = 41T jdzz- 2m - l ln f (z) 

= dz z-2m -lnf(z), i( - l)m+1 f d 
81Tm dz 

(17) 

where the second line is obtained by partially integrating the 
first line and observing that lnf(z)/zz,m-o asZ---'oo. Summa
rizing, the answer is given by (13) with coefficients am's cal
culated by (17). 

Now we are in a position to compute each case quickly. 
(i) Spin-! field: Here (1) provides the function 

fIx) = (x/2)/sinh(x/2) 

and (17) reduces to 

a l12 = i(-l)m i dz . 
m 81Tm j zz,m(e' _ 1) 

Since 

z 00 zn 
-=IB-
e' - 1 n = 0 n n! ' 

where Bn is the Bernoulli number, we obtain 

al/2 = (- l)m + lB. 
m 4m(2m)! 2m 

(18) 

(19) 

(20) 

This result agrees with the one in Ref. 5 which was derived 
by a complicated Feynman graph calculation. 

(ii) Spin-~ field: This case resembles the spin-! field. The 
difference lies in the extra factor on the right of(2), which can 
be manipulated with the help of (8); viz. 

00 1 
2 I cosh Xj = I -- Tr(iR )2n 

j n =0 (2n)! 

= Tr(eiR
) (21) 

where the last line is obtained because Tr(R 2n + I) = O. Re
calling how we derived (13), and combining (12) with (21), we 
arrive at 

(22) 

The answer involves the spin-! coefficients of (20). The first 
term in the square bracket in (22) represents the pure spin-~ 
part while the second term corresponds to the contribution 
of the fictitious particles. 

Next we consider the purely gravitational anomaly6 
which arises in (4N - 2) dimensions in the context 

- ~ J d4N-2X~ -g PW(Dp.Ev +DAJ 

= 41TJ (DaEb - DbEaJ-b (A D=4N)' (23) 
8R ab 

Here the lhs is the variation of the one-loop effective action 
for matter fields under the infinitesimal general coordinate 
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transformation x"-+x" + e', while the rhs comes by differ
entiating a certain 4N-form A4N with respect to a matrix 
element of the two-form matrix R of (4). Ifthe rhs does not 
vanish it implies that invariance under the infinitesimal co
ordinate transformation is broken; equivalently when one 
writes the lhs of (23) as 

f d 4N - 2x F"i€VDIlTllv , 

one infers that the induced energy-momentum tensor is not 
conserved. Indeed there are at least three kinds offield (spin
!, spin-~, and antisymmetric tensor) which can contribute to 
the rhs of (23). For spino! and spin-~, A4N is none other than 
the chiral anomaly (13), explicitly worked out in (20) and 
(22). 

The corresponding quantity for an antisymmetric ten
sor field in D = 4N dimensions is given by 

I D/2 x· 
Ab = --CD IT --'-. 

8 ;= I tanh x; 
(24) 

We can just as easily apply the former procedure to express 
(24) in terms of R by setting 

fIx) = x/tanh x . (25) 

This time (17) becomes 

I i(-ltfd -2m e
2Z 

a = zz ---
n 21Tm e4z _ 1 

= (-It+ 12
4m 

B (1.) 
4m(2m)! 2m 2 ' (26) 

where we have used the generating function for the Bernoulli 
polynomial, 

(27) 

Combining (13) with (24), the antisymmetric contribution 
can be written as 

C n,+ 2n2+···+ NnN=N 
Ab = -.-!!... ')' ----

8 (;;;l nl !n2!···nN ! 

x(al Tr R 2t'(a~ Tr R 4t2 ... (a1 Tr R 2NtN (28) 

with the coefficients derived in (26). Incorporating (28) into 
the rhs of(23) we easily obtain the antisymmetric tensor con
tribution to the gravitational anomaly. 

At last we have all the information needed to look for a 
cancellation of the gravitational anomaly among fields of 
different spin. This problem has already been addressed by 
the authors of Ref. 6 who analyzed the expressions up to 14 
dimensions. However, we are armed· with general explicit 
formulas for A }{2, A ~2, and A b in arbitrary dimensions, 
and can tackle the problem more comprehensively. We give 
below the simple explicit analysis as an alternative to that of 
Ref. 6. Since we are seeking a nontrivial solution of the equa
tion 

(29) 

we may set C3 = 1 in general. After obtaining the solution for 
CI and C2 as rational numbers (if it exists) we can convert the 
solution to integers by appropriate multiplication. 

In order to reveal an inconsistency in a certain dimen-
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sion we need at least three equations for C I and C2• We choose 
those three equations as the ones that provide the coeffi
cients of (Tr R 2)N, (Tr R 2)N - 2 Tr R 4, and 
(Tr R 2)N - 3 Tr R 6, which are, respectively, 

CI - (20N + 3)C2 + (- 8)N-I = 0, (30) 

CI - (20N - 285)c2 - ~(- 8)N-I = 0, 

CI - (20N + 435)c2 + ¥( - 8)N-I = O. 

(31) 

(32) 

Amazingly, Eqs. (30)-(32) are linearly dependent and give a 
unique solution 

CI = (20N - 61)( - 8)N-3, 

C2 = ( - 8)N - 3 • 

(33) 

(34) 

This then is perfectly acceptable when N = 1, 2, and 3, i.e., in 
two, six, and ten space-time dimensions. For higher N there 
are further consistency conditions. It is enough to examine 
the coefficient of(Tr R 2)N - 4(Tr R 4)2 which, ifit is to vanish, 
necessitates that 

CI - (20N - 573)C2 +~( - 8)N-I =0. (35) 

There is now disagreement between (33), (34), and (35). And 
this proves that there is no way to cancel the gravitational 
anomalies among spino!, spin-~, and antisymmetric tensor 
fields if N>4, or in space-times of dimension D> 14. Of 
course it is not inconceivable that cancellation can be 
achieved by including extra fields belonging to even more 
exotic Lorentz group representations, if we are not deterred 
by the cause of renormalizability which is anyway lost. 

Note added in proof After submitting this paper, we 
received a preprint from Osaka by R. Endo and M. Takao 
who derive the gravitational anomalies for spino! and spin~ 
via Fujikawa'S path integral method. They give explicit 
answers up to 16 dimensions as in Ref. 6, which are particu
lar cases of our general formulas (20), (22), and (28). Their 
paper is to be published in the Prog. Theor. Phys. 
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The statistical operator is a weighted sum, over eigenvalues of a complete commuting set of 
observab1es, of pure states each evolving unitarily from a microstate of the set. For every complete 
commuting set q there is a latent ensemble, the diagonal projection of the statistical operator in q 
representation, which determines the probabilities of observables in set q. When constraints 
imposed by a measurement situation makes these observables measurable, the latent q ensemble is 
realized as the initial state of a new ensemble, which then evolves unitarily. Realization of a latent 
ensemble is an irreversible process with non-negative entropy increase. Reduced ensembles are 
realized when the constraints of the measurement situation permit only a subset of q observables 
to be measurable. Successive realizations in response to changing measurement situations drive 
the system toward a state of maximum entropy. This mechanism explains the approach to 
equilibrium, and the change of an equilibrium system to an equilibrium state of increased entropy 
as constraints are relaxed. 

I. INTRODUCTION 

When the statistical operator (density matrix) of a sys
tem 1,2 evolves by unitary transformation in time, the entropy 
is constant. The von Neumann formula for the entropy of a 
system described by statistical operator wt at time tis 

S [wt ] = - tr [Wt In(wt)), (Ll) 
which is invariant to unitary transformations. This appears 
to be an unsatisfactory result. It is well known, for example, 
that the entropy of an isolated system increases as the system 
irreversibly approaches equilibrium. The properties of en
tropy have been reviewed by Wehr13

; many other expres
sions for entropy have been formulated. However, only the 
definition given in (1.1) will be used in this paper. We follow 
von Neumann4 in proposing a second mechanism, in addi
tion to unitary transformation, for change of the statistical 
operator; one which increases the entropy of the system. It is 
the mechanism of realization of latent ensembles. 

In Sec. II, a v ensemble is described. It is the most gen
eral mixed state which can be formed from the eigenstates of 
observables in a complete commuting set v. It evolves by 
unitary transformation. Since this ensemble is a compact op
erator its spectrum must be discrete, which implies that the 
spectrum of v must also be discrete. The requirement of dis
crete spectra for observables is discussed in Sec. III; it is a 
necessary requirement for the von Neumann formula for en
tropy given in (1.1). In Sec. IV the latent ensemble is defined 
for a complete commuting set of observables q. It is the diag
onal projection of the statistical operator in q representation, 
and it specifies the expectation values of the microstates of q 
at any time. The latent q ensemble may be realized as a q 
ensemble, at which time it becomes the initial state of a new 
statistical operator which then evolves unitarily. As shown 
in Sec. V the evolution of the state of a system is described as 
a succession of ensembles each of which is a realization of a 
latent ensemble in the preceding one. It is proven in Sec. VI 
that the entropy of the system increases at each realization, 
unless the system is in equilibrium. In Sec. VII reduced en-

sembles for observables in a subset II of the complete com
muting set q are described; they give the expectation values 
of the aggregates of microstates belonging to the degenerate 
eigenvalues u. The microstates in a particular aggregate have 
equal statistical weights in the ensemble; for equilibrium en
sembles this is the basis for the "fundamental postulate of 
equilibrium statistical mechanics." The entropy for the re
duced ensemble for the subset II of q is greater than that for 
the q ensemble for the complete commuting set q when the 
statistical weights of the aggregates are specified. Measure
ment situations and the constraints which they impose are 
discussed in Sec. VIII; these considerations explain the ap
proach of a system to equilibrium. Equilibrium ensembles 
are discussed in Sec. IX. The equilibrium state of a system is 
the state of highest entropy consistent with the constraints of 
the measurement situation. 

II. STATISTICAL OPERATOR FOR A COMPLETE 
COMMUTING SET OF OBSERVABLES 

If v represents a complete commuting setS of observa
bles of a quantum system and Iv) is a simultaneous eigenvec
tor belonging to the set of eigenvalues v ofV, then the vector 
at time t, 

(2.1) 

evolves from its initial value Iv) at time to as determined by 
the unitary time-evolution operator Ut t • For a system with 
time-dependent Hamiltonian fIt> ' 0 

(2.2) 

where T is the Dyson time-ordering operator. A statistical 
operator (density matrix), which we term the v ensemble, can 
be constructed from the vectors of (2.1) as 

Wt,tJv) = Ilv,t,to)W(V)(v,t,tol 

A A 1 
= Ut,to w(v) U t-:;o' t"~to. (2.3) 
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The notation f" ... indicates a spectral sum over the eigenval
ues v ofv. Since these eigenvalues are nondegenerate, the v 
ensemble is the most general mixed state which can be 
formed from the eigenstates of observables in the commuting 
set v. The v ensemble evolves unitarily from its initial value 
w(v) at I = 10 , 

w(v) = 1Iv)W(v)(vl, v = 1Iv)v(vl. (2.4) 

In (2.3) the time-independent eigenvalues w(v) of W,.10 (v) 
are the statistical weights of the eigenstates Iv,I,/o) in the v 
ensemble. They satisfy 

w(v»o, 1 w(v) = tr[w,.,oIV)] = 1. (2.5) 

Accordingly, w"'o (v) is a positive Hermitian operator. It is 
also a compact (Hilbert-Schmidt) operator6 so that its spec
trum must be discrete; w(v) can assume at most a denumera
ble infinity of real values. In (2.4) Iv) is an eigenvector ofw(v) 
belonging to the discrete eigenvalue w(v), and Iv) is also an 
eigenvector ofv belonging to the eigenvalue v. It follows that 
the spectrum of the set of observables v, as well as that of 
w(v), must be discrete. The eigenvectors Iv) ofv and w(v), as 
well as the eigenvectors IV,I,to) of w"'o (v), are normalized to 
unity, not to the Dirac delta or other distribution. 

III. DISCRETE SPECTRUM OF OBSERVABLES 

Many of the observables of quantum systems have spec
tra which are continuous, or continuous in part, with Dirac
delta normalization of their eigenvectors. However it has 
been shown 7 that over a continuous interval of its spectrum 
an observable is a "generalized coordinate" for which a con
jugate "generalized momentum" can be found. A contin
uous interval in the spectrum of an observable can be re
placed, to an arbitrary degree of accuracy, by a discrete 
spectrum and a parameter. The parameter is the length of 
the interval over which the spectrum of the conjugate ob
servable extends. The eigenvalues of the discrete spectrum 
depend on the parameter, which controls the spacing 
between them, the spectrum becoming continuous only in 
the physically unattainable limit when the parameter be
comes infinite. All parameters are finite, and therefore the 
spectra of all observables are discrete. Accordingly, the com
plete commuting set of observables v with discrete spectra, 
which specifies the v ensemble w"'o (v), may comprise any 
commuting observables of the system. We shall ignore the 
dependence of the statistical operator on the parameters, 
treating them as constants. It should be noted that if the 
Hamiltonian depends on such parameters, then the changes 
in energy of the system which would occur if these param
eters were varied would constitute work in the thermody
namic sense. 

Since the spectrum of observables v is discrete, the oper
ator 

Ply) = Iv)(vl, traceP(v) = 1, (3.1) 

is a projector. It specifies a microstate, a spectral state of a 
complete commuting set of observables. The v ensemble of 
(2.3) becomes 
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w"'o (v) = 1 W(V)P"'o (v), 

where the pure state 
A A A A_I 

P"'o(v) = U"'oP(v)U"'o 

(3.2) 

(3.3) 

evolves unitarily from the microstate P (v) according to the 
von Neumann equation, 

Hi a,p,.,o (v) = k 'P"'o (v), P 10.10 (v) = P (v), (3.4) 

in which k I is the commutation operator, k, = [H, , ... ] . 
Since the spectrum of v is discrete, the entropy of the v 

ensemble can be defined by the von Neumann formula, (1.1), 

S [w"'o (v)] = - tr{ W "/o (v)ln [w"'o (v)] J 

= -1 w(v)ln[w(v)], (3.5) 

independently of time. Note that the entropy is constant 
when the statistical operator evolves by unitary transforma
tion even though the Hamiltonian H, may be time depen
dent. 

IV. LATENT ENSEMBLES 

Let q represent a complete commuting set of observa
bles of the system (other than, or the same as, v). In spectral 
representation, 

q = i q.P(q), i = i P(q), 

where P (q) is the projector 

P(q) = Iq) (ql, tr P(q) = 1, 

(4.1) 

(4.2) 

which specifies a q microstate belonging to the eigenvalue q 
in the discrete, nondegenerate spectrum of q. 

The expectation of the q microstate when the statistical 
operator is the v ensemble is 

W
'
•10 (v;q,q) = tr [P (q)w,.10 (v)] 

r A 2 
= )"w(v) I (qlU,./.lv) I , (4.3) 

which is a diagonal matrix element of W
'
•10 (v) in q representa

tion. Only these diagonal elements enter into the calculation 
of expectation values of functions of q in the v ensemble. 

We define, within the v ensemble, an ensemble which 
we term the latent q ensemble. It is the diagonal projection of 
W

"/o 
(v) in q representation, 

w"/o(v;q) = i P(q)tr [P(q)w,.,oIv)] 

= i lq)w,.Io (V;q,q)(ql. 

From (2.5), (4.3), and (4.4), 

W
'
,10 (v;q,q) >0, 

tr [w",oIv;q)] = i w"'o(v;q,q) = 1, 

(4.4) 

(4.5) 

(4.6) 

so that the latent q ensemble is a compact, positive, Hermi
tian operator. The von Neumann entropy of the latent q en
semble is 
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S [Wt.to (v;q)] = - tr {wt.to (v;q)ln [wt.to (v;q)] 1 

= - i Wt.to (v;q,q)ln [wt.to (v;q,q)] . (4.7) 

According to (4.3) this entropy depends on time unless both 
of the following conditions are satisfied: (1) the Hamiltonian 
is time independent, Ht = H, so that 

Ut.to = exp [ - iH (t - to)/Ii]; (4.8) 

and (2) H commutes with either one of the complete com
muting sets v or q. 

The expectation values of the microstates F (q), and of all 
functions of q, are the same in the latent q ensemble, 
wt.", (v;q), as in the v ensemble itself. Since F (q) is a projector 
in (4.4), its expectation value is 

tr[F(q)wt.to(v;q)] = tr[F(q)wt,,,,(v)]. (4.9) 

The latent q ensemble predicts the probabilities of the q mi
crostates at time t>to and, consequently, the results of mea
surement of any function of q, when the system is in a state 
described by the v ensemble. 

V. REALIZATION OF THE LATENT 4 ENSEMBLE 

The latent q ensemble may be realized as a q ensemble, 
supplanting the v ensemble as the statistical operator of the 
system at the moment of realization. Let the value of 
wt,,,,fV;q,q) at time tl be 

wt.,to(v;q,q) = w(q). (5.1) 

The statistical operator of the system for t>tl' which is con
ditional on the set of values ofw(q) for all eigenvalues q, is the 
q ensemble, the state prepared at t I from the microstates F (q) 
with statistical weights w(q). The q ensemble for t>tl is 

i A A AA AI 

Wt,t.(q) = q w(q)Pt,t.(q), Pt,t.(q) = Ut,t.P(q) U t-:; •. (5.2) 

It is the realization of the latent q ensemble at t I' According 
to (5.1) the statistical weights w(q) of the pure states Ft,t. (q) in 
the q ensemble are the expectation values of the q microstates 
in the latent q ensemble at t I' The latent q ensemble is the 
initial value of the statistical operator Wt,t. (q) for t>tl. The 
von Neumann entropy of the q ensemble is 

S [Wt,t.(q)] = - i w(q) In[w(q)], (5.3) 

independent oftime for t>tl' the same as that given in (4.7) 
for the latent q ensemble at t I' 

In the preceding, the observables q can be any complete 
commuting set among all the observables of the system. In 
the statistical operator Wt,to (v) in (2.3), for each such set q 
there is a latent q ensemble, Wt,to (v;q) in (4.4). Anyone of these 
q ensembles has the potentiality for realization at some time 
t I > to' Realization of a latent ensemble is an actual physical 
transformation of the system. It is the first step in any mea
suring process: identification of the set of q microstates as the 
set on which measurements will be made. It can be likened to 
an ideal pass filtrationS which passes the entire spectrum of q 
microstates of the complete commuting set q while preserv
ing their statistical weights. 

Comparison of the expression for Wt,to (v) in (3.2) with 
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that for Wt,t. (q) in (5.2) shows that Wt,to (v) itself can be consid
ered to have been realized at to from the latent v ensemble of a 
prior statistical operator. The evolution of the state of a sys
tem is described, accordingly, as a succession of ensembles 
each of which is a realization of a latent ensemble in the 
preceding one. The initial time for each ensemble is the mo
ment of its realization. Each ensemble is a weighted average 
of pure states which evolve unitarily from the microstates of 
some complete commuting set of observables at its initial 
time. The statistical weight of each pure state in the ensemble 
is the same as the probability, specified at the initial time, of 
the microstate from which it evolves, and the entropy of the 
system, determined by these statistical weights, remains con
stant. 

VI. ENTROPY CHANGE WHEN LATENT ENSEMBLE IS 
REALIZED 

Although the von Neumann entropy ofa system which 
is evolving unitarily is constant, at the moment of realization 
of a latent ensemble the entropy of the system will increase 
(unless the system is in equilibrium, in which case the en
tropy remains constant). The theorem to be demonstrated is 

(6.1) 

where the entropy of the v ensemble is given in (3.5) for 
tl>t>to and that ofthe q ensemble is given in (5.3) for t>tl. 

Klein's inequality9 for two real numbers, x>O, y>O, is 

y In x - yin y<x - y, (6.2) 

with the equality holding for x = y. (It follows from the ine
quality, easily demonstrated graphically, 

Inx<x - 1, x>O 

on replacing x by x/y and multiplying the result by y.) Let 
y = w(v), x = w(q). Then from (6.2), 

11' <qIUt •. t.lvW{w(v)ln[w(q)] - w(v)ln[w(v)] 

- w(q) + w(v) 1 <0. (6.3) 

But from (5.1) and (4.3), 

w(q) = 11 (qIUt.,,,,IvWw(v). (6.4) 

Also, 

i l(qIUt •. to lv)1
2

= II(qIUt •. tolvW= 1. (6.5) 

Therefore, from (6.3), 

i w(q)ln[w(q)] - 1 w(v)ln[w(v)] <0, (6.6) 

so that (6.1) follows, and the theorem is proved. The equality 
holds in (6.1) when w(q) = w(v) in (6.4). This is the case ifthe 
Hamiltonian is time independent so that (4.8) holds, and if 
both sets q and v are the same and commute with H. In this 
case no change occurs in the statistical operator at t I; the 
system is in equilibrium. 

The physical basis for the inequality (6.1) is the follow
ing: when a particular latent q ensemble w,.to (v;q) is realized 
at tIthe potentiality for realization of latent ensembles for 
other complete commuting sets of observables is lost, togeth-
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er with the information which they contain regarding the 
microstates of those observables. This loss of information 
results on replacement of the statistical operator wt.to (v) by its 
diagonal projection in 4 representation, )0 the statistical op
erator Wt.t, (4) at f = f). Since wt.to(v) cannot be reconstructed 
from its diagonal elements in a single 4 representation alone, 
the realization of a latent ensemble is an irreversible process, 
as indicated by the entropy increase in (6.1). 

VII. REDUCED STATISTICAL OPERATORS 

The latent 4 ensemble wt,(o (v;4) depends on the expecta
tion values of the microstates P (q) for a complete commuting 
set of observables 4. We now consider reduced ensembles 
which depend on probabilities for only a subset 0 from the set 
4. Let Oc be the complementary set to 0 in 4, and let the 
eigenvalues of 0 be u, of Oc be Uc' Define the projector 

P(u) = i/'(q), g(u) = tr[P(u)]. (7.1) 

Here, P (u) represents the aggregate of q microstates belong
ing to the degenerate eigenvalue u, andg(u) is the multiplicity 
ofu. Accordingly, 

i P(u) = i P(q) = i, 0 = i uP (u). (7.2) 

The expectation values of 0 and of all functions of 0 in the v 
ensemble are determined by the expectations of P (u). From 
(4.3) and (7.1) these are 

trace [ P(u)wt.tJv)] = r wt.tJv;q,q). Jue 
(7.3) 

The latent 0 ensemble is the diagonal projection of wt.tJv), 

W (v'o) = 1 tr[w (v) P (U)] P (u) 
t.to ' t.to () () 

q gu gu 

= i p(u)tr[wt.t (v) P(U)]. (7.4) 
u 0 g(u) 

The latent 0 ensemble is a compact, positive, Hermitian op
erator with unit trace. Since P (u) is a projector, its expecta
tion value (and that of any function of 0) in the latent 0 en
semble, wt.to (v;o), is the same as in wt.to (v). 

Realization of the latent 0 ensemble at a time f) gives the 
o ensemble, the statistical operator for r>f), 

A i A w(u) A A A A _) 

Wtt (u)= Ptt (u)--, p t.t, = ut.t,P(u) U t.t" (7.5) 
., u" g(u) 

where 

w(u) = tr [P (u)wt,.to (v)) . (7.6) 
The von Neumann entropy for the 0 ensemble is 

S [Wtt (0)] = - i w(u)ln [W(U)], 
., u g(u) 

(7.7) 

independent of time for t';pf). 

In (5.3) the entropy of the 4 ensemble realized at f) from 
the latent ensemble W t t (v;4) is specified by the statistical 
weights w(q) of the indi;idual microstates P(q). In (7.7) the 
entropy of the 0 ensemble is specified by the statistical 
weights w(u) of the aggregates P(u). It can be shown that 
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S [Wt.t,(O)]>S [wt.t,(4)), (7.8) 

for all 4 ensembles satisfying the condition that 

L w(q) = w(u), (7.9) 

for specified values of w(u) for the aggregates. We vary w(q) in 
S [wt.t,(q)) given by (5.3) to obtain the maximum subject to 
the constraints (7.9), getting 

i {-In[w(q)] +A(u)}8w(q) =0, (7.10) 

with Lagrange multipliers A (u). Accordingly, the values of 
w(q) which maximize S [wt.t, (4)] are 

wm(q) = w(u)/g(u), (7.11) 

for the microstatesP (q) in the aggregateP (u). The 4 ensemble 
with these statistical weights is 

w~,(4) = i pt.t,(4)wm(q) = wt.t,(o). (7.12) 

Accordingly the theorem of (7.8) and (7.9) is proven. From 
(7.11) the g(u) microstates P (q) which belong to the same de
generate eigenvalue u ofo all have the same expectation val
ue wm (q) in the initial 0 ensemble at f). 

Since the initial values of the 4 ensemble and the 0 en
semble are the latent ensembles from which they are realized 
at f), and since f) may be any time after fo, it follows from (7.8) 
and (7.9) that 

S [wt.to(v;o))>S [wt.to (v;4)], (7.13) 

for all latent 4 ensembles wt.to (v;4) satisfying the condition 

L tr [wt.tJv)P (q)) = tr[wt.tJv)P(u)], (7.14) 

for specified values of tr [~t.to (v)P (u)) . In the latent 0 ensem
ble, the g(u) microstates P (q) belonging to the degenerate 
eigenvalue u of 0 have the same probability, equal to 
tr [wt.to (v)P (u)) /g(u). 

In Sec. V we likened the realization of the latent ensem
ble w(v;4)to an ideal pass filtration of the microstates P (q); we 
may liken the realization of a latent 0 ensemble to a filtration 
of q microstates with a coarse filter which passes the aggre
gates P (u) while preserving their statistical weights and allot
ting an equal fraction l/g(u) of the weight of the aggregate 
P (u) to each of its microstates. 

VIII. THE MEASUREMENT SITUATION; APPROACH TO 
EQUILIBRIUM 

A quantum system is described by its observable, a col
lection of self-adjoint Hermitian operators with a common 
domain of Hermiticity.7 If the observables in the complete 
commuting set 4 are to be measured, the system must be 
constrained so that the probabilities of the 4 microstates can 
be assessed. Constraints isolate the system, regulating its in
teractions with its surroundings in order that the observables 
in 4 should be measurable. We use the term 0 measurement 
situation when the imposed constraints are appropriate to 
determine the probabilities of the P (u) aggregates of the mi
crostates P (q). In a 0 measurement situation the observables 
in the complementary set Oc in 4 are not measurable. The 
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most highly constrained measurement situation is the one in 
which the subset u is the entire commuting set q, and the 
aggregates P (u) each consist of only one microstate P (q). The 
fewer the observables in the subset u to be measurable, the 
fewer the constraints needed in the measurement situation 
and the larger the aggregate P (u). When the constraints of au 
measurement situation are imposed, the response of the sys
tem is realization of the latent u ensemble compatible with 
the imposed constraints. Thereafter the statistical operator 
evolves by unitary transformation until the next measure
ment situation occurs. A measurement situation may arise 
naturally in the development of the interaction between a 
system and its surroundings, or it may be contrived in the 
laboratory (the motivation is irrelevant). 

These considerations explain the approach of a system 
to equilibrium. For any statistical operator of the system at a 
given time, realization of a latent ensemble will increase the 
entropy of the system according to (6.1) unless the system is 
in equilibrium. In equilibrium the Hamiltonian iI is time 
independent, and the measurement situation permits real
ization of an ensemble for a set of observables which com
mute with iI. Until these conditions are met the state of the 
system will change through successive realization of latent 
ensembles, which increase the entropy to a maximum value 
when equilibrium is attained. 

IX. EQUILIBRIUM ENSEMBLES 

If the constraints imposed by the measurement situa
tion are relaxed so that the Hamiltonian itself is the only 
measurable observable in the subset u of the commuting set 
q, then the equilibrium ensemble is an iI ensemble, a state of 
higher entropy than Weq (q) according to (7.8). In this case, 
from (7.12), 

W (iI)=l P(E)w(E) =J.P(q)Wm(q)=wm(q) (9.1) 
eq E g(E ) q eq , 

where E is an eigenvalue of if. This ensemble satisfies the so
called fundamental postulate of equilibrium statistical me
chanics: all microstates of a given energy have the same 
probability in a system at equilibrium. 11 According to (7.11) 
this probability is 

wm(q) = w(E)/g(E). (9.2) 

The microcanonical ensemble is a special case of the iI en
semble when the constraints of the measurement situation 
impose complete isolation of the system from its surround
ings. In this case w(E) = 8 E.Eo where Eo is the energ;y of the 
isolated system. The von Neumann entropy for the H ensem
ble is 

S [weq(iI)] = LW(E)ln[g(E)] - L w(E)ln[w(E)], 

(9.3) 

which is greater than the weighted sum of the entropies, 
Infg(E )], for the individual microcanonical ensembles of en
ergy E. 
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Of the possible equilibrium states oCa system, described 
by statistical operators which commute with the time-inde
pendent Hamiltonian, the q ensemble, Weq (q), is the state 
with the lowest entropy. The actual equilibrium state will be 
the one with the maximum entropy compatible with the con
straints of the measurement situation. Any equilibrium state 
with entropy less than this maximum will contain latent en
sembles of higher entropy whose realizations, in accordance 
with (6.1), will increase the entropy of the system, driving it 
to the state of maximum entropy consistent with the con
straints. Acco!dingly the statistical operator Weq (q) will 
change to Weq (H) as the system is driven to the state of higher 
entropy when the constraints of the q measurement situation 
are relaxed to those of the iI measurement situation. The 
constraints may be relaxed further by requiring, for exam
ple, that only the average value of iI be specified, instead of 
the probabilities w(E ) of each aggregate P (E) in Weq (iI). The 
new equilibrium state with maximum entropy subject to this 
constraint is, of course, the canonical ensemble whose tem
perature is determined by the specified average value of iI. 

In the iI ensemble and the canonical ensemble the sub
set u of the complete commuting set q contains the single 
observable iI. When the number operator commutes with iI, 
u may include both iI and if. If the constraints permit both 
to be measurable, then, from (7.12), the equilibrium statisti-
cal operator is . 

W (HN)=l r P(E,N)w(E,N) 
eq' EJN g(E,N) 

(9.4) 

In petit ensembles, the number of particles in the system is a 
specified number No, so that w(E,N) = w(E,No)8(N,No), and 
Weq (iI,N) becomes the same as Weq (iI) when reference to No 
is suppressed. But if the constraints on the system described 
by (9.4) are relaxed by requiring that only the average values 
(iI ) and (N) be specified, the new equilibrium state of maxi
mum entropy subject to these constraints is the grand ca
nonical ensemble whose temperature and chemical potential 
are determined, respectively, by the specified values of (iI) 
and (N). 
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A result on nonperiodic tilings is generalized and related to the problem of the origin of crystalline 
symmetry. 

I. INTRODUCTION 

It is a very general physical phenomenon that the mo
lecular configurations of matter tend to be crystalline, i.e., 
periodic, at low temperature (and any pressure, specifically 
low pressure). There is a major gap in the understanding of 
this phenomenon 1-4 and it is of a mathematical character of 
independent interest, as described below. 

Using statistical mechanics one can model matter as 
follows. The possible state of each molecule is viewed as a 
random variable with the joint distribution of (many mole
cule) configurations given by a standard Gibbs ensemble, a 
known probability measure. At low temperature and pres
sure the measure is concentrated (uniformly) on those con
figurations with minimal total energy, where the total ener
gy of a configuration is the sum over energy distributions 
from pairs (and to a minor extent by triplets, etc.) of neigh
boring molecules. Thus in this low-temperature, low-pres
sure limit the variables in a sense lose their randomness and 
one sees that configurations minimizing such a sum are ex
pected to have a strong tendency to be periodic. The feature 
we wish to emphasize is that solutions of some general class 
of minimization problems should necessarily exhibit nontri
vial symmetries. 

It is a major open question in physics to understand the 
generality in which this scheme (the "crystal problem") is 
true and the basic mechanisms behind it.l-4 Aside from its 
relevance to physics this problem is also of mathematical 
significance in its relation to the many optimization prob
lems, such as the isoperimetric problem, for which solutions 
exhibit symmetries which are not easily understood. For the 
isoperimetric and some related problems a method due to 
Steiner has elucidated the symmetry of the solutions.5 Such 
an approach would be welcome for the crystal problem; per
haps its shadow has appeared.6 

The first real progress in the crystal problem has 
emerged in the last decade and consists mostly of rather spe
cific (classical mechanical) models in one and two space di
mensions, usually modeling molecular-bonded solids.6--19 
The mathematical framework is the following. One consia
ers a countable family of variables, {Zj I jEll J, each having 
values in some space W of the form W = X XS, where X is 
"physical space," usually either Rd or a discrete analog such 
as Zd , and S is an "internal space," often finite. In this paper 
we will only consider classical discrete models, with X = '1/ 
and S = {I, 2, ... , N J. Since physically two variables may 
not simultaneously have common X coordinates it is conven
ient to use Zd itselfto index the variables. We will only con
sider two-body, translation-invariant, finite-range potential 
energy functions, that is, real symmetric ("potential") func-

tions Von W'X W', W'~ XS,suchthatforallu,z,winZd 

ands, tinS 

V[(z,s),(w,t)] = V[(z+u,s),(w+u,t)], (1) 

V [(z, s), (w, t)] = 0 unless 1< Iz - wi co <D, 

D a fixed constant. (2) 

(I Vip denotes the p norm of VEZd
; we will be using only 

p = 1, 00.) Since we are analyzing infinite-molecule configu
rations the total energy is not directly accessible; we define 
"ground states" in the DLR sense20.21 as follows. A "config

uration"/,eSzd==Tisa "ground state with respect to (a given 
potential) V", (/'eT v), iffor every finite subset C of Zd and 
every other configurationJ" such thatJ" and/, agree on all 
sites not in C, it follows that Ec. v(/,)<Ec. v(J"). Here Ec. v 
is defined for an arbitrary Jin Tby 

Ec. v(J) = L L [V(z,J(z)), (w,J(w))]. 
{z.w) nC,.<0 

Note that Tv is nonempty by a simple compactness argu
ment. A configurationJwill be called "r-periodic" /jeT r), if 
there exist (at least) r linearly independent vectors v in Zd 
such thatJ(z + v) = J(z) for all z in Zd. Finally, Tv denotes 
the set, perhaps empty (a situation usually called "frustra
tion"), of JeT such that for all z, wEZd

, 

V [(z,J(z)), (w,J(w))] = inf V [(z,J'(z)), (w,J'(w))]. 
f'eT 

Note that Tv k Tv and that the inclusion is often proper even 
when Tv is nonempty. 

In the context of tiling theory Robinson has proven by 
explicit example22 that for any N,56 and d>2 there exist 
"nearest neighbor" [see (3) below] potentials V such that Tv 
is not empty but that no configuration in Tv is (d - 1) peri
odic. The structure of Vis as follows. TwosubsetsK; ofS xS 
are determined, and V has the properties (1), (2), and (with 
{ e; J the usual basis of Zd ) 

V[(z,s),(w,t)] =0, if Iz-wI 1>1, 

V[(z,s),(w,t)] = -1, if z-w=e; 

andIs, t )eKiJ i = 1,2, 

V[(z,s),(w,t)]> -1, if z-w=e; 

andIs, t )EEK; or i>3. 

(3) 

(4) 

(5) 

[It is almost immediate to translate examples from tiling no
tation to the above notation. But note that this requires spe
cial features in the tiling example to be able to associate it 
with some simple lattice, such as Zd , and finite S; this seems 
to exclude examples such as those of Penrose (see Ref. 23).] 
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II. EXTENSION 

One purpose of this paper is to generalize the tiling re
sult from TynT d- 1 = 0 (and Ty#0) to TynT d- 1 = 0. 

Proposition: For any N>56 and d>2 there are potentials 
satisfying (1)-(5) for which there are no r-periodic ground 
states for r>d - 1. 

Proof: Suppose JET ynTd - t for a potential V satisfying 
(1)-(5). For simplicity we will assume d = 2 and thatjis 
periodic along an elementary lattice direction, say horizon
tally; the general case follows easily. This means j consists of 
a vertical strip, repeated horizontally. Since the strip has 
finite width the situation is essentially one-dimensional and 
it then follows immediately from Ref. 6 that there exists 
f'ET ynT2. From the above tiling result it then follows that 
for some z, w, Iz - wit = 1, V[(z,J'(z)), (w,J'(w))) > - 1 
and, f' being two-periodic, there must be a nonzero density 
of such pairs. But then for any large enough "square" subset 
C 2f Zd, Ee. y(f') > Ee. y(f"), where f" coincides with any 
fET y inside C and with f' outside C. This contradiction with 
f'ET y proves our claim. 

Note: Ammann has produced an example, verified in 
detail by Robinson24 reducing the (tiling) bound on N from 
56 to 16. This immediately carries through for our general
ization. The first tiling result of this type (requiring a large N ) 
is due to Berger.2s 

The above examples are somewhat surprising "counter
examples" to the vague thesis of the opening paragraphs. 
Perhaps they can be attributed to some "unphysical" man
ner in which the potential V exploits the shape of the mole
cules, shape here being understood either in the literal sense 
of the tiles or in the general sense of an internal degree of 
freedom. With this in mind we pose the following reformula
tion, which emphasizes the invariance group of V. 

III. FRACTION SPACE 

Let G be a group of 100 isometries acting on Zd, and 
assume G contains all translations of Zd . We emphasize two 
examples: (1) G) = Zd; and (2) G2 is generated by Zd and the 
reflections through the d planes Zj = 0 and the d (d - 1) 
planeszj = ± zk,j#k. Extend the action ofG toZd XZd by 
g(w, z) = (g(w), g(z)) and let m be the number of orbits of G in 
A = {(w, z)ll';;; Iw - zi co .;;;D J. Foreachf in Td definep(f) in 
("fraction space") L ==lRmN

' with coordinate P(f)N" + k be-
. h 1 mg t e relative fraction of those points (z, w), in thejth orbit 
ofG inA, such that (f(z),f(w)) is the k th point inS XS; here 
j = 0, ... , m - 1 and k = 1, ... ,N2

• Given a potential V 
satisfying (2) and invariant under G, i.e., 

V [(z, s), (w, t)] = V [(g(z), s), (g(w), t )], 

for all g in G, (1 ') 

we define q( V) in L * = lRmN
' with coordinates q( V)N'j + k 

= V[(z, s), (w, t )], where (z, w) lies in thejth orbit of G in A 
and (s, t) is the k th element in S XS. Let P = {p (f)ltETd J, 
and let t (jj be the relative fraction in A of points in the jth 
orbit of G. With this notation the energy per particle is 

m-I N' 

ey(f) = L L t(jjp(f)N'j+kq(V)N'j+k' 
}=o k= 1 
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which we denote by the inner product (P (f), q( V). Now it is 
a theorem ofSinai t9,2t thatfin Td is a ground state for Vif 
and only if 

ey(f) = inf ey(f'), 
/'ET d 

i.e., if and only if p(f) lies in a hyperplane of support for P, of 
the family (labeled by c) of parallel hyperplanes 
(p, q(V) = c, with the least c. Consider the following prob
lem: For a given invariance group G, and every V satisfying 
(1'), (2), D> 1, and d, N>2, does there exist a ground state f 
for Vin Td? Note that the role ofagiven potential is precise
ly to select a given direction in L, so the problem of the 
existence of such an fin Td becomes the following. 

Problem: For given G (and all D> 1, d, N>2) does P 
contain all the exposed points of its closure? 

We have seen in the above proposition that this does not 
hold for G = G1 (at least since we allow N> 16). It is an open 
problem whether or not this holds for G = G2• 

We conclude with the following argument which solves 
the problem for G2 under the severe restriction that D = 1. 

Let r d be the set of allIin Td invariant under reflec
tions through all the hyperplanes of the form Zj = n, n in Z. 

There are exactly N 2d 
such/, corresponding to the possible 

restrictions of anf to the unit cube K = {zEZd I Zj = 0 or IJ. 
Givenfin T d as h runs through the translation group Zd the 
restriction ofthef to the translate h (K) agrees with each of 
the restrictions of I Ato K with a well-defined frequency, 
which we denote Hf(f). It is then easy to check that 

p(f) = L p(I)Hf(I), 
jEt d 

proving our assertion. 

IV. CONCLUSION 

This last formulation deemphasizes the role of the inter
action apart from its spatial invariance group, and this to
gether with construction of "fraction space" unifies impor
tant aspects of the crystal problem and tiling theory in a 
common, simple, algebraic framework. However, this will 
eventually need generalization. Since molecules with com
plicated shapes do exist (though presumably not of the type 
of the tiles referred to above!) it is clear that eventually one 
must investigate invariance groups acting on Zd X S not just 
Zd. 
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An invariant theoretical interpretation of the geometry of interacting particle and gauge fields is 
pursued. To this end a critical investigation on Utiyama's interaction theory, both in coordinate 
and geometrical formulation, is discussed. 

I. INTRODUCTION 

The present paper deals with the invariant interpreta
tion of the geometry of interacting particle and gauge fields 
(which have just been the object of geometrical investiga
tions in previous papers l,2). 

To this end we go back to Utiyama's interaction theory, 
both in original3 and current4 formulation, which studies the 
invariance properties of the action density-a Lagrangian 
composed with ajet extension-of a (classical) particle field. 

There we find that the invariance of the action density 
under a Lie group G of gauge transformations leaving the 
Lagrangian invariant, is ensured by a well-known strong 
condition on the jet extension, namely, to be defined by a 
connection form on a G-principal fiber bundle (gauge poten
tial). 

There we also find, however, that sufficience only-not 
necessity as is still claimed5-has been really proved for the 
above condition, which would then stress the possible but 
not yet the essential role of gauge potentials in the theory. 

As a consequence, we are led to restate (Sec. II), in a 
coordinate language close in spirit to Utiyama's, a rigorous 
setting ofthe constitutive elements of the theory, i.e., gauge 
transformations and jet extension of a particle field. 

So the gauge invariance of the action density-the 
gauge invariance principle-can be shown (Sec. III) to be 
ensured by a sufficient and necessary condition, which both 
forces the gauge transformations to belong to G and forces 
the jet extension to undergo covariant transformations. 

Then the geometrical reading of this theory leads us 
(Sec. IV) to regard the particle field as living in a phase space 
(nontrivial vector bundle) which the above twofold invar
iance condition endows with the known structures6 of a 
Higgs metric and a Yang-Mills connection, respectively. 

So an additional requirement on them-the minimal 
coupling principle-can be shown (Sec. V) to be the suffi
cient and necessary condition for the Yang-Mills connec
tion to be reducible to a gauge potential on a G-principal 
fiber bundle, namely, the bundle arising from the symmetry 
breaking of phase space yielded by the Higgs metric. 

II. DEFINITIONS 

Let M be a (four-dimensional, oriented) space-time 
manifold,7 and (Ua) an open covering of M carrying8 (i) a 
GL(n,R )-valuedcocycle(gaP ) and (ii) a gl(n,R )-valuedCartan 
one-form (Fa). 

Transition mappings 

gaP:UanUr~GL(n,R ) 

characterize local vertical vector bundle automorphisms of 
the local phase space 

V=MXRn 

of the particle field defined by wave functions9 

t,ba EC (V), 

up to gauge transformations 

t,ba = gaP't,bp 

on nonempty intersections (Ua nUp ). 
Differential forms lO 

ra:Ua~L (TM,gl(n,R)) 

characterize differential operators on wave functions ll 

Da = d + ra :C(V)~C(L (TM,V)) 

or, equivalently, jet extensions of wave functions 

ja = idEBDa:C(V)~C(V) 
into local jet space 

V= VEBL(TM,V), 

A local Lagrangian 

.Y:V~R, 

composed with jet extension 

~a =jat,ba 

of a wave function t,b a' defines the action density 

J(t,ba) = 'yo~a 
of t,ba (interacting with ra). 

III.INVARIANCE THEOREM 

Assume .Y to be invariant under a local vertical vector 
bundle automorphism k of V iff k is the covariant extension 

k=g 
of a local vertical vector bundle automorphism of V charac
terized by a G-valued transition mapping g-G being a Lie 
group which acts on R n as a closed subgroup of GL(n,R ). 

As a consequence, admissible gauge transformations 
(i.e., leaving the action density invariant) of wave functions 
and their jet extensions will be altogether exhibited by the 
following sufficient and necessary invariance condition. 

Theorem: The action density is invariant under the 
gauge transformations of wave functions, that is, 

J(t,ba) = J(t,bp), 

whenever 

1345 J. Math. Phys. 26 (6), June 1985 0022-2488/85/061345-03$02.50 © 1985 American Institute of Physics 1345 



                                                                                                                                    

"'a =gaP''''P' 
if(i)' cocycle (ga{:J) is G-valued and (ii)' Cartan form (Fa) is of 
adjoint pseudotensorial type12 

rp =adg,;pl.ra +g!pO. 

Proof: In fact we have 

'¢Ia =ja(gaP''''P) 

=ga{:J''''P eDa(ga{:J''''p) 

= ga{:J''''P e (ga{:J.d",p + dga{:J''''p + ra .ga{:J''''p) 

=ga{:J' ("'P eDp"'p) 

+ ga{:J' ( - rp + g,;pl.dga{:J + g,;pl.ra 'ga{:J)''''P' 

that is, 

'¢Ia = (ga{:J + hap)''¢Ip, 

where 

haP =gaP'( -rp +8!pO +adg,;pl.ra) 

is meant, in a natural way, as a local vertical vector bundle 
endomorphism of V. 

Consequently the gauge invariance of the action density 
can be expressed by . 

!£,oka{:J = !£', 

where 

k a{:J = g a{:J + h a{:J 

is a local vertical vector bundle automorphism of V. 
Owing to G invariance of!£', the above condition holds 

true iff ka{:J is the covariant extension of a G-valued transi
tion mapping, that is, 

k a{:J = g a{:J 

or, equivalently, 

haP =0, 

gap being G valued. 
The latter assertion is just statement (i)'. 
The former assertion corresponds to the covariant 

transformation law of the jet extensions of the wave func
tions 

'¢Ia = gaP .'¢Ip 

or, equivalently, to statement (ii)'. 

IV. GEOMETRICAL INTERPRETATION 

Let E be the quotient of local phase space V under the 
equivalence relation defined by cocycle (gaP), together with 
its natural structure of (nontrivial) vector bundlel3 over M
the only one (up to isomorphisms) carrying (gaP) as the cocy
cle of transition mappings of an atlas (<<P a) oflocal trivializa
tions 

«Pa:Ua XR "_E. 

E is the phase space of the particle field, described by its 
sections. 

Then the geometrical reading of the coordinate theory 
is the following. 

Theorem: On phase space E, conditions (i)' and (ii)' cor
respond to l4 (i)" a Higgs metric 
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1]:PE-GL(n,R )IG 

and (ii)" a Yang-Mills connection 

m:PE_L (T(PE ),gl(n,R )), 

respectively. 
Proof: In fact, owing to (i)', there existslS a G-principal 

fiber bundle Q carrying an atlas (sa) of sections over (Ua) 
whose cocycle of transition mappings is (gaP)' Let 

i:Q-PE 

be the reduction of structure group GL(n,R ) to G defined 
byl6 

iosa = «Pa· 

Any other G-principal fiber bundle Q ' carrying an atlas 
(s~) of sections over (Ua ) with cocycle (ga{:J)' is related to Qby 
an isomorphism 

fQ-Q' 

such that 

Consequently, if 

i':Q'-PE 

denotes the reduction defined by 

i'os~ = «P a' 

it follows that 

i'o/= i, 

hence 

i(Q) = i'(Q '). 

Then (ga{:J) is the cocycle of transition mappings over 
(Ua ) of a unique G-principal fiber bundle 

PCPE. 

Now recall that any Higgs metric 1] on E is character
ized by its kernel (which is a G-principal fiber bundle), for its 
values on PE - ker(1]) uniquely follow from the condition on 
1] to be equivariantl7 with respect to the action ofGL(n,R ) on 
PEand GL(n,R )IG' 

Then P is the kernel of a unique Higgs metric 1] on E, 

P= ker(1]). 

Statement (i)" has been so proved. 
Statement (ii)" is then plain,ls for (Fa), owing to (ii)"is 

the set of pullbacks 

ra = «P!m 

of a unique connection form m on PE. This is just a Yang
Mills connection on E, whose role is that of a coupling field 
through jet extension 19 

j = id e D "':C (E)-C (E) 

of the particle field into jet space 

E=EeL(TM,E). 

V. CONCLUDING REMARK 

Let P= ker(1])CPE be the symmetry breaking from 
GL(n,R ) to G yielded by Higgs metric 1] in E. 
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A gauge tensorial component of Yang-Mills connec
tion (J) is the projection of (J)lp onto any ad(G I-invariant sub
space of gl(n,R ), complementary of the Lie algebra g of G. 

Such a component can be asked to vanish, due to its 
tensorial character,20 and then (J) will be said to be a minimal 
coupling field if it is gauge tensorial component-free. 

Thus minimality means reducibility of (J) to a (g-valued) 
connection form on P, 

{J)lp:P~L (TP,g), 

and then it is the additional principle, beyond the gauge in
variance, which finally entails Utiyama's quoted result. 
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Scalar formalism for quantum electrodynamics 
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A set of Feynman rules, similar to the rules of scalar electrodynamics, is derived for a full 
quantum electrodynamics based on the relativistic Klein-Gordon-type wave equation 
{Il,JIp, + m2 + ie a· ($' + iB)}¢ = 0, IIp, = - i ap, - eAp,' for spin-! particles [J. Math. Phys. 
23,1179 (1982); J. Math. Phys. 24, 2366 (1983)]. In this equation, ¢ is a 2X 1 Pauli spinor and U a , 

a = 1,2,3, are the usual 2 X 2 Pauli spin matrices. The irreducible self-energy parts are compared 
to those of conventional quantum electrodynamics. 

I. INTRODUCTION 

The Klein-Gordon-type wave equation for spin-! parti
cles, herein called the "second-order Dirac equation," 

{Ilp,Ilp, + m2 + eia· ('if + zB)J¢ = 0, 

IIp, = - i ap, - eAp,' (Ll) 

has been investigated earlier. 1.2 Its connection with the con
ventional "first-order Dirac equation,,3 

(1.2) 
is brought out most simply by assuming a representation 

a = (~ ~ J, {3= (~ ~) (1.3) 

of the Dirac matrices. Then the wave function ¢ of the sec
ond-order Dirac equation and the dual wave function ¢ can 
be defined through the equation 

~~i} (1.4) 

Indeed it can be verified that Eq. (1.1) together with the equa
tion for the dual wave function, 

- t...· ... 
¢ = - ¢ (a' II + zIl4 ), (1.5) 

are a pair of equations entirely equivalent to the first-order 
Dirac equation (1.2). We will here extend this equivalence to 
include arbitrary radiative corrections by constructing a full 
quantum electrodynamics based on Eq. (1.1).4 In Sec. II we 
derive a set of Feynman rules for such a full quantum elec
trodynamics (QED). These Feynman rules are derived start
ing from conventional QED, thereby assuring the equiv
alence of the new and the old formalism. The Feynman rules 
that emerge from this derivation are summarized in Table II. 
They tum out to be essentially the rules of scalar electrody
namics, aside from the replacement of the factor 
e(hp, + Pip,) for the one-photon vertex of scalar electrody
namics by the new factor e[p f . (1 + iu) + (1 + iu) . Pi]p, for 
the one-photon vertex ofEq. (1.1). Here u signifies a second
rank self-dual spin tensor whose space-time components are 
the ordinary 2 X 2 Pauli matrices 

o U 3 - U 2 U 1 

-U3 0 U 1 u2 
up,v = 

U 2 -U1 0 U 3 

(1.6) 

-U1 -U2 -U3 0 

aJ Permanent address: Physics Department, Wilkes College, Wilkes Barre, 
Pennsylvania 18766. 

Scalar and spinor quantum electrodynamics can thus be 
treated in a unified fashion. 5 

In addition, the "scalar formalism" for QED appears to 
have certain computational advantages. Coulomb Green's 
functions and related structures for Eq. (1.1) have a particu
larly simple form. 2 For this reason the scalar formalism for 
QED is expected to provide an efficient means of evaluating 
radiative corrections in a strong Coulomb potential, where 
the full Coulomb propagator is needed. A program of calcu
lations of radiative corrections in quantum electrodynamics 
is planned in which the scalar formalism will be used. The 
present work lays the theoretical foundation for such a pro
gram of calculations. 

The application of the scalar formalism is indicated 
briefly in Sec. III, where the irreducible self-energy parts are 
compared to those of conventional quantum electrodynam-

ics. 

II. SECOND QUANTIZATION: DERIVATION OF 
FEYNMAN RULES 

As indicated in the Introduction, we begin with conven
tional QED. Since this topic is well known, our presentation 
can be brief, concentrating on the essential new points. Ac
cordingly, the standard lore offield theory will be employed 
as needed, sometimes without explicit comment.6 We use 
radiation gauge QED. The Hamiltonian of the system is 
H = He + Hy + HINT' where 

He = J d 3r: 1/1 t( a' + V + 13m )1/1: (2.1) 

and 

J (1.. 1 ) 
H y = d 3r: T A ' A +T(VXA )2: (2.2) 

are the free Hamiltonians for the matter field and radiation 
field, respectively, and 

HINT = - J d 3r A· (e: 1/1 tal/l: + JEXT) + J d 3r J d 3r' 

(e:l/ltl/l: + pEXT)(e:l/ltll/l': + pEXTI) 
X~----~--~------~--~ 

81Tlr - r'l 

-J d 3r:l/lt 138m 1/1 (2.3) 

is the interaction Hamiltonian. The interaction Hamiltonian 
incorporates a coupling between the electromagnetic field 
and an external c-number source current. 
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Quantum fields t/J and ~ are introduced by defining 
them in terms of the already-quantized If/ field. Equation 
(1.4) provides the prescription for this. It is a standard exer
cise in field theory to expand the quantized If/ field as a linear 
superposition of plane wave spinors. Equation (1.4) then im
plies corresponding expansions for the fields t/J and ~: 

t/J = L ± (l!:.-) 112(J..) 112 { C P (p,t )uP (p)eip. r 
pp=l2E V 

+ d P (p,t)tv p (p)e-ipor}, (2.4) 

~ = L ± (l!:.-)1/2(J..) 112 {CP( p,t)t uP (p)e - ivr 

pp=l2E V 

+ d P (p,t)v P (p)eipor}. (2.5) 

The creation and annihilation operators appearing here are 
by construction those of conventional QED. Accordingly, 
we know that asymptotically they create or annihilate phys
ical electrons or positrons. The normalization is 

{CP'(p',t );CP(p,t It} 

(2.6) 

The time dependence of the associated in-field operators is 
simply 

CIN (p,t ) = CIN (p,O)e - iEt 

and (2.7) 

dIN (p,t)t = dIN (p,o)tiEt
• 

For future reference we also require the explicit expressions 
for the Pauli spinors 7 

and 

uP( )_ E+m+O'·p uP(O) 
p - (2m(E + m))1/2 

vP()- E+m+O'·p vP(O) 
p - (2m(E + mW /2 ' 

in which E = + ( P • P + m2)1/2 and 

ul(O) == (~), u2(0) == (~), 
VI(O) = (~), V2(0) = ( - ~ ). 

(2.8) 

Next we construct an asymptotic state describing an 
incoming electron with probability amplitude fP (p,O) to 
have linear momentum p and polarization p. This state is 

or, in view of Eqs.(2. 7), 

lfe-IN) = LfP(p,O) exp (- iEt) C)N(p,t)tIO,IN). 

This may be transformed into 

i J 3 -I fe- IN) = - m 2 d r t/JIN 10,IN)Ji4fe-, (2.9) 

in which the Schrodinger wave functionfe- is defined as 

fe- = ~fP(p,O) (;.y/2 (~y12 UP(p)eiP'X. (2.10) 

We can obtain Eq. (2.9) by first solving Eq. (2.5) and the 
adjoint ofEq. (2.4) for CP(p,t)t: 
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C P( p,t )t = J d 3{;' y/2 ( ~ y12 

X exp(ip • r{ t/J t uP(p) + ~ ~~)t) . 
Further simplifications are allowed in the free field case, and 
we find 

C)N (p,t)t = :2i J d 3r ~IN Ji4(;') 1/2( ~) 112 

X uP(p) exp (ip • x). 

Equation (2.9) is a form of this result obtained by multiplica
tion by fP(p,O) and summing over p and p. A relation analo
gous to Eq. (2.9) is 

(g.-OUTI = - ~2 J d3rg.-Ji4(0,OUTIt/JoUT' (2.11) 

Most of the Feynman rules that we are looking for may 
be obtained by considering the scattering of an electron by 
the external potential produced by j~. The probability am
plitude for an electron to make a transition from a statefin 
the remote past to a state g in the remote future is given by 
Sgl = (g._ OUTlfe_ IN). Using standard reduction 
techniques this amplitude can be written 

Sgl = ~ J d 4x2 ~ J d 4x l ( - im2)g(2)(p~ + m2) _1_ 
m m Z2 

X7(2,1)(pi + m 2)f(I), (2.12) 

in which 

S = T [exp( - i J: 00 dt HINT ) ] (2.13) 

is the unitary S matrix, and JZ; is a wave function renormal
ization constant canceling a corresponding factor in the 
'T function 

(O,INIT [t/JIN(2~IN(I)S] 10,IN)/( - im2
) 

7(2,1) = (O,INIS 10,IN) . 

(2.14) 

Our next step is to evaluate the numerator and denomi
nator in Eq. (2.14). To do this we substitute the expression 
(2.13) for S, using the interaction Hamiltonian (2.3). The ex
ponential involving 

-J d 3r AIN • (e: If/\Nalf/IN: + JEXT) 

is expanded and the vacuum expectation value of products of 
the vector potential is worked out with the help of the equa
tion 

(O,INIT [A ~N(2)A ~N(I)] 10,IN) 

(
ala a2b ) 

= ~ab --vr [-iDF (2,1)], (2.15) 

in which 

D (21) =J d
4

k eik . x 1 
F , (21T)4 k 2 _ iE 

(2.16) 

is the scalar photon propagator. The resulting series, in 
which the photon operators A have been replaced by expres-
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sions involving the c numbers - iDF (2, 1) can then be re
summed to give eventually 

(O,INIT [t,6IN(2)~IN(I)S] 10,IN)/( - im2
) 

= (0'INIT[t,6IN(2)~IN(I) exp [( - i12) J d 4x2 d 4xI 

Xi[jJL(2) + j!XT(2)]DF (2,I)i[jJL(I) + j!XT(I)] 

+ i J d 4x: ~Bm'/l:ij 10,IN)/( - im2), (2.17) 

j JL == ie: '/lIN r JL '/lIN :. (2.18) 

The noncovariant terms associated with the Coulomb gauge 
quantization have been eliminated in Eq. (2.17) by a standard 
technique involving integration by parts and current conser
vation. The gamma matrices in Eq. (2.18) are defined by 
ra = - iPaa' a = 1,2,3, and r4 ==p. Also, ~== '/Itp. 

To proceed, we first rewrite the expression (2.17) and 
the corresponding expression for (O,INIS 10,IN) in a form 
involving only the fields t,6 IN and ~ IN' This is made possible 
by the identity 

jJL = (elm2)~IN [p. (1 + iu) + (1 + iu)· P]JLt,6IN' (2.19) 
in which 0' denotes the spin tensor (1.6), and 

- 1 - 1 Bm-
'/IINBm '/lIN = -2 2mBmt,6IN t,6IN - -2 - t,6IN' 

m m m 

X [j;. (1 + iu)· P + m2]t,6IN' (2.20) 

It is the meaning of the time-ordering symbol in Eq. (2.13) 
that the factors HINT are the objects being time ordered. 
Similarly, in Eq. (2.17) the factorsjJL = ie:~INrJL ~IN: and 
: ~IN Bm '/lIN: as a whole are the objects being time ordered. 
The substitution of the equivalent objects (2.19) and (2.20) for 
these factors wi111eave the time-ordered products in Eq. 
(2.17) invariant. The time derivatives in Eqs. (2.19) and (2.20) 
are hereby meant to act before the time ordering in Eq. 
(2.17). When the substitutions (2.19) and (2.20) are made in 
Eq. (2.17), we obtain an expression that can be expanded in a 
Feynman-Dyson perturbation series. The basic contrac
tions needed for this are 

(O,INIT [t,6IN(2)~IN(I)] 10,IN) 

= - im2SF (2,1) 

. 2J d 4p eip.(x,-x,) 
= - 1m ---::----;:---

(217)4 p2 + m2 - iE 
(2.21) 

and 
(O,INI T [(1 + iu) • P2t,6IN(2)~IN(llPl . (1 + iu)] 10,IN) 

= (1 + iu) • P2(0,INI T [t,6IN(2)~IN(I)] 

X 10,IN»);1 . (1 + iu) + im2B4(21)(1 + iu). 

(2.22) 
Here, and elsewhere when warranted for simplicity, spinor 
and Lorentz indices are suppressed. As we know, time 
ordering and time differentiation do not in general 
commute. This is manifested in Eq. (2.22) in the additional 
delta function term. On the other hand, in an expression like 
(O,INI T((1 + iu) • P2t,6 (2)~ (1))IO,IN), involving only one 
time derivative, the derivative can be taken outside the time
ordering symbol without encountering correction terms. 
The additional delta function term in Eq. (2.22) can cause 
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vertices to coalesce. For example, the merging of two one
photon vertices produces a two-photon vertex, a type ofver
tex normally associated only with scalar electrodynamics. 

It is now a simple exercise to obtain Feynman rules in 
the scalar formalism. These rules, which are a provisional set 
of rules only, are summarized in Table I. The rules are 
expressed in an abstract operator notation. We intro
duce space-time coordinate eigenkets 11) = Irl,tl) defined 
through the equations xJL II) = (xJL )lll) and (211) = B(t2 
- tdB3(r2 - rd. The time component of the four-vector xJL 

is thus treated as an operator on the same footing as x,y,z 
(Ref. 8). ThepropagatorSF(2,I)ofEq. (2.21) is visualized as a 
coordinate representation of an abstract operator SF: 
SF(2,1)= (2ISFII). From the Fourier integral representa
tion (2.21) it follows that the abstract operator in question is 
just SF = 1/(p2 + m2 - iE), wherePJL = - i aJL is the four
momentum operator canonically conjugate to xJL' This ab
stract operator notation is particularly convenient for the 
external field problems that the present work is geared to. In 
addition, this operator notation has the advantage of provid
ing a representation-independent way of expressing the 
Feynman rules. 

We have in Table I the result mentioned in the Intro
duction: that Feynman rules for QED in the new formalism 
are basically the rules for scalar electrodynamics, aside from 
a modification of the one-photon vertex to incorporate spin 
effects. However, we also have in Table I a more complicated 
set of mass counterterms than one would expect by compari
son with scalar QED. There are two basic types of counter
terms in this set, giving rise to vertices with factors 2m Bm 
and (- Bmlm)(p2 + m2) in Feynman diagrams. For short 
we shall refer to the latter type of vertex as a "Bmlm" vertex. 
Other mass counterterms in Table I are formed by merging a 
Bmlm vertex with another Bmlm vertex or with a one-pho
ton vertex. (A Bmlm vertex cannot merge with a 2mBm ver
tex or with a two-photon vertex.) 

If2mBm vertices alone were present, all electron propa
gators 1/( p2 + m2) would be modified to 1/( p2 
+ m2 - 2mc5m) as a result of the action of the counterterms. 

Clearly, this is an incomplete renormalization of a scalar 
propagator, which should become 1/[p2 
+ m2 - 2mBm + (c5m)2] = 1/[p2 + (m - c5mn As can be 

verified by trying a few special examples, one of the functions 
of the Bmlm vertices is to supply the missing (c5m)2 term in 
the denominators of the scalar propagators. 

Another function of the c5mlm vertices is to provide an 
additional overall factor of [1 - (c5mlm)] in the electron pro
pagator, as compared to the propagator expected by analogy 
with scalar electrodynamics. The appearance of this factor 
can be demonstrated by means of the following formal argu
ment. The identity 

(O,INI T('/IIN (2)a ~IN (l)pS ['/lIN' ~IN ,m,c5m] )IO,IN) 

= (01 T('/Io(2)a ~o(l)pS ['/Io,~o,mo,O])IO) (2.23) 

expresses the fact that mass renormalization does not for
mally change the value of the electron propagator at any 
space-time point, but just reexpresses it in terms of the phys
ical mass m rather than the bare mass mo. The bracket nota
tion S [ '/lIN' ~IN ,m,c5m] is functional notation for the S-ma-
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TABLE I. Scalar fonnalism for QED: Feynman rules for the calculation of r functions, preliminary version. a,b 

Graph 

P---'~~-

P~ 

Name 

Electron 
line 

External 
photon 
line 

Internal 
photon 

line 

One-photon 
vertex 

Two-photon 
vertex 

External 
field 
interaction 

2m8m 
vertex 

Simple 
8mlm vertex 

Double 
8mlm vertex 

Double one
photon and 
8mlm vertex 

Factor 

- i8"J(k 2 - iE) 

f d4k - i8"v 
(21T)4 k 2 - iE 

2m8m 

(8mlm)e[ p. (1 + iu)eik
.
x + eik 'X(l + iu)· P 1" 

-I See Table II for the final version, in which the mass countertenns are greatly simplified. 
bl In addition there is a rule to take minus the trace over spin and space-time degrees of freedom for each closed electron loop. 

trix. In Eq. (2.23) we refer to conventional QED with one 
type of mass counterterm, a {jm vertex. Now restrict a,/3 in 
Eq. (2.23) to the range a,/3 = 1,2. Then in accordance with 
Eq.(1.4)andtherelatedequation V"t = (~/m;,p t), we have the 
relations I/IINa = ,pINa and V"tINP = ~INP/m. If we make 
these substitutions in Eq. (2.23) and further transform the S 
matrix into an expression referring only to the fields 
~IN ,,pIN' as we did above through the use of Eqs. (2.19) and 
(2.20), we find first 

(O,INI T(,pIN(2)[ ~IN(I)/m] 

xS [,pIN'~IN,m,2m{jm,{jm/m ])IO,IN) 

= (0IT(,po(2)[~o(I)1mo]S [,po,~o,mo,O,O])IO), 
and then (2.24) 

(0,INIT(,pIN(2)[~IN(I)/( - im2)] 

xS [,pIN '~IN ,m,2m{jm,{jm/m] )IO,IN) 

= mo (0IT(,po(2)[~o(I)/( - im~)]S [,po,~o,mo,O,O])IO). 
m 

We have here the above-mentioned factor of maim 
= (m - {jm)/m = [1 - ({jm/m)]. 

The object 

(0IT(,po(2)~o(l) S [,po,~o,mo,O,O])IO)/( - im~) 
is precisely the propagator one would expect by comparison 
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with scalar QED: it is the propagator one would obtain using 
the rules of Table I but ignoring all mass counterterms, and 
using the bare mass mo throughout instead of the physical 
mass m. Now let us renormalize this propagator the way we 
would like, writing all factors 1/( p2 + m~) in the form 

1/(p2 + m~) = 1/(p2 + m2 - {jm2), {jm2 == m2 - m~, 

and expanding in ascending powers of {jm2. This gives rise to 
an expression, which we may call 

(O,INI T(,pIN(2)~IN(I) 

xS [,pIN'~IN,m,{jm2])10,IN)/( - im2
). 

By construction, we have the identity [similar to Eq. (2.23)] 

(0IT(,po(21[~o(I)/( - im~)] S [,po,~o,mo,O,O])IO) 
= (0,INIT(,pIN(2)[~IN(I)1( - im2)] 

X S [,pIN'~IN,m,{jm2])10'IN)' 

Combining Eqs. (2.24) and (2.25), we get 

(0,INIT(,pIN(2)[~IN(I)1( - im 2
)] 

xS [,pIN'~IN,m,2m{jm,{jm/m])10,IN) 

= (1 - {jm/m)(OIN IT(,pIN(2)[~IN(I)1( - im2)] 

(2.25) 

xS [,pIN'~IN,m,{jm2])IOIN)' (2.26) 
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On the left-hand side ofEq. (2.26) we have a 1"function creat
ed according to the original rules of Table I. On the right
hand side we have a '1" function created in accordance with a 
greatly simplified set of rules summarized in Table II. We 
need no longer deal with the rules of Table I, whose only 
purpose was to establish contact with conventional QED. 
The correspondence with scalar electrodynamics can be 
made complete by absorbing the factor [1-(8mlm)] in the 
electron's wave-function renormalization constant. We de
fine 

Z2 -1(1_ 8mlm) = Z -1. (2.27) 

Now when the scattering amplitude (2.12) is computed we 
can substitute for the '1" function in Eq. (2.12) the new '1" func
tion 

(O,INI T(I,6IN (2)~IN (1) 

X S [ I,6IN '~IN ,m,8m2] ) I O,IN) I( - im2), 

and substitute for the factor 1/Z2 in Eq. (2.12) the new factor 
1/Z. 

The form of QED embodied in Table II can be ex
pressed in analytical terms by a simple modification of the 
above equations: In effect we work as though the S matrix 
were 

S = T [ exp (~2 f d 4X I A . (e:~ [.D • (1 + i(7) 

+ (1 + i(7)' p]l,6: + m2JEXT) + 8m2:~ 1,6:})] , 

(2.28) 

where the field operator A", is assumed to have the contrac
tions 

(O,INIT [A ~N(2)A ~N(I)] IO,IN) = - iDF (2,1)8",v' 
(2.29) 

and we use the new electron wave-function renormalization 

constant Z to convert unrenormalized '1" functions into their 
finite physical counterparts. 

III. IRREDUCIBLE SELF-ENERGY PARTS 

To illustrate the application of the new Feynman rules 
we consider briefly the irreducible electron and photon self
energy parts. We now assumejEXT = 0. The physical free
electron propagator SF = 1/(pi' + m2

) will be modified by 
the action of the mass counterterm and by the interaction 
with the radiation field to S;" = 1/( p2 + m2 - 8m2 + ~ ). 
Our rules give the expression 

~ = 41ria f d 4
k 1 I p. (1 + i(7)e- ik .x 

(217')4 k 2 - iE 

+ e- ik'X(1 + i(7) • P }",(p2 + m2 _ iE)-1 

xl p . (1 + i(7)eik
. x + eik

. X( 1 + i(7) • P } ",' (3.1) 

for the self-energy part ~ to lowest order in a. To evaluate 
the expression (3.1) we first move plus and minus exponen
tials together with the help of the identity 

e- ik. Xp",eik
. x = PI' + k,.. (3.2) 

The result is 

~ = 4ma ----::---. fd 4k 1 
(217')4 k 2 - iE 

X I p . (1 + i(7) + (1 + i(7) • (p + k ) } '" 

X [( p + k )2 + m2 - iE] -1 I (p + k ) . (1 + i(7) 

+ (1 + i(7) .p},.. (3.3) 

Our next step will deal with the spin algebra. We rearrange 
the numerator in Eq. (3.3) so that second-rank Lorentz ten
sors are multiplied in accordance with the laws of matrix 
algebra 

TABLE II. Scalar formalism for QED: Feynman rules for the calculation of 7' functions, final version.· 

Graph Name Factor 

p ~ 
Electron i/(p2 + m2 

- iE) 
line 

k---..-. 
External 

photon - i8l'J(k 2 - i€) 
line 

k __ Internal J d 4k -i8l'v 
photon (21T)4 k 2 - i€ 
line 

:1~ One-photon e [ p . (1 + iu)eik
.
x + eik

,
x (1 + iu) . p ] I' 

) 
vertex 

:1~ Two-photon _ e2eik, .,X- ikl'X~p.V 

vertex 

External 
k~ field ~(k) 

interaction 

p X, Mass 8m2 ..,. 
counterterm 

0) In addition there is a rule to take minus the trace over spin and space-time degrees of freedom for each closed electron loop. 
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't' 4' f d 4
k 1 ~ = 1Tla 

(21T)4 k 2 - iE 

X { P . (1 + iu) + (p + k ) . (1 - iull 

x [( p + k )2 + m2 
- iE] -I {( 1 - iu) . (p + k ) 

+ (1 + iu). pl. (3.4) 

The products of tensors appearing here are evaluated with 
the help of Table 111,9 and we find 

~ = 16ma . 
. f d 4k 1 k2+kop+p2 

(21T)4 k 2 _ iE (p + k )2 + m2 - iE 
(3.5) 

The integral (3.5) may be evaluated using standard Feynman 
techniques, with renormalization carried out as in scalar 
electrodynamics. 10 The result is 

~R = -..!!- m2p{2 - (2 - p) Inp + In (JJ:)} , (3.6) 
21T 1 -p m 

p == (p2 + m2)1m2. 

Mass and charge renormalization have been carried out, 
with the subtraction pointp2 = - m2

• The result (3.6) is in
frared divergent, with JJ = the photon rest mass appearing 
as an infrared cutoff parameter. Note the complete disap
pearance of spin structure in Eq. (3.6). This phenomenon is 
characteristic of the scalar formalism for QED, and holds to 
all orders in a, as long as there is no external field. 

The result (3.6) may be compared to the corresponding 
result of conventional QED. For this purpose it is convenient 
to present the latter result in the form II 

__ 1_( _~~IRAC)_. _l_ 
ip + m ip + m 

_ a { 1 (1 2 - 3p I ) + (ip - m) 
- - 21Tm 2(I-p) - I-p np m 

X [ 1 (2 _ P + - 4 + 4p + p2 In p) 
2p(I-p) I-p 

-; fdX(~ -x)]}, (3.7) 

representing the change in the conventional Dirac propaga
tor SF(2,I) == (O,INIT(V'IN(2)iPIN (I)S)IO,IN)/i due to 
l:~IRAC. We have already noted above the relations 
f/I ~~ = ¢ ~~ , iP ~~ = ¢ ~~ / m. As a result of these relations 
the (1,1) sector of the conventional Dirac propagator, viewed 
as a 2 X 2 matrix of 2 X 2 matrices, will be directly propor
tional to our 2 X 2 propagator: 

(zp + m - t5~ + l:DIRAC )11 
m 

p2 + m2 _ t5m2 + l: . 
(3.8) 

TABLE III. Some spin algebra: A multiplication table." 

1+ iO' 
1 - iO' 

1 +iO' 

4(1 +iO') 
-2(1 +iO') 

l-iO' 

- 2(1 + iO') 
4 

"Lorentz and spinor indices are suppressed. Written out in more detail with 
Lorentz indices exhibited explicitly, the relations read (I + iO')"" (1 + iO')"v 
= 4(1 + iO')"v, etc. 
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Comparing terms proportional to a in an expansion of each 
side of Eq. (3.8) and carrying out the renormalization gives 
the requisite connection between the two results (3.6) and 
(3.7) in the form 

[ 1 (l:DIRAC 1] _ l:R r;:--+ - R ) :,,\ + - -"-3'2' 'F m 'F m II mp 
(3.9) 

Equation (3.9) can be verified by explicit calculation [note 
that in our representation of the gamma matrices, the (1, 1) 
sector of zp in Eq. (3.7) is zero] . 

The lowest-order photon self-energy part ll,.w, defined 
through the equation 

. - it5,.." - it5,..o.. - it5pv 
-iDF =---+ Illp---"V k 2 k 2 0. k 2 ' 

provides an example of an object that should be independent 
of the representation of the fermion. This will be demon
strated explicitly to lowest order in a. There are two graphs 
to consider (see Fig. 1). The new rules give 

ill,..v(k',k) 

= - 41Ta Trf dp (pi [p. (1 + iu)e- ik ', x 
(21T)4 

+ e-ik"X(l + iu) .p],..l/(p2 + m2) 

X [ P . (1 + iu)eik . x + eik . x(l + iu) . P ] v 

X (l/(p2 + m2))1P) + 41Ta Trf d P
4 

(pl2t5,..v 
(21T) 

xeik.x-ik',x(l/(p2 + m2))1P). (3.10) 

The exponentials may be eliminated with the help ofEq. (3.2) 
and the related equation 

(3.11) 

Next the orthogonality of the four-momentum eigenstates 

<P2IPI> = (21T)4t54( P2 - pI! (3.12) 

is used, leading to an energy-momentum-conserving delta 
function as an overall factor 

ill,..v(k ',k) = (21T)4~(k' - k )ifT,..v(k). (3.13) 

The function 

xi 

FIG. 1. Graphs contributing to the lowest-order photon self-energy. 
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corresponds to the photon self-energy part familiar. from 
conventional QED. To evaluate the traces we need the equa
tions Tr(O'p,,) = 0 and12 

Tr (O'p"O'..tp) = 2(8p..t8vp - O'pp8"..t + Ep"..tp)' (3.15) 

The result of taking the trace is 

1Tp ,,(k) 

. f d 4p 2ppp" +ppk" +p"kp +~8p"k2 = 41Tla -- 4 ----''-------:.---.....:....--=--.:....,.....-
(211')4 [(p + k)2 + m2](p2 + m2) 

_ 411'ia f d 4

p U ( 1 + 1 ) 
(211')4 P" (p+k)2+m2 p2+m2' 

(3.16) 

The exponentials in Eq. (3.10) could have been eliminated in 
a number of different ways, leading to different-looking ex
pressions for IIp ,,' In the second term ofEq. (3.14) we have 
chosen the average of two such possibilities. This is legiti
mate, since the two terms become equal after regularization. 
After taking a common denominator, the expression (3.16) 
becomes formally identical to the corresponding expression 
in conventional QED. 13 
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these references mentions Feynman rules for the iterated Dirac equation, 
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(3.14) 

I which, aside from the different dimension of the spinors, would be similar 
to the rules of our Table II. 

SWith the possible exception ofthe references cited above (Ref. 4), earlier 
efforts to unify scalar and spinor electrodynamics seem to have moved in 
the direction of making the spin-zero equations resemble the usual Dirac 
equation instead of the other way around [N. Kemmer, Proc. R. Soc. Lon
don Ser. A 173, 91 (1939); M. Neuman and W. H. Furry, Phys. Rev. 76, 
1677 (1949); R. G. Moorhouse, Phys. Rev. 76,1691 (1949); J. D. Bjorken 
and S. D. Drell, Relativistic Quantum Mechanics (McGraw-Hili, New 
York, 1964), Sec. 9.7 and other references cited therein]. 
~r treatment of Coulomb gauge quantization is most like that of J. D. 
Bjorken and S. D. Orell, Relativistic Quantum Fields (McGraw-Hili, New 
York, 1965). Some other books that may be helpful are S. S. Schweber, An 
Introduction to Relativistic Quantum Field Theory (Harper and Row, New 
York, 1961); A. Akhiezer and V. B. Bereztetski, Quantum Electrodynam
ics (Wiley, New York, 1963), 2nd ed.; J. M. Jauch and F. Rohrlich, The 
Theory of Photons and Electrons (Springer, New York, 1976), 2nd ed. 

'The dual spinors u P (p) and jj P (p) are defined in conformity with Eq. (1.5): 

uP(p);;;: - uP(p)t( - E + O'.p), 

jjP(p);;;: - vP(p)t(E - 0'. pI, 

and tum out to be 

u P(p) = U P(O)tm(E + m - 0'. p)/[2m(E + m)]1/2 

and 

jjP(p) = - vP(O)tm(E+ m - 0'. p)/[2m(E+ m)]1/2. 

Also, the spinors v P (p) are defined to be charge conjugates of the spinors 
uP (p) in the sense that v P (p) exp ( - ip • r + iEt) is the charge conjugate of 
u P ~ ex~ (ip •. r - i~t). ~harge ,!X>njugation for Eq. (1.1) is defined by 
?c =uy?/m, and (?)c = -m?uy. 

'The notation is that of J. Schwinger, Proc. Nat. Acad. Sci. (USA) 37, 455 
(1951). 

9For completeness we record here another useful relation involving 
spin algebra. With indices suppressed it reads (1 + iu)O( 1 + iu) 
= 2( 1 + iu) tr (0). More explicitly, (1 + iu)," 0( 1 + iU)Av = 2( 1 
+ iu)". tr (0). The object 0 is an arbitrary 2 X 2 matrix, which may itself 

carry Lorentz indices, but these are irrelevant to the identity. 
lOp. Rohrlich, Phys. Rev. 80, 666 (1950); A. Salam, Phys. Rev. 86, 731 

(1952). 
IIJ. M. Jauch and F. Rohrlich (see Ref. 6), p. 183, Eqs. (9H26). Note that 

their result is independent of the particular representation of the gamma 
matrices. By comparing their first-order Dirac equation and ours, it fol
lows that their i; may be identified with our i;. 

12This is a consequence ofEq. (2.14) of Ref. 1. 
13J. D. Bjorken and S. D. Drell, Relativistic Quantum Mechanics (McGraw

Hill, New York, 1964), p. 155, Eq. (8.13) before exponentiation of the de
nominators. Due allowance must be made for the difference between our 
metric and theirs. Also, their I".(k) corresponds to our ill"v(k). 
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A relativistic quantum theory of spino! fermions is presented that includes a charge algebra, as 
well as an operator that distinguishes between leptons and baryons. This, in effect, extends the 
Clifford algebra C4 of Dirac's r matrices to C7• Moreover, the particle states 1/1 are represented 
here by elements of C7 as products of projection operators, instead of column vectors. A number 
of important results are derived, and the theory serves as a foundation for constructing physical 
particle states as tensor products of the bare fermion states. 

I. INTRODUCTION 

The relativistic quantum theory of spino! fermions is 
usually based on Dirac's wave function formalism, in which 
the r matrices (belonging a Clifford algebra C4 ) act as opera
tors on wave functions represented by column vectors. In the 
theory presented here the states are represented by elements 
of the algebra, which are products of projection operators, 
instead of column vectors. There is no need in this formalism 
for a matrix representation, and results are obtained in a 
simpler and more transparent fashion. 

Moreover, Dirac's theory is extended to include a 
charge (isospin) algebra as well as an operator that distin
guishes between leptons and baryons. This is accomplished 
by extending C4 to C7 • 

The four spino! fermions described by the theory can be 
identified with the bare electron, electron neutrino for lep
tons, and bare proton, and neutron for baryons. It was 
shown by the authors in a recent publication,1 referred to 
from now on as (I), that this theory can be used as a founda
tion for the synthesis of all other physical particle states, 
bosons as well as fermions. 

A brief review of the intrinsic Clifford algebra C7 is 
given in Sec. II. This algebra is then added to the space-time 
algebra in Sec. III to form the complete algebra A7 • 

The spino! eigenstates r/J are constructed in Sec. IV from 
elements of A7, as products of projection operators instead of 
column vectors. A massive fermion has four states distin
guished by being particle-antiparticle states as well as the 
helicityeigenvalues ±!. For a massless fermion, it is shown 
that these four states collapse to only two, characterized by 
the helicity eigenvalues. 

Lepton number, baryon number, electric charge, and 
isospin operators are defined in Sec. V. It is shown there that 
a massless fermion must have zero electric charge and can 
only be an isospin singlet. 

A reversion operation is defined in Sec. VI; and it is 
shown that reversion invariance implies that the Dirac sub
algebra C4 is an indecomposable basic subalgebra of A7 • 

Conservation laws are formulated in Sec. VII, and an 
energy-momentum tensor T'''' is defined in Sec. VIII. The 
states are normalized by equating TOO to the energy, and have 
a unique zero mass limit. 

The magnetic moment is discussed in Sec. IX, where it 
is pointed out that the magnetic moment is not an indepen
dent intrinsic property, but a function of the charge and an
gular momenta, and is determined by the interaction of a 
particle with an electromagnetic field. 

II. THE CLIFFORD ALGEBRA 

A Clifford algebra C" is generated by the identity E and 
n elementS Eo, El> ... ,E,,_ I' satisfying the relations 

E~ = aAE, aA = ± 1, A = O, ... ,n - 1; (2.1) 

EAEB = - EBEA for A ¥=B. (2.2) 

In (I) the generators were denoted bye, el, ... ,e". We 
changed the symbols so that the elements of C4 can be de
noted by el' instead of dl' used in (I). Moreover, in (I) we took 
all a A = - 1; the additional freedom given in (2.1) is used in 
several ways that are seen below and in Sec. VI. 

The 2" elements of C" consist of the generators and all 
possible products of them. The generators E A are called one
elements, EAEB(A ¥=B) are two-elements, etc. An N-ele
ment E i , ••• E iN is called an even (odd) element if N is even 
(odd). The set of even elements and E form a subalgebra C~ 
of C" isomorphic to C" -'1' but the set of odd elements do not 
form a subalgebra. 

For any N = 1, ... ,n - 1, let 

FN=EoEI···EN. (2.3) 

For odd n only, the element F" _ 1 of C" is the only element 
besides the identity, that commutes with all the other ele
ments, i.e., the center ofC" foroddn consistsofEandF,,_I' 
For even n, the center of C" consists of E only. 

If a A are chosen so that 

F7v = +E, 
then 

P &' =!(E ± FN ) 

are projection operators (projectors) so that 

(2.4) 

(2.5) 

(p&,)2=p&" PitPii =0, Pit +Pii =E. (2.6) 

The projector F" _ 1 can be used to decompose C" for odd n, 
as follows: 

C2" + 1 = C i~ E9 C i~ , C 2=:i ==P 2=:i C~" + 1 , (2.7) 
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where C ~n + • is the even subalgebra of C2n + •. Accordingly, 

C1 =C6+ eC 6-, Cl =PlC~-::JCs± 

C s± =(C6±)E=PlC:; 

C s± =Cl + eCl-, Cl ±=PlP/C~; 

C4=C~=(C:)E=((C~)E)E. (2.8) 

The subalgebra C 6+ is interpreted to be the lepton space, 
C 6- the bare-baryon space, C l + the spaces of neutral par
ticles, and C l - the spaces of charged particles. The reason 
for the prime in P ~± is given below (2.11). 

The algebra C1 is generated by {Eo,E., ... ,E6J, 

C6=C~ by {E,EoE6,E.E6, ... ,EsE6j, (2.9a) 

Cs=C: by {E,EoE~sE6, ... ,E4E~sE6J 
= {E,EoEs,E.Es, ... ,E4EsJ, (2.9b) 

C4=C~ by {E,EoEsE4ES, .. ·,E3ESE4ESJ 
(2.9c) 

where 

ep=EpE4' f.L = 0,1,2,3; 

epev = - evep' for f.L#v. 

(2.10) 

(2.11) 

Since (EoEs)(E.Es)···(E4ES) = EoEl···Es = Fs, we see 
that the projector that decomposes C5 is P~± -P s±. 

F~ = + E implies acP.···a6 = - 1, 

F; = + E implies acP.···a5 = - 1. 

(2. 12a) 

(2. 12b) 

Moreover, in order for C4 to serve as a basis for the space
time algebra, we require that it is isomorphic to the Dirac 
algebra of r matrices, and assume the metric [see (2.11)] 

(2.13) 

goo = + 1, gil =g22 =g33 = - 1, 

gpv = 0, for f.L#v. (2.14) 

Making use of(2.1) and (2.2), we deduce from (2.13) that 

- apa4 = gPP' acPla 2a 3 = - 1. 

It follows from this and (2.12) that 

ap = - a~pp' a4as = + 1, a6 = + 1. (2.15) 

The parameter a4 is arbitrary. To fix it, we take 

E~ =gppE, or ap =gPP and a4 = - 1. (2.16) 

Consequently, 

ao = + 1, a. = a2 = a 3 = a4 = a5 = - 1, 

a 6 = + 1, (2.17) 

i.e., the C1 matrix is (+ - - -, - - +). 
From (2.17), (2.1), and (2.2) it follows that 

F~ = +E, Fi =F~ = -E, 

F~ =F; =F~ = +E. (2.18) 

For later purposes we define gPV and eP by 

g).p.gpv=8X, (2.19) 

e P gpve: or ep = gpvev. (2.20) 

Numerically, the gPV have the same values as the gpv in 
(2.14). 

1356 J. Math. Phys., Vol. 26, No.6, June 1985 

III. THE COMPLETE ALGEBRA 

The algebra C1 is the intrinsic part of the complete alge
braA1, consisting of C1 and the extrinsic space-time algebra 
generated by the position and momentum four-vectors 
xp,pp. These vectors commute with all elements ofC1, and 
satisfy the covariant commutation relations 

[xp,xv] = 0, [pp,Pv] = 0, [xp,Pv] = - igpv ; 
(3.1a) 

[xp,EA ] =0, [pp,EA ] =0. (3.1b) 

Note that Xo = ct is a q number; whereas the proper time is a 
Lorentz-invariant c number. 

The orbital angular momentum (AM) tensor is defined 
by 

Lpv==XpPv - xvPP' (3.2) 

and the spin AM tensor by 

Spv=!i[ep,ev ] =!i[Ep,Ev]· (3.3) 

Note, according to (3.1b), that the L K;. commute with the 
Spv. The total AM is defined by 

Jpv==Lpv + Spv. (3.4) 

The set {Jpv'h J satisfy the commutation relations of the 
Poincare algebra. 

An invariant momentum is defined in C4 by 

'I,J=ePpp = epp P = EpE4fJp. (3.5) 

This momentum is Lorentz invariant (scalar) because 

[Spv,'I,J] = - [Lpv''I,J] =i(ppev -Pvep)' (3.6a) 

and hence 

[Jpv''I,J] =0. 

According to (2.13) we have 

'l,J2 = epevpPpv = H ep,ev Jpppv 

= gpvpPpVE = pppPE. 

(3.6b) 

(3.7) 

The spin four-vector components are defined, as usual, 
by 

w"==!c;'pvJ;.PPv = !~pvS;'pPv. (3.8) 

This is a two-element [see (3.3)] of C4 , and the invariant spin 

tu=w"eK = Vc;'pveKe;.eppv = !ic;,pvEKE;.EpE4fJv (3.9) 

is a three-element of C4 (but four-element of C1 ). Because of 
this, we have 

tu2 = 3wpwP, 

where according to (3.8), (3.3), and (3.7), 

wpwP =gpvwPwV = - ~(! + l)pppPE. 

(3.10) 

(3.11) 

This shows that all states in A1 have spin+ An examination 
of the derivation of this conclusion would show that it is a 
result of the subalgebra A4 , using the properties of C4 rather 
than C1• 

States of spin other than! can be constructed from ten
sor products of A1 states, as shown in (I). 

The spin three-vector components are defined by 

S j=!EjkISkl' 

and the helicity by 
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Sipj - WO 

h=~IPI=IPI' 
It can be verified by means of (3.8) that 

h 2 =lE, 
i.e., the eigenvalues of hare ±~, as expected. 

(3.13) 

(3.14) 

The element in C4 corresponding to Dirac's Ys is 

F3 = EoEIE~3 = ecf!l e2e3, F~ = - E. (3.15) 

It can be checked by means of (3.9) that 

F3'rD = ~t>, F3'rDt> = ~l'pI'E. (3.16) 

A complete set of mutually commuting operators 
(CSCO) of the complete algebra A7 is 

F6=Eo···E6' Fs=Eo· .. Es, t> = pl'el' = pI'EI'E4 ; 

(3.17a) 

Pl'pl',wl'wI' = - iPl'pl',p,h. (3.17b) 

Note that (3.17b) is a CSCO of the 

{JI'V'P..t }. 

Poincare algebra 

IV. EIGENSTATES 

If FeA7 is such that F2 = + E, then 

P f=!(E ± F), F2 = E (4.1) 

is a projector satisfying (2.6), and 

FPf =If(E±F)=~(F±E)= ±Pf. (4.2) 

Thus P f is an eigenstate of F with the eigenvalues ± 1. 
This is clearly the case for F6 and Fs. Moreover, we see 

from (3.14) that 

(2h )2 = + E. (4.3) 

Thus the helicity projector 

Pl=~(E±2h) (4.4) 

is an eigenstate of the helicity h with eigenvalues ±!, i.e., 

hP h± = ± ~ h± • (4.5) 

The eigenstate J/! of PI' is obtained by adopting the posi
tion representation of PI" necessary to satisfy (3.1a), i.e., 

PI' ¢ = i al' ¢. (4.6) 

If¢p' is an eigenstate of PI' with eigenvaluep~, then 

PI'¢p' =P~¢p" (4.7) 

The last two equations imply 

¢p' = u exp( - ip~xl')=ue-P'·x. 

From (4.7), (3.7), and (3.11) we see that 

",2.1. _ 1'.1. _ ' '1'.1. 
t' 'f/p' - PI'P 'f/p' - PI'P 'f/p" 

wl'wl'¢p' = - iP~P'I'¢p" 

(4.8) 

(4.9) 

(4.10) 

Thus ¢p' is a simultaneous eigenstate of PI' , t>2, and wl'wl'. 
To determine the eigenstates of the remaining operator 

t> in (3.17), we define the particle projectors Pa (0 = v,e,n,p), 
where 

Pv P 5+ P 6+' p.=P 5- P 6+' 

Pn==.P 5+ P 6-' Pp==.P 5- P 6-' (4. 11 a) 

Pv +p. =Pt, Pn +Pp =P 6-, PaPb =Pa{)ab' 
(4.11b) 
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The sUbscripts on the Ihs refer, respectively, to the bare elec
tron neutrino, electron, neutron, and proton. 

For the particle 0, we introduce the rest mass ma by 
, '1' _ 2 

PapPa - ma' 
When this is combined with (4.9), it yields 

t>2¢ , = m;¢ ,. 
Pa Po 

(4.12) 

(4.13) 

It only remains to distinguish a particle from its anti
particle. In view of(4.9), we can choose a representation ofA7 

in which 

(4.14) 
a 

where the positive and negative signs refer to the particle and 
antiparticle states, respectively, and ma are arbitrary mass 
parameters. This is the wave equation for the bare fermions. 

Equation (4.14) does not imply that t> = ± .l:amaPa; 
only that t> can be represented by ± .l:amaPa when operat
ing on ¢ ±. This equation imposes additional conditions on 

For composite systems, such as the physical nucleons, ¢ 
is a tensor product of the states of the basic fermions,l and 
(4.14) becomes 

(rl'P I' - K)¢ = 0, (4.15) 

where the Lorentz scalar K and Lorentz vector r I' are opera
tors in the tensor product spaces of C7• 

The state ¢ a± of a specific particle 0 can be projected out 
of ¢ ± by means of the projectors (4.11), i.e., 

¢a± =Pa¢±' (4.16) 

Then, according to (4.14), (4.11b), and (4.16), 

t>¢a± =pl'el'¢a± = ±22mb PbPa¢± = ±ma¢a±' 
b 

(4.17) 

Thus ¢a± is an eigenstate of t> with the eigenvalues ± ma' 
Moreover, it follows from (4.17) that 

t>2¢a± = (~m~Pb )¢a± = m;¢a±' (4.18) 

This confirms the consistency of (4.14) with (4.9). 
A simultaneous eigenstate of the CSCO (3.17) is thus 

vra±l± =N~p~±lPa(t>±maE)exp(-zP~·x). (4.19) 

This follows from (4.2), (4.5), (4.7), (4.10), (4.13), and 

t> [(t> ± maE)e - iP~'X] 

= (ma 2 ± mat»exp( - zP~.x) 

= ± ma [(t> ± maE)exp( - ip~.x)], (4.20) 

in agreement with (4.17). The normalization constant N ~ is 
evaluated at the end of Sec. VIII. 

When ma = 0, e.g., for a neutrino, (4.19) becomes 

./J ± l = N P ( ± lp "'e - ip'.x = 0 IF;' v h v't" • (4.21) 

Thus there are only two neutrino states (h = ± ~), instead of 
the four states associated with the other massive fermions, 
namely particle, antiparticle, and h = ±!. These four states 
collapse into two degenerate pairs for mv = O. 

To understand the reason behind this, we note from 
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(4.17) and (4.7) that for m" = 0, 

pl"el" 1/1" = p'l"el" 1/1" = O. 

Without loss of generality, we may take 

p,o =p,3 =p, p,1 =p'2 = O. 

Then (4.22) and (4.23) give 

e31/1" = - eo1/l,,· 

(4.22) 

(4.23) 

In view of(3.15), this implies with the help of(2.13) that 

(4.24) 

The element F3 corresponds to the chirality operator Ys in 
Dirac's formalism. 

According to (3.13), (3.8), (3.3), and (4.23), 

2h = ie l e2. (4.25) 

Combining this result with (4.24), we obtain 

iF31/1" = - 2h1/l", (4.26) 

i.e., the eigenvalues ofthe chirality F3 and helicity h become 
proportional when m = O. If chirality is used to distinguish 
between particle and antiparticle for m = 0, then the helicity 
plays the same role. The negative helicity state is taken to be 
the neutrino, and the positive helicity state the antineutrino. 

For convenience, let 

~a p'j"el" , 

Pa = ~a/ma' for ma ;60. 

Then it follows from (3.7) and (4.12) that 

P:1/Ia = 1/Ia' 
and hence 

(4.27) 

(4.28) 

(4.29) 

(4.30) 

is the particle-antiparticle projector for ma ;60. As in (4.2), 

(4.31) 

In view of(4.28), we may rewrite (4.19) in the final form 

tfJ'a±)± =NaP~±)PJ)a±exp( -ip~.x), ma;60. (4.32) 

The simultaneous eigenstate (4.32) is a product of pro-
jectors, except for the last factor 1/Ip" This factor can also be 
written as a projector dEp by using von Neumann's spectral 
resolution operators. Since (4.8) is more commonly used, we 
shall continue to use it. 

An interesting question is the limit of Pa defined by 
(4.28) as ma-o. If this limit were nonzero, then the eigenval
ues ± 1 of P a can be used to distinguish between particle and 
antiparticle. We show now that 

(4.33) 

and thus it is not possible to distinguish between particle and 
antiparticle, aside from helicity, when ma = 0, in agreement 
with the previous conclusion. 

Let limma---+oPa 1/1 = E1/I, and note that Pa commutes with 
h, but anticommutes with F3• Then 

2hPa 1/1 = E2h1/l = - iEF31/1 
= Pa 2h1/l = - iPa F31/1 = iF3Pa 1/1 = iEF31/1, 

which implies E = O. 
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v. INTRINSIC PROPERTIES 

An intrinsic property is defined by the eigenvalues that 
the operator representing it has for the different eigenstates. 
It can easily be verified that the following quantities have the 
correct eigenvalues. 

The lepton number is defined by (for m" = 0) 

L ==(~/me)Pe - 2hP", for m" = 0, 

L =(~/me)Pe + (~/m")P,,, for m" ;60; 

the baryon number by 

B =~(mp- Ipp + mn- IPn); 

the electric charge by 

Q/e=~(mp-Ipp -me-1Pe); 

and the z component of isospin for baryons by 

13=!~(mp-Ipp - mn-IPn). 

The baryon hypercharge is then defined by 

y ==B = 2(Qp - 13), 

where Qp ==Pp~/mp. 

(5.1a) 

(5.1b) 

(5.2) 

(5.3) 

(5.4) 

(5.5) 

The electronic charge e in (5.3) is an arbitrary parameter 
of the theory, which fixes the unit of electric charge. 

From (5.3), we see that for a particle a, Q is proportional 
tOPa defined in (4.23). The limit ofPa1/la asma-owasshown 
in (4.33) to vanish. This leads to the important conclusion, 
which is in agreement with all experimental facts, that the 
electric charge of a massless fermion is zero. 

We now prove that ifp,n form an isodoublet then 

mp = mn=m. (5.6) 

Moreover, e- and Ve are isosinglets if m" = 0, or even if 
m,,;6me· 

Since the isospin components 11,/2 do not change a par
ticle into an antiparticle, and do not change the helicity, they 
must commute with ~ and h. However, since they change the 
charge, they must anticommute with Fs. Consequently, 
~P l = P l~, and, according to (4.11a), 

~Pp = Pn~' ~Pn = Pp~, ~Pe = P,,~, 

~P" =Pe~' (5.7) 

wherej = 1,2. Moreover, 

il2 = [/3'/d, 13 = [i/ 2,/d· (5.8) 

Making use of (5.8), (5.7), and (5.4), we deduce that in 
order for 11'/2 to exist for p, n, (5.6) must hold provided 

I~ = E /4. (5.9) 

If e-, Ve are an isodoublet, then, as in (5.6), we would 
have to conclude that me = m". Another way of seeing this 
is to assume e-, Ve is an isodoublet, and write, when m" = 0, 

- 13 = !me- I~Pe + hP". 

Repeating the above process leads to the conclusion that 

h = -!~/me' 
which is false for electrons. Thus the preceeding expression 
of 13 for e-,ve is wrong, and e-,ve must be isosinglets, if 
m,,=O. 

Equation (5.6) permits the definition 
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t> = pPep/m, for bare baryons. (5.10) 

In here,pP is an operator, whereas in (4.28),P'P is a number. 
With the help of (5.6) and (5.10), the expressions (5.2) 

and (5.4) simplify to 

B=P 6-t>, (5.11) 

13 = -!P 6- Fst>· (5.12) 

Expressions for 11,12 that satisfy (5.8) are 

II = !P 6- F4E6' 12 = !iP 6- EsE6t>· (5.13) 

If we define 

I ± = II ± iI2 = !(E ± Fst»P 6- F4E6' (5.14) 

then 

(5.15) 

From (5.14) and (4.19) it follows that 

Lt/ln =0, Lt/lp =0, I+t/lp =0, I+t/lii =0, (5.16) 

Lt/lp( - F4E6) = t/ln' I+t/ln( - F4E6) = t/lp' (5.17) 

Lt/lii(-F4E6)=t/lp, I+t/lp(-F4E6) = t/lii' (5.18) 
The reason for multiplying the lhs's of(5.17) and (5.18) 

by ( - F4E6) is because t/I is not a vector, but an element of A7• 

Thus I ± and ( - F4E6 ) are intertwining operators between 
t/lp and t/ln. 

VI. REVERSION 

The operation of Hermitian conjugation has meaning 
only for matrices. The automorphism that replaces it in a 
Clifford algebra is reversion, denoted by" V ." Reversion is 
defined as follows: 

iV=i*= -i, EV=E, E'j=/3AEA, 

/3A = ± 1, 

(EAEB)V = E '1E 'j. 

(6.1) 

(6.2) 

We saw in (4.32) that an eigenstate is proportional to the 
product of commuting projectors. Suppose t/I 0: P J-. If 
F v = F, then t/I v t/I 0: P J- v P J- = (P J- )2 = P J- . If 
F v = - F, then t/I v t/I 0: P J- v P J- = P 1 P J- = 0. This 
shows that if t/I 0: P J-, then F must be reversion invariant, 
i.e., 

F V =F. (6.3) 

From (6.1), (6.2), (2.2), and (2.3) it follows that 

F,/ = + F6 implies /3J31···{36 = - 1, (6.4a) 

F ~ = + F5 implies {3J3i'··{3s = - 1. (6.4b) 

To determine more ofthe/3A , we first note from (6.1) 
that 

Second, by partial integration we obtain as usual 

Jt/lVPpt/ld~= Jt/lViapt/ld~= J(-iapt/lV)t/ld3X, 

(6.6) 

which implies 

t/lvpp = -iapt/lv==.t/lV(-ia,J. (6.7) 
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It follows from (6.5) and (6.6) that 

P: =Pw (6.8) 

Consequently, the reversion of (4.17) gives 

.I.± vpveJ'v = .I.± vp ePv = + m .I.± V 
'f/a J.t 'f/a J.L - a""a . (6.9) 

If we assume that 

.I.± vpPe = + m .I.± V 
Y"a J.t - a'f/a , (6.10) 

then we must have 

e: =ew (6.11) 

According to (2.10) this implies that 

or 

(EpE4)V =E:E: = -E:E: 

= - {3p/34EpE4 = Ep E4' 

(6.12) 

Consequently,/3J3~J33 = + 1, and we conclude from (6.4) 
and (6.12) that 

{3p{34 = - 1, /3J35 = - 1, /36 = + 1. (6.13) 

The only arbitrary parameter left is{34' We fix it by taking 

E: =Ep' (6.14) 

i.e., {3p = + 1, which implies /34 = - 1. Summarizing, we 
have 

{3o ={31 ={32 ={33 = + 1, /34 = - 1, 

{35 = /36 = + 1. (6.15) 

From (6.15), (6.1), (6.2), (2.3), and (2.2) it follows that 

F( = -FI' Fi = -F2' F'{ = -F3' 

F: = -F4' F~ =Fs, F,/ =F6. (6.16) 

Moreover, according to (6.7), (6.11), (3.2) to (3.5), (3.8), and 
(3.13) we have 

pp,ep,'p,Lp",Sp",Jp",w",h are reversion invariant. 
(6.17) 

Thus all the elements of the CSCO (3.17) are reversion invar
iant. 

Although F'{ = F3, we saw in (3.15) that F~ = - E, 
i.e., !(E ± F3) is not a projector. One can define a chirality 
projector P c± =!(E ± iF3), but then (iF3) v = - iF3 and iF3 
is not an observable. This means that C3 cannot be decom
posed into C 2+ $ C 2- by (2.7), i.e., the Dirac algebra C4 is the 
basic indecomposable subalgebra 0/ C7. 

VII. CONSERVATION LAWS 

The Hamiltonian H is defined to be the energy Po = po. 
If we multiply (4.17) by eO, we obtain 

Ht/la± = i aot/la± 

= eO( ± ma - eJpJ)t/I a± = eO( ± ma - eJi aJ)t/I a± . 
(7.1) 

The reversion of (7.1) is, according to (6.7), (6.8), and (6.11), 
t/la± V H v = i aot/la± v 

= t/la± V ( ± ma - pJe1)eO 

= t/la± V ( ± ma + i ajeJ)eo. (7.2) 

From the above it follows that 
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i ao("'a± v eO"'a±) = "'a± V eOi ao"'a± 

= - ( - i ao"'a± V)eO",! 

= "'a± V ( ± rna - eji aj)"'a± 

- "'a± V ( ± rna + i ajej)"'a± 
= - i aj("'a± V ej"'a±). 

We thus have the continuity equation 

a J(±)I'=O 
I' a , (7.3) 

where 

J~ ± )I'="'a± V el''''a± (7.4) 

is a conserved current density. 
If we compare (7.4) with the Dirac current 'iia yl''''a' 

where'iia =="'! yO, we see that el' plays the roleofyl' and "'a± V 

the role ofra. 
If (7.3) is integrated over a spatial volume V, and it is 

assumed that '" a± vanishes at the boundary S of V, then we 
obtain 

aoLJ~±)OdV = - J/kJ~±)kdV 

= -£J~±)knk dS=O, (7.5) 

i.e., the quantity 

K a± = f J~ ±)C) dV = f "'a± V eO"'a± dV (7.6) 

is conserved (constant in time). 
To interpret K a± it is important to note that it is not a 

scalar, but an element of the algebra, as can be seen from 
(4.19). It is the sum of a scalar, a one-element, a two-ele
ment, ... , and a seven-element of C7; each one of these ele
ments is separately conserved. In fact, if we substitute (4.21) 
or (4.32) into (7.6), and note that P l, P s±, P h± are projec
tors that commute with eO, we obtain 

A A 

Ka± rxP6±PS±Ph±(Pa±eOPa±), for rna #0, (7.7a) 

K a± rx P 6± P s± P h± ('pa e°'pa ), for rna = O. (7. 7b) 

For rna #0, we evaluate the last factor of(7. 7a) by mak-
ing use of(4.31) and (2.13). Thus, 

A A A 

P a±eI'P~ = ± P a± !(Pael' + el'PaJP ± 

= ± P a±Hel',e< l(p~/rna)P a± 

= ±Pa±gl'-'-(p~/rnJPa± 
= ±(P:lrna)(P±f 

Thus 
A;'" A, 

P a±el'P a± = ± P a±p/:lrna, for rna #0. (7.8a) 

For rna = 0, we obtain, by means of (2.13), 

'pael''pa = 2P:'pa, for rna = O. (7.8b) 

From (7.7) and (7.8), we see that the conservation of 
K a± implies the conservation of F6, Fs, h, 'pa' and their pro
ducts. According to (5.1) to (5.5) this in turn implies the con
servation of L, B, Q, and 13, Y. The conservation of 
'pa = p:el' implies the conservation oflinear momentum and 
energy. 

Other conservation laws can be derived as follows: Let 
A be any element of the algebra, and define 
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(7.9) 

Note that'" v eO corresponds to 'iieo = ",t, and (A ) corre
sponds to the expectation value of A. Proceeding as in the 
derivation of (7.3), we have 

i ao(A ) = f ["'v eOA (i ao"') 

- (- i ao",V)eOA",]dV + i( ~~) 

= f ",V (eOAH - eOeoH veoA )",dV + i( ~~) . 
From (7.1) and (7.2), we see that 

eOHveo =H. (7.10) 

Thus we obtain in the Schrodinger picture 

ao(A) = -;f "'v eO[A,H 1",dV + (~~) 
= (i[H,A 1 +aAlat), (7.11) 

which is the same result as in quantum theory. 
Each term of(7.11) is an element of A 7' which is the sum 

of n elements of A7• A separate conservation law is obtained 
for each valueofn = 1, ... ,7. 

Making use of (3.1) to (3.5) and 

H a± =eO( ± rna - ekpk), Pk = i ak, (7.12) 

we obtain 

[pl',H a±] = 0, (7.13) 

['p,H a±] = 4iSOkp
k( ± rna - 'p),['p,H a± ]"'a± = O. 

(7.14) 

i[ Ll'v,H! ] = - eo(el'pv - evPI') + (gOI'Pv - govpl')' 
(7.15) 

i[ Sl'v,H a±] = + eo(el'pv - evPI') 
+ (gol'ev -goVel')(±rna -'pI, (7.16) 

i[Jl'v,H a±] = (gOI'PV -govpl') 
+ (gol'ev - govel')( ± rna - 'pl. (7.17) 

From (7.15) to (7.17), we see that 

[Ljk,Ha±] = - [5jk,H a±] =ieo(ejPk -ekPj), (7.18) 

[.l;k,H a±] = O. (7.19) 

Moreover, (7.13), (7.17), (7.19), and (3.8) imply 

[WK,H a±] = !f"AI'V[JAI',H a± ]Pv = ~jl [Joj,H a± ]Pl 

= i~j1ejPl('p =+ rna)' (7.20) 
Thus 

[wO,H a±] = 0, [w,H a± ]"'a± = 0, 

and in view of (3.13) and (7.13), 

[h,H a±] = O. 

(7.21) 

(7.22) 

From the above we see that although the helicity and 
total angular momentum.l;k are conserved, the spin and or
bital angular momenta are not, exactly as in Dirac's theory. 
This is different from Greider's2 conclusion that in C4 , spin 
and orbital AM are separately conserved. However, his spin 
operator ~ is different than Sl'v or w; it is defined by 
~'p = s·p = 0, and ~2 = - 1. 
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VIII. ENERGY-MOMENTUM TENSOR 

We now show that the energy-momentum tensor can be 
identified with the quantity3 

T PV==S(evf/l v ePf/l) = S(evJ PI, (8.1) 

where S (A ) denotes the scalar part of the element A of the 
algebra, and J P is defined by (7.4). 

Since i V = i*, we have 

TPV* =S(evf/lvePf/l)* =S(evf/lvePf/l)V 

= S (f/l v ePf/leV) = S (evf/l v ePf/l), 

since S (ab ) = S (ba). Thus 

TPV* = TPv, 

i.e., T pv is real. 
If f/l is written explicitly in the form 

f/l = dOlE + a~)~ + a~1~~ + ... + a(7)F6, 

(8.2) 

where a(n) is a complex coefficient of the n element of C7, then 
it can be verified by substitution into (8.1) that 

TOO = la(O)12 + Ila~)12 + I la~112 + .... 
A A;6B 

Thus TOO is positive definite, i.e., 

Too>O, (8.3) 

as it should be for the energy component. 
Since f/l is proportional to the product of projectors that 

are reversion invariant and mutually commuting, then f/l v is 
proportional to f/l, and it follows from the cyclic property of 
the scalar part that T pv is symmetric, i.e., 

(8.4) 

Finally, it follows from (7.3) that 

2mP e+ = mE + ~e---+~e as m---+o. 

Thus 

lim f/le = f/lv' (8.10) 
m......o 

It is remarkable that the condition (8.6) specifies the 
normalization condition of f/le with the correct limit to the 
m = 0 case. In the conventional normalization of the Dirac 
wave function there is an ambiguity whether to take u t u = 1, 
or utu = Elm, where u is defined by (4.8). 

IX. MAGNETIC MOMENT 

Since all states and projectors of C7 have been interpret
ed, there is no room left for an independent new intrinsic 
property, such as the magnetic moment. 

The normal magnetic moment operator is defined to 
express the linear response of a particle to an external elec
tromagnetic field under minimal coupling; whereas an 
anomalous magnetic moment can result from the Pauli cou
pling. Moreover, there are nonlinear responses such as po
larizabilities. In principle, these moments can be calculated 
by means of the wave function, but not as eigenvalues of 
members of the CSCO. 

The action A representing the interaction of a particle of 
state f/l with an electromagnetic field Ap is given by 

A = e Jd3X titrPf/lAp. (9.1) 
For a pure magnetic field B, Ap = (O,~Bxr), and 

A = ..!..eJd~ f/lta'Bxrf/l = ..!..e84(p' - p)uta·BXru. 
2 2 

(9.2) 

ap T pv = aps (evJP) = S (eV apJ P) = O. (8.5) The corresponding interaction operator in the Hamiltonian 

Thus T pv defined by (8.1) has all the properties that an ener
gy-momentum tensor should have. 

The condition 

(8.6) 

can be used to determine the normalization constants N in 
(4.21) or (4.32). Substituting (4.32) into (8.1), and making use 
of(7.8), we obtain for the electron 

TOO = IN 1
2S(P + P - P ±eop +eop +) e 6 5 h e e 

A 

= INeI2(p,olm)S(P 6+ P 5- P h±eOP e+) 

= !NeI 2(p'O/4m)2=pO. 

Thus 

Ne = 4mp~ -1/2, (8.7) 

and 
.1. 4 '-1/2p +P -P ± Ap + ( ., P) (8.8) 'f'e = mpo 6 5 h e exp - IPpX . 

Similarly, we obtain for the neutrino state (4.21) for 
mv=O, 
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TOO = !Nv 1
2S(P 6+ P h- eO~veO~v) = INv 1

22-2pJ, 

f/lv = 2p~-1/2p 6+ P s- P h- ~ exp( - ip~xP). 

According to (4.28) and (4.30), 
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(8.9) 

is 

Hint = ~eB ·(axr). (9.3) 

The magnetic moment JL is defined by setting 

Hint = - B 'JL. (9.4) 

Noting that in the Heisenberg representation (e = 1) 

v=dr = i[H,r] = a, (9.5) 
dt 

we obtain from (9.3) to (9.5), 

JL = ~erxv. (9.6) 

It has been shown4 by means of the properties of the 
Dirac equation, that this operator reduces to 

JL = ~e(L + 2SlH -1, (9.7) 

which is a function of the charge, spin and orbital AM. This 
shows that the spin magnetic moment (second term) is not an 
independent intrinsic property. 

The anomalous magnetic moment stems from another 
term in the action given by 

A (a) = afd x::i-s .I'F pv 3 'f" pv'f'- , (9.8) 

where F pv is the electromagnetic field. For a pure magnetic 
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field, this contributes to the· interaction Hamiltonian the 
term 

(9.9) 

Here again the anomalous magnetic moment appears as a 
coefficient of the field in the response of the system. 

Greider2 takes an electron state which is proportional 
to (1 + i~e)(1 + es!), where es = F3 corresponds to rs, and! 
is a spin vector defined by !~ = 0, and !2 = - 1. By substi
tuting into (7.6), he obtains the conserved quantity corre
sponding to K / , 

(9.10) 

He then interprets the scalar coefficients of these four terms 
to be proportional to the conserved charge, four-momen
tum, magnetic moment, and axial spin, respectively .. The 
magnetic moment term is proportional to p·s, which does not 
agree with the standard physical quantity as measured. 
Moreover, it is not derived from the coupling of the particle 
to the electromagnetic field. 

X. CONCLUSIONS 

The main results of this paper are the following. 
(I) The framework of Dirac's relativistic quantum the

ory of spino! fermions is extended to include a charge (iso
spin) algebra, as well as an operator that distinguishes 
between leptons and baryons. This is accomplished by ex
tending the Dirac Clifford algebra C4 of r matrices to C7 • 

(2) Since Cs is the tensor sum of two C4's, and C7 is the 
tensor sum of two C6's, the whole space is decomposed into 
four C4 subspaces, which are interpreted as charged-neutral 
and lepton-baryon subspaces. Thus the eigenstates of the 
algebra are interpreted to be the bare electron, electron-neu
trino, proton, neutron, and their antiparticles. 

(3) The eigenstates are described mathematically by 
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products of projection operators of the algebra, instead of 
the usual column matrices. The neutrino eigenstate is the 
zero-mass limit of the electron eigenstate. 

(4) Operators are defined which can be interpreted to be 
the isospin components, electric charge, lepton number, and 
baryon number. The ultimate justification of these defini
tions would have to await their use in interactions in later 
work. Some consequences of these definitions are (a) the elec
tric charge of a massless spino! fermion is zero, (b) the bare 
proton and neutron form an isodoublet if their masses are 
equal, and (c) the electron and electron-neutrino are isosing
lets if their masses are different. 

(5) A reversion operation is defined, which is essentially 
the reversal of order of the elements of C7.1t is shown that if a 
projection operator P f = !(E ± F) occurs as a factor in the 
expression of a particle eigenstate, where E is the identity 
element of C7, then the operator F must be reversion invar
iant. Reversion also plays the role of Hermitian conjugation. 

(6) Expressions for conserved quantities are derived. 
Since such expressions consist of a sum of products of differ
ent number of elements of C7, each term of the sum is sepa
rately conserved. In this way it is possible to prove simulta
neously the conservation of several observables, which is not 
possible in the usual approach. 

(7) An expression of an energy-momentum tensor is de
fined. The condition that TOO = pO serves to fix the normali
zation constants of the eigenstates, without having to resort 
to box normalization. 

IS. A. Basri and A. O. Barut, Int. J. Theor. Phys. 22, 691 (1983); Lett. Nuovo 
Cimento 35, 200 (1982). 

2K. Greider, Phys. Rev. Lett. 44,1718 (1980); 45, 673(E) (1980). 
3M. Riesz, in Comptes Rendus du Dixieme Congres des Mathematique des 
Pays Scandinaves, Copenhagen, 1946 (Julius Gjellerups, Copenhagen, 
1947), pp. 123ft'. 

4A. O. Barut and A. J. Bracken, Phys. Rev. D 24,3333 (1981). 

S. A. 8asri and A. O. 8arut 1362 



                                                                                                                                    

A new spin·~ wave equation 
Patrick L. Nash 
Division of Earth and Physical Sciences. University of Texas at San Antonio. San Antonio. Texas 78285 

(Received 24 January 1984; accepted for publication 16 November 1984) 

A su(2) C so(3, 1) C so(3,3) spin Casimir operator is shown to equal a sl(2,R) Casimir operator. This 
sl(2,R) Casimir operator may be factored to yield a wave equation describing a massive spin-! 
particle. This wave equation possesses only timelike momentum solutions, of both positive and 
negative energy. Moreover, the expectation value of the electric dipole moment, with respect to 
these solutions, vanishes in a rest frame of the particle. 

I. INTRODUCTION 

This paper is devoted to the discussion of an infinite 
component wave equation, which may possibly be useful in 
the description of a (composite) massive spin-! particle. In 
this model, the spin degrees of freedom of the particle are 
carried by the functional dependence of the wave function on 
a real spinor independent variable u. Here, u is an element of 
an internal space D 4' real four-dimensional Dirac space. The 
wave equation itself is cast on M 4XD4, where M4 denotes 
Minkowski space-time. Solutions of the wave equation, 
when restricted to D4, belong to the Hilbert space L 2(D4) of 
square-integrable smooth functions on D4 • 

The wave equation considered in this paper is of first 
order in the momentum and admits only timelike momen
tum eigenstates. Moreover, solutions to the wave equation 
exist for both positive and negative energy, so that in all 
likelihood, minimal coupling to Y ang-Mills fields is possible 
(but not considered in this paper). It may be worth emphasiz
ing at the outset that the wave equation considered in this 
paper is not of the Majorana type, I viz., (IC'" aa + K)¢ = 0, 
whereKandlC'"commute: [K, IC'"] = O. Equations of this type 
have been comprehensively investigated by Naimark. 2 

An important property possessed by the simultaneous 
eigenvectors of this wave equation, and of the operator F of 
Eq. (45), is that the expectation value of the intrinsic electric 
dipole moment, with respect to these states, vanishes in a rest 
frame of the particle. This, of course, is just what one de
mands of any acceptable model of elementary particles. The 
major drawback of this new equation is that it possesses the 
same experimentally unobserved degeneracy characteristic 
of infinite component wave equations. 

The wave equation under consideration arises from the 
factorization, a la Dirac, of a sl(2,R) Casimir operator that 
equals, when evaluated in a rest frame, the su(2) spin Casimir 
operator. We turn now to the construction of a concrete 
realization of these two operators. 

II. DIRAC'S UNITARY REPRESENTATION OF SO(3,3) 

In the 1963 paper "A Remarkable Representation of 
the 3 + 2 de Sitter Group," Dirac constructs a unitary repre
sentation of 50(3,3) [and by imposing suitable constraints, 

a unitary representation of 50(3,2)] utilizing a real four 
component Dirac spinor with components uQ

, 
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a,b, ... = 1,2,3,4, ueD4 (see Ref. 3). His construction may be 
concisely formulated, provided that we focus our attention 

on the restriction of 50(3,3) to a 50(3,1) subgroup: the 
generators ~aP, a,/3, ... = 1,2,3,4 of 80(3,1) acting on L 2(D4) 
are given by 

(1) 

s= .a 
-1-

au' 
(2) 

and 

(3) 

Here t' denotes a real 4 X 4 irreducible representation of 
Dirac's y matrices. The t' verify 

t' yIJ + yIJ t' = 2y~, (4) 

where 

If'P =ga{J = diag(I,I,I, - 1) (5) 

and Yo denotes the 4X4 unit matrix. The ~aP of Eq. (1) 
correspond to - i times the anti-Hermitian XaP [Eq. (12) of 
Ref. 3] utilized by Dirac. 

In Ref. 3, Dirac proves the equivalent of 

1 J'a{J~ '2 2 1 
~ ~a{J =Jo -c -

and 
1 ~ap~lJ.V _ • 
8EaPl'v~ ~ - JoC, 

where 

jo= -!$ru, 

with 

and 

(6) 

(7) 

(8) 

(9) 

(10) 

Equations (6) and (7) are, of course, manifestations of the 
well-known fact that the unitary irreducible representations 

of 50(3,1) can be labeled by two numbers Vo,c) (see Refs. 2-
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4). In Ref. 3, Dirac shows that the unitary irrep Vo,c) = (!,O) 
provides a representation of SO(3,2). However, we empha
size that Dirac does not work on L 2 (D 4)' In the Appendix we 
show thatjo takes on half-integer values on L 2(D4) while c is 
not diagonal. Here, liol is the so-called "minimum spin" of 
the representation. This nomenclature arises from the fact 
that !IjkI}k,j,k, ... = 1,2,3 has eigenvalues s(s + 1), where s 
is constrained to satisfy s> liol (see Refs. 2 and 4). 

Since jo and I ap are homogeneous of degree zero in u, 

[c,jo] = ° 
and 

[c, I aP] = 0. 

Moreover, since [r, saP] = 0, one sees that 

Uo, IaP ] = 0. 

(11) 

(12) 

(13) 
The starting point for the calculations of this paper is 

Dirac's proof that 

!IJkIjk =! aa uaub ab - !aa UbUb aa' (14) 

where aa = iSa. Equation (14) is equivalent to Dirac's Eq. 
(24). If we put 

and 

a a _2 aa a u U =r, U a =r-, ar 

1 a a 1 
aa aa = "3-,-3-+ _2.:1 0, rar ar r 

where.:1o is the restriction of the Laplacian on R4 to the unit 
three-sphere, then! I jk Ijk reduces to 

1< !I'Ijk = - !.:10 • (15) 

Here,.:1o has eigenvalues -/ (/ + 2), I = 0,1,2, ... (see Ref. 5), 
so that !IjkIjk has eigenvalues sIs + 1), s = 0,!,1, .... 

III. RECASTING THE su(2) CASIMIR OPERATOR 

In this section, we rewrite the su(2) Casimir operator 
!IjkIjk appearing in Eq. (15) as a sl(2,R) Casimir operator 
[see Eq. (27)]. This sl(2,R) Casimir operator can be "fac
tored" to yield the wave equation that we seek. It is hoped 
that the reader will bear with us through this cacophony. 

In accordance with Ref. 6, let us introduce a symplectic 
form on D4 Eab = - Eba++E, and its inverse 
E-I_(E-I)ab = ~ = - ~b. One may lower (resp., raise) 

SO(3,1) spinor indices according to UE_ UaEab = Ub (the 
tilde denotes transpose) (resp., ua = ~bUb)' Conventions are 
'f'-'f'ab, ~bEbc = - 6~, r:b = Eca~b = - Eac~b 
= - 6ab , and r""b = r""c~ = r""c(E-I)Cb = - 6ab. Note 

that uaSa = - uaS a. 
We may rewrite the second term appearing on the right

hand side ofEq. (14) as 

aa UbUb aa = 2ua aa + UbU b aa aa 
= 2ua aa - UEytU ayt E- I a 
= 2ua aa + UEytUSytE-lg 
= 2ua aa + VaVpUE'f'USy!1E- 1g, 

where we have introduced a timelike unit vector 
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va = 6~,vava = - 1. Substituting this expression into Eq. 
(14) yields 

4l:·l: = aaua ub ab - 2ua aa - (vauE'f'U)(VpSy!1E-IS) 
= (ua a )2 + 2ua a + v nav mP 

a a a {3 , 

where we have defined 

na = uE'f'u (16) 

and 

(17) 

Here na and ma are future-pointing lightlike vectors. Using 
the identity6 

raAs'f' = roSA + rsrA + E-Ig.J£ + rr'gXEr, 
(IS) 

where [A a, Sb] = 0, one may quickly show that 

(19) 

and 

(20) 

In addition, by straightforward evaluation one finds that 

(i/S)[na, mP] = cgaP + IaP, (21) 

(22) 

and 

[c, ma] = ima. (23) 

Substituting ua aa = 2ic - 2 and 

v nav mP = ltv nav mP + v mPv na + Sic) a P 2a P P a 

into the previous expression for l:.l: yields 

!IjkIjk = - c2 + Avavp(namP + mPna). (24) 

This may be explicitly written as a sl(2,R) Casimir operator 
as follows: define a future-pointing timelike vector E~) ac
cording to 

E~) = !(na + ma), 

and a spacelike vector E 0) as 

E 0) = !(ma - na). 

Clearly, 

E~)E~) - E0)E~) = MnamP + manP). 

Hence, 

Avavp(namP + mPna) = vavp(E~)E~) - E0)Eft)) 
= ( - V(4))2 - (v(,l, 

(25) 

(26) 

where we have put V(4) = - vaE~) and V(I) = vaE 0)' Substi
tuting this result into Eq. (24) yields 

I '5'jk~ _ 2 2 2 
2"'"' ~jk - V(4) - V(I) - C , 

which is the expression that we seek. 

(27) 

We mention in passing that E 0) and E~) are orthogo
nal in the sense that 

gaP[EO)E~) +E~)EOd =0. (2S) 

They verify the commutation relations 

[E0l'E~d =iI aP = - [E~l'E~d (29) 

and 
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[E0l' E~,] = ie~fJ; (30) 

these relationships are consequences of Eq. (21). 

IV. THE WAVE EQUATION 

We recall that D 4 denotes the real four-dimensional 
symplectic space coordinatized by ua

• We call D4 Dirac 
space. The base space on which the wave equation is cast is 
M4 X D 4' where M4 is a Minkowski space-time coordinatized 
by Cartesian coordinates xa, a,/3, ... = 1,2,3,4. With respect 
to the canonical measure on M 4XD4, Pa = - i aa and Sa 
are Hermitian. 

Consider the scalar operators 

PIl) =PaE 0) 

and 

(31) 

P(4) = - PaE~). (32) 

They are scalar operators because they commute with the 
generators JaP of SO(3, 1) given by 

JafJ = xapp_ xlJpa + ~afJ. (33) 

Setting 

P(2) = me, (34) 

where m is a parameter with dimensions of mass, and using 
Eqs. (22), (23), and (30), one finds that 

m -I [P(I)' P(2)] = ip(4l' (35) 

m -I [P(2)' P(4) ] = - ip(l) (36) 

and 

m- I [P(4l'P(I)] = i(papa / m2)P(2)' (37) 

Therefore, when papa + m2 = 0, m-Ip(l) = V(I)' 
m -lp(2) = V(2)' and m -lp(4) = V(4) comprise a basis for the 
Lie algebra sl(2,R)~so(2,1) (va = m-1pa). The sl(2,R) Casi
mir operator is - vfl) - vf2) + v~)' which, from Eq. (27), is 
seen to equall:·l: when evaluated in a rest frame. From Eqs. 
(35)-(37) it follows that V(4) is the generator of a compact 
SU(2) subgroup of SL(2,R), and, hence, possesses a simple 
discrete spectrum and normalizable eigenfunctions. Lastly, 
put 

P(3) = mjo = mvI3)· (38) 

Because Et'r and rt'E- 1 are skew-symmetric matrices,6 jo 
commutes with na and ma: 

(39) 

Hence,jo commutes with PIl) and P(4) (and, as we have seen, 
e = m-1p(21)' 

Let dJ1,j,h,k = 1,2,3 denote the 2X2 Pauli matrices, 
with 

dJ1d k) = 8ikd 4) + ieJkhdhl, (40) 

where 014
) denotes the 2 X 2 unit matrix. Our wave equation 

describing the field-free dynamical evolution of a particle 
with spinjo and rest mass m is 

dl'P(.u) 1/1 (P,u) = O. (41) 
Henceforth, we setjo = ! and m > O. 

We now show that nontrivial square-integrable (over 
D 4 ) solutions of Eq. (41) exist only if the momentum is on 
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mass shell papa + m2 = 0, and s [see text following Eq. (15)] 
is constrained to satisfy s = jo = ! in a rest frame, i.e., the 
particle may unambiguously be said to possess spin-~. For 
the sake of notational simplicity, the parentheses enclosing 
scalar indices are omitted, and 014

) is suppressed, whenever 
notational confusion is unlikely. 

Since m¥=O, Eq. (41) is equivalent to 
ifv I' 1/1 = (v 4 + o'vj ) 1/1 = 0, with v(.u) = m - Ip(.u)' Left multi
plication of(v4 + o'vj)1/I with - V4 + o'vj yields, using Eqs. 
(35)-(37) and (40), 

0= ( - V4 + o'vj )(v4 + ukVk)1/I 

= { - v; + VjVj - i(Papa/m2)qIV2 - if(v4 + qivill 1/1 

= {-v; +vi +v~ 
+ V3(V3 + 1) - (i/m2)(Papa + m2)qlv21 1/1. 

Here m -2(papa + m2)q1V2 is a Hermitian operator and com
mutes with - v; + vi + v~ + V3(V3 + 1), so that this equa
tion is of the form (A - iB)1/I = 0, where A t = A, B t = B, 
and [A,B] = O. Since 1/1 is square integrable over D4 , 

(A - iB)1/I = 0 implies that A 1/1 = 0 and BI/I = O. Clearly, if 
1/1 is not square integrable over D 4' such reasoning is false 
(consider an equation such as 
[ita/ax) - i(i(a/aYllV(x,y) = 0). Therefore, one concludes 
that 

(v; - vi - v~)I/1= V3(V3 + 1)1/1 (42) 

and 

(Papa + m2)v21/1 = 0 (43) 

are necessary conditions for the existence of nontrivial 
square-integrable (over D4 ) solutions of Eq. (41). To show 
that Papa + m2 = 0, consider the alternative V21/1 = el/l 
= 0 = - i(~r(a/ar) + 1)1/1, wherer(a/ar) = uaaa. This says 

that 1/1 is positively homogeneous of degree - 2 in r. How
ever, a function homogeneous of degree - 2 in r is not 
square integrable over the manifold D4 : 

and therefore does not belong to the space of physical states. 
Therefore 

(44) 

is a necessary condition for the existence of nontrivial 
square-integrable solutions ofEq. (41). 

Since pa is timelike, Eq. (42) can be evaluated in a rest 
frame, which, utilizing Eq. (27), yields joUo + 1)1/1 
=! ~jk~jk 1/1 = sIs + 1)1/1, where jo =!. Hence, s = jo =!, 

and moreover, the wave function contains only the spin val
ue s = ! in a rest frame. 

One sees from Eqs. (42) and (44) that the eigenvalue of 
the sl(2,R) Casimir operator - vfl) - vf21 + vf4) is sIs + 1). 
Therefore, 1/1 transforms under one of the discrete unitary 
irreducible representations ofSL(2,R) (see Ref. 7 for a discus
sion of these representations). 
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V. DISCUSSION 

Equation (41) belongs to the class of so-called "infinite 
component" wave equations. In general, an infinite compo
nent wave equation that is covariant under a dynamical 
group provides a relatively simple way to model a quantum 
relativistic system possessing nontrivial internal degrees of 
freedom. Such a system may be regarded as representing a 
composite system.7,8 Two fundamentally different realiza
tions of a composite system can be found in the literature, 
one based on a simple physical model that possesses internal 
constituents, while the other, like Eq. (41), is more abstract 
physically. The first type,9,l0 explicit, for example, in the 
multilocal model of hadrons,8,9,11 realizes a composite sys
tem as a number of a priori bound (by action at a distance 
force) pointlike constituents. Space-time degrees offreedom 
are assigned to each of the constituents, and these degrees of 
freedom are then resolved into the part that describes the 
"center of mass" motion of the system, and the internal de
grees of freedom associated with the relative coordinates of 
the system. Hadrons are assumed to correspond to the eigen
states of the internal (relative) motion of the permanently 
bound constituents. 

In the second approach,8,12-20 a composite system is 
viewed as a relativistic system that transforms under a uni
tary representation of some noncom pact group (for example, 
such a modef might exhibit each spin value once, in a rest 
frame of the particle). This system is endowed with internal 
degrees of freedom described by some SL(2,q tensor. The 
internal manifold (D4 in this paper) carrying the internal de
grees of freedom has, in general, no a priori relationship to 
points (or to mass points) in space-time. Although it is not 
the case here, in some models l5

-
17 various spin states corre

spond to the respective eigenstates of a harmonic oscillator 
Hamiltonian defined on the space of internal states (the Hil
bert space of square-integrable functions over the internal 
manifold). In most models transitions between the various 
1:2 spin states are possible in the presence of interactions. 

The wave equation (41) is remarkable to the extent that 
the minimum spinjo of the representation is, in fact, also the 
physical spin ofthe particle. In addition, Eq. (41) is of first 
order in the momentum p a' and possesses only timelike mo
mentum solutions. Dirac's new positive energy wave equa
tion IS and Staunton's spino! positive energy wave equation 17 
are two notable equations that also possess these latter two 
properties. However, Eq. (41) does possess both positive and 
negative energy solutions. Positive energy solutions corre
spond to the unitary irreducible ascendant discrete series 
D +(s + 1) ofSL(2,R), with V(4) diagonal, its spectrum being 
given by s + p, = p, + !, p, = 1,2, .... Negative energy solu
tions correspond to the descendant discrete series 
D -( - s - 1), V(4) diagonal, with spectrum - (s + p,), 
p, = 1,2, .... It should be noted that V(I) and V(2) are also Her
mitian, but as they generate noncom pact subgroups of 
SL(2,R), they possess non-normalizable eigenfunctions. 
Hence, physically admissible solutions to Eq. (41) with either 
v(1) or V(2) diagonal do not exist. 

Eigenstates of V(4) possess the property that the expecta
tion value of the intrinsic electric dipole moment vanishes in 
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a rest frame: 

im - 1'/1 t.I af3pp '/I 

= -m-I'/It[E~)E~) -E~)E~,]pp'/l 
= '/I t [ E~) V(4) - v(4)E~,] '/I = o. 

To the author's knowledge, Eq. (41) is the only infinite com
ponent spin"-! wave equation that possesses this experimen
tally observed property. 

It must be emphasized that, as it stands, Eq. (41) does 
not provide a satisfactory description of a massive spino! par
ticle. Each momentum eigenstate is infinitely degenerate. 
The reason that this extra degeneracy exists is because the 
operator 

F 1-13) 
= V(4) - '1U' (45) 

commutes with dJ')v(p) when Papa + m 2 = O. Since the spec
trum of V(14) is unbounded for both the ascendant and des
cendant discrete series, each momentum eigenstate is infi
nitely degenerate. 

Here, E~) and m -Ipa are both timelike vector opera
tors that arise naturally in this model. The expectation value 
of F is a measure of their alignment. Experience indicates 
that one does not utilize two unrelated timelike vector opera
tors in the physical description of a particle. This leads one to 
suspect that there must be some relationship between E~) 
and m -Ipa; perhaps some internal interaction ought to be 
incorporated into this model that tends to align E~) and 
m -Ipa in a parallel (antiparallel) configuration in the posi
tive (negative) energy case. It is also plausible that one should 
construct "effective" free particle states by summing over 
the eigenstates of F (with appropriate coefficients) for fixed 

One should ask whether or not Eq. (41) is really a ver
sion of the SO(4,2) infinite component wave equation8 with 
jo = !. As is well known, the SO(4.2) wave equation, as well 
as the Majorana equation, the Gel'fand-Yaglom type equa
tions, and their generalizations 12.21 all lead to constraints 
between mass and spin. This, of course, is a desirable feature 
of a theory that deals with a composite system, providing 
that the prediction agrees with experiment. However, even if 
jo is not set equal to! in Eq. (41), we find that -Papa = m 2 

and sIs + 1) = jo/jo + 1). Here it should be clearly under
stood that the mass m is simply a parameter that is inserted 
into the formalism in exactly the same spirit that it enters 
into the conventional Dirac theory of fermions. No con
straints between mass and spin arise at the free-field level in 
our model, in contradistinction to the above-mentioned for
malisms. 

APPENDIX: CURSORY TREATMENT OF THE 
EIGENVALUE PROBLEM 

Let t/t = t/tj
o
nss

3 
EL 2(D4); consider the eigenvalue prob

lem 

and 

Jot/t =jot/t, 

1:.l:t/t = sIs + 1)t/t, 

.I12t/t = S3t/t, 
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E~) t/J = m/J. (A4) 

The treatment ofEqs. (Al)-(A4) has many formal similari
ties with the classic work of Biedenharn22 concerning the 
Wigner coefficients for 0 (4), and Bander and Itzykson's 
treatment of the hydrogen atom.23 

The interested reader may with to show that 

.f. N() - r'/2L 2s + 1 (r)D (s) () 
'i'jonss, = n,s e n _ (s + I) - s,io a 

is the normalized solution to Eqs. (A1)-(A4). Here 

N(n,s) = (1I1r)[(2s + 1)(n - s - 1)!/(n + sf)] 1/2 

(A5) 

(A6) 

is a normalization factor, r = flu, L ~s-.:/_ 1 is a Laguerre 
polynomial, 

a = u4J + iO'"u, (A 7) 

and D ~m' denotes Wigner's function, the conventional rota
tion matrix element satisfying 

D~m.(Aa) = A 2jD~m.(a). (AS) 

We find that the allowed values for n are 

n = s + /-l, /-l = 1,2,3, ... , (A9) 

which follows from the requirement that the polynomial 
L~s-':/_I be of finite order, so that e-r'/2L~s~/_dflu) 
EL 2(D4)' 

In Sec. II it is stated that c = ( - i/2)(ua aa + 2) 
= ( - i/2)(r(a/ar) + 2) is not diagonal onL 2(D4)' This is be

cause, if ct/J = At/J, then t/J is homogeneous of degree 
- 2 + 2iA in r, and hence t/J*t/J is homogeneous of degree 
- 4 in r; thus t/J*t/J is not square integrable over D4 • 
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We study the Cauchy problem for Abelian Yang-Mills-Higgs theory in (2 + I)-dimensional 
Minkowski space-time. With suitable conditions on the background fields and a suitable choice of 
a Sobolev space for the subtracted gauge potentials and the Higgs field, we establish local 
existence. We then prove global existence by showing that an appropriate norm of the solutions 
cannot blow up in a finite time, and discuss the topology of these solutions. 

I. INTRODUCTION 

In recent years the number of topologically nontrivial 
Yang-Mills-Higgs solutions has increased considerably. 
The existence of vortex solutions with arbitrary winding 
number has been proved for one special value of the Higgs 
coupling constant by using the Bogomol'nyi equations l and 
for all values of the Higgs coupling constant by using an 
isotropic ansatz.2 For non-Abelian gauge theories magnetic 
monopoles with arbitrary magnetic charge can even be con
structed explicitly in the Prasad-Sommerfield limit of van
ishing Higgs potential. 3 For non vanishing Higgs potential, 
the 't Hooft-Polyakov monopole4 and its generalization to 
Higgs fields which do not lie in the adjoint representation of 
SU(2) (see Ref. 5) are still the only known solutions. All these 
solutions are time independent. 

The natural next step is to study time-dependent topo
logically nontrivial solutions. This, of course, involves prov
ing the existence of solutions first. For solitons in two dimen
sions6 and CpN instantons 7 this has been done, although 
most of the results only hold in local spaces and do not allow 
one to control the topology. To control the topology in the 
approach used in this paper, we introduce background fields 
and work with the subtracted fields. For the subtracted fields 
we can prove the estimates necessary to apply Segal's general 
theory8 and prove local existence of time-dependent vortex 
solutions. The global existence is then proven by putting an 
upper bound on appropriately defined pseudoenergies fol
lowing a similar line of argument as the one given in Ref. 9. 

II. LOCAL EXISTENCE 

In this paper, we study the Abelian Yang-Mills-Higgs 
theory in (2 + I)-dimensional Minkowski space-time given 
by the Lagrangian density 

.Y = -1 Fp.vF p.v - (Dp. eP )(DP.eP) - (A /4)(leP 12 - If 

(2.1) 

Here, the gauge fields Fp.v are defined in terms of the real 
gauge potentials A p. (It = 0, 1,2) as 

a'Feodor Lynen Fellow ofthe Alexander von Humboldt Foundation. 

Fp.v = ap'Av - avAp.. (2.2) 

Here, eP is a complex field with covariant derivative 

Dp. eP = ap' eP + iAp. eP, (2.3) 

the metric is diag( - I, + 1, + 1), andlis the complex conju
gate off 

We want to prove that for suitable initial value data 
eP(O,x), at eP(t,x!lt=O' Ap.(O,x), and atAp.(t,x)lt=o, time-de
pendent solutions to the equations of motion 

ap.Fvp. = i(~D VeP - eP D VeP ), 

Dp.DP.eP = (A /2)eP (leP 12 - 1) 

(2.4a) 

(2.4b) 

exist. To specify the conditions for the initial value data we 
subtract a background field 

Ap. =Ap. + ap" 

eP = (p + tp, 

which satisfies 

(2.5a) 

(2.5b) 

Ao = a,Ai = at (P = 0, a;A; = 0, i = 1,2, (2.6a) 

sup laj ak···A;1 < 00, m = 0,1,2, (2.6b) 
xeR2 ~ 

(I (P 12-1)eL2, Vi (P: =a; (P+iA; (PeK2' 

Fij e K 2, a7Aj e K l . (2.6c) 

In Sec. IV, where we will discuss the topology, we will im
pose additional conditions. 

For the subtracted field 

t/JT = (aO'PO,a l'Pl,a2'P2,tp,1T*), 

Pp.: = atap" 1T*: = attp + iacIP, 

we choose initial value data which satisfy 

t/Je7t;;(SI: = (Ks+ 1 XKs)4, s>O, 

(2.7a) 

(2.7b) 

(2.8) 

where Ks is the Sobolev space of distributions/with finite 
norm 

II/II~, = II/IIi, + lIaJlli, + ... + lIa~.::.:flli', 
s (2.9) 
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and Ko denotes L 2. Furthermore, the Lorentz condition 

aJl.0Jl. = 0 (2.10) 

and the Gauss equation _ 

~oo - at ajOj = i[(4; + rp )(1T - ioo4;) 

- (4; + q5 )(1T* + ioo 4;)] (2.11) 

hold at t = 0 and we impose the Lorentz gauge condition for 
all t to achieve a unique evolution. 

For the electric field 

Ej = ajaO - ataj, 

the Gauss equation reads 

ajEj=p 

and can be solved in Fourier space by 
- -T -L Ej =E j +E j , 

(2.12) 

(2.13) 

(2.14) 

E; = (8ij - kjkjllk 12)Ej' Ef = (kjkjllk 12)Ej' (2.15) 

iEf = (kJlk 12\0. (2.16) 

Thus the initial value data satisfylO 

E; E K s ' (kJlk 12\0 E K s ' (2.17) 

which makes 

1T* = - iao 4;, E f = O,E ; E Ks (2.18) 

a possible choice. 
Given the initial value data, we want to solve the equa

tion of motion 

:1 t/J= -fAt/J+J. (2.19) 

Here, the operator A and the components of J read 

- 0 

[

r 

A =i ~ 

o 
r 
o 
o 

m2 >0, ~ = if;, 
and (V j : = aj + ia j ) 

J 1 =J3 =Js = 0, 

o 
o 
r 
o 

"II" 0 

J2 = m2ao + i[(<I> + ip )1T* - (<I> + rp )1T] 

- ao(ip4; + 214; 12 +_rp4;), _ 
2 0.000000 

J2+2j = m OJ + ~Aj + 1(<I>Vj<l> - <l>Vj <1» 

+i[(J>+q5)V j rp- (4; + t,6) Vj rp 

+ q5V j 4; - rpV j 4;] 

- [(~ + ip )(Aj rp + OJ 4;) 

+ ( 4; + rp )(Aj q5 + a j ~)] i= 1,2, 

J7 = - iaof{J, 

J8 = m2rp + ~4; + i aj(Aj 4;) 

+ iAjVj 4; - (A 12)4; (14; 12 - 1) 

(2.21a) 

(2.21b) 

(2.21c) 

(2.21d) 

- (A 12)[rp (14; + rp 12 - 1) + 4; (Irp 12 + rp~ + q54;)] 

1369 J. Math. Phys., Vol. 26, No.6, June 1985 

(2.21e) 

It is well-known thatA generates a one parameter group 
on any ~s) with s;;'O. To prove local existence and unique
ness of a solution we have to show that J is a map from ~l) 
to ~I) and that the Lipschitz condition 

IIJ (t/J) - J(l1)II,w;I' <C (lit/JII.w<u,IIl111.w<u )IIt/J - l111.w<u 
(2.22) 

holds with a monotonically increasing, everywhere finite 
function C. Using the conditions (2.6b) and (2.6c), the 
Cauchy-Schwartz inequality, and the inequalities 

IIfIIL~<KllfllK" IIfllL4<KllfllY~IIaJIIY~, (2.23) 

this can be shown. 
We have therefore established the local existence and 

the uniqueness of solutions to the equation 

tP(t) = exp{ - fAt }tP(O) + f ds exp{ - fA (t - s)JJ(tP(s)). 

(2.24) 

Because J is a C 1 map also the existence and uniqueness of 
solutions to Eq. (2.19) is guaranteed for initial value data 
from the domain of A which is ~2). Since J is even a C"" 
map this is also true for any ~s), s;;.2, with solutions 
t/J E ~s), locally. All these results follow from Segal's exis
tence and uniqueness theorem.8 

It remains to be shown that the initial value equations 
(2.10) and (2.11) are propagated by the evolution equation. To 
show this we write 

u=po -ajaj> 

V =~ao -ajPj 
~ 0 0 ~ 

(2.25) 

+ i[(<I> + q5 )(1T* + ioo <1» - ( <I> + rp)(1T - iao <I> )], 

(2.26) 

and compute 

(2.27) 

for t/J E ~2), and therefore for U E K2 and V E K I' Because 
this equation has a unique solution, U and V vanish through
out the interval of existence of t/J. This completes the local 
existence proof. 

III. GLOBAL EXISTENCE 

To extend our local existence proof to a global one we 
have to show that for a solution t/J E ~2) the ~l) norm does 
not blow up in a finite time. 8 To derive this result we first 
define certain pseudoenergies and prove that they do not 
blow up in a finite time. For t/J E ~2), besides the energy 

E o fd2 {I 1 -= x '2 EjEj + '4FijFij + (Do <I> )(Do <I> ) 

+ (Dj <I>)(Dj <1»+ ~ (1<1>12_ W}, (3.1) 

the following quantities are defined: 

J. Burzlaff and V. Moncrief 1369 



                                                                                                                                    

E I = EO + f dZxl'P 12, (3.2) 

E Z = EO + f d 2x al'al" (3.3) 

Cz = f dZx{+ (ajE;)(ajEI) + + (ajF;k)(ajF1k ) 

+ (DjDo ep )(DjDo ep ) + (DjD; ep )(DjD; ep) 

+ ~ (~Dj ep + ep Dj ep )z} . 
Their time derivatives are, respectively, 

~Eo=O, 
dt 

~ E I = f d zX('ip1T* + 'P1T), 
dt 

~Ez= -2fdZxa.E., dt I I 

and 

d 
-Cz dt 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

= f d Zx {i [ (DjDo ep)Ej Do ep - (DjDo ep )~Do ep ] 

+ i(ajE;) [(Dj ep) (D; ep) - (Dj ep )(D; ep)] 

+ iEj [ (D; ep )(DjD; ep) - (D; ep) (DjD; ep) ] 

+ iEj [ ~(D;Dj ep) - (D; ep) (D;Dj ep) ] 

+ iFjk [ (DjDo ep )(Dk 4» - (DjDo ep ) Dk ep)] 

+ !fjkFjk( ep Doep + ~Do ep) 

- (A 12)(lep 12 - I) [(DjDo ep) (Dj ep) 

+ (DjDo ep )(Dj ep)] 

+ (A 12)(~Dj ep + ep Dj ep) [( Do ep )(Dj ep) 

+ (Do ep )(Dj ep)] J. (3.S) 

To show that (3.1 H3.4) are defined we have used the proper
ties (2.6) of the background fields, and to calculate the time 
derivatives we have used the equations of motion (2.4) in 
Lorentz gauge. The surface terms in the time derivative of Cz 
vanish because 

f ja;g= f gat! (3.9) 

holds for/, g e K I . 

From (3.6) and (3.7) we derive the inequalities 

~E·<K,fEU.,fE', s= 1,2. (3.10) 
dt 

Therefore,.E is bounded from above, 

E'«Ko+VC,fEUt)Z, (3.11) 

a~=a; +a;A, A~=A;, 
'P C = e - v..'P, 4> C = e - v..4>, 

where 

(3.12a) 

(3.12b) 

lIa~IIL~ <Clla~IIK, <K ~Ko +KltZ + Cz (3.13) 

holds. Notice that A; is in Coulomb gauge and its L 00 norm 
is finite because of (2.6b). 

The remaining A terms are estimated in the Coulomb 
gauge as follows: 

If d 2x(DjDo ep )(Dj ep )(lep IZ 
- I) I 

<K [f d Zx(DjDo ep) (DjDo ep ) ] 112 

X IIDjep IIL.lllep IZ 
- IIiL' 

<KC~/4 [f dZx (ajD; ep)(ajD; ep)r
/4 

<KC~/4(Ko + K lt
2 + K2CZ)1/4 

<Ko + Kit Z + KzCz, (3.14) 

If d Zx ( ~Dj ep + ep Dj ep) (Do ep )(Dj ep) I 
<KC ~12l1ajDo ep IIYf llajDo ep IIYf. 

<Ko + Kit Z + KZC2• 

The estimates ofthe terms in (3.S) add up to 

~ C2(t)<Ko + Klt
2 + KzCz(t). 

dt 
Therefore, Cz(t) is bounded, 

Cz(t )<Cz(O) + Kot + !Klt 3 

(3.15) 

(3.16) 

+ f dSKz[Cz(O) +KoS+ +Klr]~'(t-.), 
(3.17) 

and does not blow up in a finite time. 
So far we have derived the gauge invariant bounds, 

119" ilL' < 00, liE; 11K, < 00, 

liD; ep ilL' < 00, IID;Dj ep IlL' < 00, 

liDo ep ilL' < 00, IID;Do 4> ilL' < 00, 

and the bound 

Ilal' ilL' < 00 

on al' in Lorentz gauge. In the Coulomb gauge, 

lIa~IIK, < 00, 

II a; 9" clIL' < 00, 

and 

(3.ISa) 

(3.ISb) 

(3.1Sc) 

(3.19) 

(3.20a) 

(3.20b) 

(3.2Oc) 

hold. Notice that (3.19), (3.20a), and (3.12a) imply alA eL z, 
a result we have used to derive (3.20b). 

To derive al' e KI in Lorentz gauge we define locally 

and cannot blow up in a finite time. To put an upper bound f 
on Cz, except for the A terms, we can use the estimates from r I = d Zx {P ~ + P: + (a;ao)Z + (a;aj)Z J, 
Ref. 9. Since all terms in (3.S) are gauge invariant we can 

(3.21) 

work in the Coulomb gauge: and calculate 
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!!....rl = 2 fd2X{POjo + Pjjj j<.K .jFT1lj1~L2' (3.22) 
dt 

Here, the gauge-invariantjo andjj read 

jo = i( 4>Do rp - rp Do rp ), 

jl = .:iAj + i( 4>Dj rp - rp D; rp). 

(3.23a) 

(3.23b) 

Their L 2 norm is finite because of (3.18) and (3.20). Thus r I 

does not blow up in a finite time, and a,.. E JYI and P,.. E L 2 

hold globally. 
Using this result we can in tum derive 

alA. E JYI, fP C E JY2, rr E JYI, (3.24) 

and 

IU"~, = IIjO"~, + IIjdl~, + 1Ij2"~, < 00. (3.25) 

This shows that 

r 2 = f d 2x{(a;po)2 + (aj Pj)2 + (a; aj ao)2 + (a; aj ak)2j 

(3.26) 

satisfies 

!!.... r 2 = 2 f d 2X { (a;po)(a; jo) + (ajP; )(aj j;) j 
dt 

<K ~"j"KI (3.27) 

and does not blow up in a finite time. 
We therefore have derived that 

a,.. E JY2 , P,.. E JYI (3.28) 

hold globally in Lorentz gauge. This implies alA. E JY2 and 
because of the bounds on fPc and rr , 

fP E JY2, 1T. E JYI> (3.29) 

which completes our global existence proof. 

IV. TOPOLOGICAL ASPECTS 

To discuss topological aspects of the solutions whose 
existence we have just established we have to impose addi
tional conditions on the background fields. If we assume that 

lim sup 11 - 14> I I = 0 
R--o Ixl =R 

(4.1) 

and for Ixl > Ro, 8> 0, 

Ixl l + c5 IV;4> I <const (4.2) 

hold, we can define the winding number and the magnetic 
flux of the background configuration. I The winding number 
is given by 

o i i d I(ea 0 0 -a 0) n = - x e je - e ;e, 
41T Ixl =R 

(4.3) 

where 

e: = 4>/14> I (4.4) 

is a C I map for Ix I > Ro and R > Ro. It is an integer indepen
dent of R as long as R > R o, i.e., as long as e is a C I map on the 
R circle. 

The magnetic flux is given by the formula 

g = lim r dx; A;, (4.5) 
R_", JIXI=R 
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which can be cast into the form 

g = lim r d 2X F12 (4.6) 
R_", Jlxl<;R 

by Stokes' theorem. Because of the condition (4.2) the wind
ing number is proportional to the magnetic flux: 

g = 21Tn. (4.7) 

Before we go on we have to make sure that background 
fields whch satisfy the conditions (2.6), (4.1), and (4.2) exist. 
This is indeed the case. We can even show that the set of 
allowed background configurations contains vortex solu
tions with arbitrary winding number: Plohr has proven that 
solutions of the form 

4> = R (r)e-;';o, Ao = 0, A; = - EijXj [S(r)/r] (4.8) 

exist. The functions R and S are C'" maps on [0,(0). Their 
asymptotic behavior at the origin is 

R-ar", S-pr + yr4. (4.9) 

At infinity, S + n, R - 1, and all their derivatives decay ex
ponentially. These properties guarantee that the solutions 
(4.8) satisfy the conditions (2.6), (4.1), and (4.2). 

For the time-dependent solutions we found in the pre
ceding sections, fP E JY2 holds. Hence, 

lim fP (r,O ) = 0 (4.10) 

follows. At any time t, the Higgs field at infinity is therefore 
defined and equal to the background field, rp (t,x) stays in the 
same homotopy class of 1TI (S I), and the winding number n 
labels this class as time independent. 

V. CONCLUSION 

We have proven the global existence of time-dependent 
vortex solutions and by doing so established some of their 
properties. Our results should open the way to a study of 
vortex-vortex scattering. The technique used should also 
help us to tackle the problem of time-dependent monopole 
solutions and monopole-monopole scattering. 
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In the framework of the adjoint forms over the jet spaces of connections and using a canonical jet 
shift differential, we give a geometrical interpretation of the Yang-Mills equations both in a direct 
and Lagrangian formulation. 

I. INTRODUCTION 

As is well known, in the geometrization of gauge theor
ies the two basic fields, the gauge field (potential) and the 
particle field, are identified with geometrical objects related 
to some fiber bundles. In particular, connections on princi
pal bundles provide adequate geometrical models for gauge 
fields in classical gauge theories such as electromagnetism 
and Yang-Mills theory. 1,2 

In this paper, working with principal bundles, we give a 
geometrical interpretation of a direct approach to Yang
Mills equations and their Lagrangian formulation. We pres
ent new geometrical techniques together with new results. 
The work is related to some other previous papers3

-
5 in 

which we have studied connections, curvature, and the 
Euler-Lagrange equation in the general framework of fi
bered spaces and their jet spaces. Following these papers, we 
devote special consideration to the affine structures of jet 
spaces and their possible splittings, as well as to techniques 
oflift, which suggest that we not work at a fixed degree of jet 
spaces but to go to higher degrees. 

To see the things better, let 1T: P-+M be a principal 
bundle with structure group G. In the physical interpreta
tion of the theory, M is the space-time manifold. A key role is 
played by the adjoint bundle Ad P-+M which is the vector 
bundle of the G-invariant vertical fields on P. 

First we consider the spaces A '(M;Ad P) of the adjoint 
, 

forms a : M-+ 1\ T * M ® Ad P, the differential 

d A : A '(M;Ad P )-+A ,+ I(M;Ad P), 

and the codifferential 

8 A : A '(M;Ad P )-+A ,- I(M;Ad P) 

with respect to any principal connection A. 
Then we consider the affine bundle of principal connec

tions C = JIP /G-+M (whose vector bundle is 
T * M ® Ad P-+M) and the spaces A '(J k C;Ad P) of the hori-

, 
zontal adjoint forms q; : Jk C-+ 1\ T * M ® Ad P and we intro-

duce a canonical differential 

d: A '(JkC;Ad P) -+A ,+ I(Jk+ I C;Ad P) 

and codifferential 

8:A '(JkC;AdP) -+A '-I(Jk+ I C;AdP) 
which shift the degree of jet spaces by 1. This unusual shift is 
very important because it leads to several new and interest
ing differential operators. This d extends, on one hand, the 

canonical connection introduced by Garcia6 and, on the oth
er hand, the horizontal differential on jet spaces. 7 

An analogous differential d and codifferential 8 can be 
introduced for coadjoint forms, that is for forms valued in 
the coadjoint bundle Ad* P-+M. 

Then we introduce the canonical affine splitting of JIC 
overC 

2 

J I C = S ® ( 1\ T * M ® Ad P), 
c 

where S is an affine subbundle of J I C-+C whose vector bun-

dle is V T * M ® Ad P. By considering the second projection 
2 

of this splitting, we get the adjoint form 
2 

F: J I C-+ 1\ T * M ® Ad P, FE A 2(JI C;Ad P). 

In our formalism it is a natural thing to apply both the opera
tors d and 8 to F. We find 0 = dF E A 3(J2C;Ad P), 
8F E A V2C;Ad P), and 0 = 8 2 FE A O(J3C;Ad P) which al
low a direct and concise formulation of the Yang-Mills 
equations and their associated identities, with respect to any 
potential A :M-+C. 

Then we apply the previous techniques to Lagrangian 
m 

theory induced by a Lagrangian density A : J I C-+ 1\ T * M 

(m = dim M). We observe that if the Legendre map 
m-I 

flA : JIC -+ 1\ T*M ® TM ® Ad* P (which is canonically 

associated to A) takes its values in the subbundle 
m-2 m-l 

1\ T*M ® Ad* P'-+ 1\ T*M ® TM ® Ad* P, it is a coad-

joint form, i.e., flA EA m-2(JIC;Ad* Pl. Hence we can ap
ply the differential calculus previously introduced and then 
we obtain a new geometrical interpretation of the Lagran
gian approach. Then to check the condition under which fl A 

is a coadjoint form is a valuable question. We find that the 
necessary and sufficient condition is that the Lagrangian 
density A be factorable through the canonical projection 

2 

JIC-+C X I\T*M ® Ad P. 
M 

Furthermore, the Euler-Lagrange operator associated 
to A can always be viewed as a coadjoint form E A : J2C 

m-I 

-+ 1\ T*M®Ad*P,i.e.,EA EAm-I(J2C;Ad*P). 

Then if the above condition on A is fulfilled, we can ask 
whether dfl A = E A and we find that this holds if A is factor-

2 

able through the projection F: J I C-+ 1\ T * M ® Ad P, i.e., 
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]. m 

A = AoF, A : /\T*M®AdP~/\T*M. 
Finally if the above condition on A is fulfilled, then we 

can ask whether d 2,a A = dE = 0 and we find thatthis holds 
if A is adjoint invariant. So we have found a new formulation 
of the Utiyama's theorems which does not involve directly 
properties of invariance, but comes out naturally from the 
comparison of the fundamental geometrical techniques of 
the Lagrangian theory and the adjoint differential calculus. 

We finish with a theorem that gives a new characteriza
tion of the fundamental Lagrangian (self-action density). 

II. THE ADJOINT FORMS 

A. The adjoint forms over the base space and their 
differentials 

1. The adjoint forms over M 

All manifolds and maps will be C "", and M will be a 
manifold of dimension m. Its local charts are denoted by 

r 

(x"). The space of r forms fP : M~ /\ T * M is denoted by 

Ar(M). 
1T : P~M will be a (right) principal bundle with struc

ture group G (see Ref. 9). The Lie algebra of G is denoted by 
g. 

The tangent and vertical functors T and Vinduce a free 
(right) action of G on the tangent and vertical spaces TP and 
VPC TP. Then, by considering the quotient with respect to 
such action, we obtain the vector bundles TP /G and VP /G 
over M. Sections of TP /G~M are the G-invariant tangent 
vector fields on P, while sections of VP /G~M are the G
invariant vertical tangent vector t1elds on P. The adjoint 
bundle Ad P = VP /G~M will play a fundamental role 
throughout the paper. 

The Lie brackets of sections of TP and VP over P pass 
via the quotient to sections of TP /G and Ad P over M. These 
brackets will be also denoted by [ , ]. Clearly, Ad P~M is a 
bundle of Lie algebras with each fiber being isomorphic to g. 
Here Sec(Ad P) with the previous bracket [ , ] is a Lie alge
bra over C ""(M). Note that when G is Abelian (or also when 
Pis trivial, i.e.,P = M XG) thenAdP~M Xg, i.e., AdPis 
canonically isomorphic with M Xg. 

By choosing a local gauge 1T-
1
( U)::::: U X G over a coor

dinate neighborhood (U,x).) in M and a basis (ei ) of the Lie 
algebra g, we get in an obvious way a local basis (a)., ei ) for 
the sections of TP /G~M. Moreover (e i ) is a local basis of 
Sec(Ad P) and we have [ej>ej ] = Ctek' where ct E R are the 
structure constants of G. The local expression of [ , ] is 

[ 
i j k S,1]] = s 1] cijek, (1) 

for each S = S iej> 1] = 1] jej E Sec(Ad P). We will denote by 
(e i

) the dual basis for the local sections of Ad* P~M. 
We shall be concerned with the vector spaces 

r 

A r(M;Ad P) of the adjoint forms a : M~ /\ T* M ® Ad P. 

The bracket of Sec(Ad P) induces naturally a graded Lie al
gebra structure on 

m 

A (M;Ad P) = fB A r(M;Ad P). (2) 
r=O 
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This bracket is characterized by the formula 

[fP ®S,tP®1]] = (fP/\ tP) ® [S,1]], (3) 

for each fP E A r(M), tP E A S(M), S,1] E Sec(Ad P). The local 
expression of the bracket is 

[a,/3] = ai, ,ftj ck. dx'" /\ ... /\ A,"''''' 1l1"'Ps 1J 

Xdx).' /\ dx 1',/\ •.• /\ dx 1', ® ek, (4) 

for each a = a~,,,.)., dx'" /\ ... /\ dx).' ® ei , f3 = f3~,,,.I" 
Xdxl',/\ .. ·/\ dx"'" ®ej . 

Clearly, Sec(Ad P) = A O(M;Ad P) is a subalgebra of 
A (M;Ad P). Then we have the maps 

ad: Sec(AdP)XA r(M;AdP)~A r(M;AdP) (5) 

given by ad(s,a) = adsa = [s,a]. These maps induce a 
C ""(M )-Lie algebra morphism ofSec(Ad P) into the vertical 

r 

fields over /\ T * M ® Ad P. If (x" ,y~,,,.).,l is a local chart on 

/\ T*M ® Ad P, we have 

d k/:,i,j a).''''). a s = cij':> Y)',,,.)., k " (6) 

for each S = S iei E Sec(Ad P). 

2 Theprincipalconnecuons 

A principal connection is a splitting of the exact se
quence lO 

~Ad P~TP /G~TM, (7) 
i.e.,aone-formA:M~T*M ® (TP /G ) which is projectable on 
idTM : M~ T * M ® TM. Its local expression is 

A = dx" ® (a). - A ~e;), (8) 

where the A ~ are local functions on M. The curvature of A is 
the adjoint two-form FA E A 2(M;Ad P) given by 

FA (u,v) =A ([u,v]) - [A (u),A (v)], (9) 

for each vector field u,v:M~TM. Its local expression is 

FA = !(a).A~ -al'A1-ctA~A~)dx" /\ dx"" ®ek. 
(10) 

3. The adjoint covariant derivative with respect to a principal 
connection 

LetA be a principal connection. Then the adjoint covar
iant derivative with respect to A is the map 

VA: Sec(AdP)~A l(M;AdP), (11) 

given by 

V~s = u J VAS = [A (u),s], (12) 

for each S E Sec(Ad P) and each vector field u : M~ TM. Its 
local expression is 

A a k k" '---< V s=().s -cijA~sJ)dx®ek' (13) 

for each S = S iei E Sec(Ad P). 
The adjoint covariant derivative is a derivation of the 

algebra Sec(Ad P), i.e., we have 

V~ [s,1]] = [V~S,1]] + [s,V~1]], (14) 

for each S,1] E Sec(Ad P) and each vector field u : M~TM. 
Then, by recalling (5) and using the induced covariant deri-
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vative on Ad* P® Ad P, (14) is equivalent to 

V~(ads) = a<iy~s' 

4. The adjoint differential with respect to a principal 
connection 

(15) 

The adjoint covariant derivative VA induces the adjoint 
differential with respect to A 

dA:A '(M;AdP}-+A ,+ l(M;AdP), (16) 

which is characterized by the formula 

dA(q; ® S) = dq; ® S + (- 1)'q; /\ VAS, (17) 

for each q; e A '(M), S e Sec(Ad P). Of course we have 
d AS = VAS. The local expression of d A is 

A k k" 
d a = (a,.ta""""r - CijA ~a'", ... ,,) 

Xd~ /\ d~' /\ ... /\ dx"r ® ek, (18) 

for each a = a~"""r dx'" /\ ... /\ dx"r ® e;. 
The adjoint differential d A is a derivation of the algebra 

A (M;Ad P), i.e., we have 

d A [a,.8] = [d Aa,.8] + (- Ij'[a,d Ap], (19) 

for each a e A '(M;Ad P), peA '(M;Ad P). 
We have the identity 
(d A )2a = [a, FA ] 

and the so-called Bianchi identity 

dAFA = [FA,FA ] =0. 

(20) 

(21) 

Note that when G is Abelian we have d A = d, the ordi
nary differential, for any principal connectionA. 

5. The adjoint codifferential with respect to a principal 
connection 

If (M,g) is an oriented Riemannian manifold, then the 
adjoint covariant derivative VA induces the adjoint codiffer
ential with respect to A 

6 A : A r(M;Ad P )_A r - l(M;Ad P), (22) 

which is given by 6 Aa = ± *d A *a, where * : A r(M;Ad P) 
XA m - r(M;Ad P) is the star isomorphism and a 
e A '(M;Ad P). 

From (20) we get 

(6 A)2a= ±*[*a,FA ] (23) 

and, because of the formula [a,*p] = - [p,*a] we have, in 
particular, 

(6 A)2FA = O. (24) 

6. The coadjoint forms over M 

We shall be also involved with the spaces A r(M;Ad* P) 
r 

ofcoadjointformsa: M_/\ T*M®Ad* P. Inawaysimilar 

to the previous one, we have the coadjoint differential 

dA:A r(M;Ad* P}-+A '+l(M;Ad* P) (25) 

and the coadjoint codifferential 

B. The adjoint forms over the space of connections and 
the canonical differential 

1. The bundle of principal connections 

The k-jet functor Jk induces a (right) free action of G 
over the k-jet spaces JkP. Then, by considering the quotient 
with respect to such action, we obtain the bundles JkP /G 
over M. In particular, C = JIP /G-M is an affine bundle, 
whose vector bundle is T*M ® Ad P_M. Then the vertical 
space VC C TC is given by the fibered product over M 

VC= CXT*M®AdP. (27) 
M 

The affine bundle C_M turns out to be the bundle of 
principal connections. In fact, by taking into account the 
canonical inclusion JIP /G<-+ T*M ® (TP /G), we can char
acterizetheprincipalconnectionsA : M_T*M ® (TP /G las 
the sections A : M-C. 

We shall also be concerned with the k-jet prolongations 
J k C of C. We denote by (~, a~) and (~, a~,a) the standard 
charts of C and JkC, where A = (AI' ... ,Am ), withO':;;A" .:;;k, 
1,:;;A..:;;m, is a multi-index of length IA I = A I 
+ ... + Am = k. So we have 

a~ oA = - A~, a~.a ojkA = - aAA~, (28) 

wherejkA : M-JkC is the k-jet prolongation of A: M_C. 
The minus sign in (28) is due to (8). 

2. The adjoint forms over JkC 

We denote by A r(Jk C) the space of the horizontal forms 
r 

q; : J k C-/\ T * M. A fundamental role will be played by the 

vector spaces A r(J k C;Ad P) of the horizontal adjoint forms 
r 

over JkC, namely a :JkC-/\T*M®AdP. The local 

expression of such forms is 

a = a~"""r d~' /\ ... /\ dx"r ® e;, (29) 

where a~"""r are local functions on Jk C. 
By taking into account the pullbacks with respect to the 

projections J k C -Jh C -C-M with k> h > 0, we have the 
linear natural inclusions 

A r(M;AdP) C A '(C;AdP) 

C A '(Jh C;Ad P) C A '(Jk C;Ad P). (30) 

The bracket ofSec(Ad P) induces naturally a graded Lie 
algebra structure on 

m 

A (JkC;AdP) = EB A '(JkC;AdP). 
r=O 

This bracket is characterized by the formula 

[q;®s,tft®1]] = (q;/\tft)® [S,1]], 

(31) 

(32) 

for each q; eA r(JkC), tft eA '(JkC), S,1] e Sec(Ad Pl. The 10-
cal expression of the bracket is 

[ " k '_A " a Q] = a', , Rl c .. d;;c' /\ ... /\ dx r ~ AI"'''',!'' I'I"'I-'s I) 

(33) 

for each a = a~"""r d~' /\ ... /\ dx"r ® eo p = P~, ... J.t, 

6 A :A '(M;Ad* P)_A r-l(M;Ad* Pl. (26) X dxJ.t' /\ ... /\ d~' ® ej • 
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We have the natural subalgebras 

Sec(AdP)CA (M;AdP)CA (C;AdP) 

CA (Jh C;Ad P) CA (Jk C;Ad P). (34) 

with 0 < h < k. Then. as in (5). we have the maps 

ad : Sec(Ad P) XA r(Jk C;Ad P ~A r(Jk C;Ad P) (35) 

given by ad(S.a) = ads-a = [S'.a]. 

3. The canonical jet adjoint covariant derivative 

Definition: The jet adjoint covariant derivative is the 
map 

V : A O(Jk C;Ad P ~A Vk + I C;Ad P). (36) 

given by 

(VS')Ojk+ IA = VA (SOjkA ). (37) 

for each (local) section A : M_C and S' E A O(Jk C;Ad P). 
The local expression of (36) is 

VS' = (J,tS'k + c~a~S'J)d.xA ~Hk' (38) 

for each S' = S'lel and where 

J,tS'k = a,tS'k + a~ +,t,a(if!,aS'k). (39) 

withA +A = (AI .... ,A,t + 1 .... ,Am). 
In the particular case when S' E A O(C;Ad P). the jet ad

joint covariant derivative is related to the canonical covar
iant derivative V in the pullback vector bundle 

C XAd P-C which has been introduced by Garcia (see 
M 

Ref. 6). by means of the formula 

(VS')oA = (VS')ojIA = VA(SoA). (40) 

for each (local) section A : M-C and S' E A O(C;Ad P). 

4. The canonical jet adjoint differential 

The jet adjoint covariant derivative V induces the jet 
adjoint differential 

d:A r(JkC;AdP)_A r+I(Jk+ I C;AdP). (41) 

which is characterized by the formula 

(42) 

for each (jJEAr(JkC). S'EAO(JkC;AdP) and where 
d H : A r(Jk C ~A r + Vk+ I C) is the horizontal differential 
defined by (dH(jJ)Ojk+IA =d((jJOjkA) for each (local) sec
tionA: M_C (here d is the ordinary differential). Of course 
we have dS' = VS'. 

The local expression of d is 
k k" ,_..A 

da = (J,ta,t, ... ,tr + cijaAai, ... ,t)d~ 

/\ d.xA' /\ ... /\ d~,tr ®ek. (43) 

for each a = a~ .... ,tr d.xA' /\ ... /\ dx,tr ® ei • 

Note that. by considering the inclusion Sec(Ad P) 
C A O(C;Ad Pl. from (36) we obtain the map 

d: Sec(Ad P)_A I(C;Ad P) C A VIC;Ad Pl. (44) 

Moreover. since Sect VC) = A I( C;Ad P) as follows from (27). 
the map (44) becomes 

d: Sec(AdP)-Sec(VC). (45) 
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This is an lit-Lie algebra morphism whose local expression is 

dS' = (a,tS'k + c~a~S'j~. (46) 

as we get from (38). 

5. The canonical jet adjoint codifferential 

If (M,g) is an oriented Riemannian manifold. then the 
jet adjoint covariant derivative V induces the jet adjoint co
differential 

/j:A r(JkC;AdP~A r-I(Jk+ IC;AdP). (47) 

which is given by /ja = ± *d *a for each a E Ar(J k C;Ad P). 
The codifferential /j is also characterized by 

(/ja)ojk + IA = /jA (aojkA ). (48) 

for each (local) section A : M-C and a E A'(Jk C;Ad P). 

6. The coadjoint forms over Jk C 

We need also the spaces A r(JkC;Ad* P) ofthe horizon-
r 

tal coadjoint forms a : Jk C_/\ T * M ® Ad * P. As before. we 

have the jet coadjoint differential 

d:A r(JkC;Ad* P)_A r+ Vk+ I C;Ad* P) (49) 

and thejet coadjoint codifferential 

/j:A r(JkC;Ad* P)_A r-I(Jk+ I C;Ad* Pl. (50) 

C. The fundamental adjoint form 

1. The canonical splitting of J t C 

Theorem 1: The affine bundle J1 C_C admits the ca
nonical splitting 

2 

JIC=SfB(/\ T*M®AdP) (51) 
c 

into the direct sum over C of the affine subbundle S = J2P / 

G C J I C (whose vector bundle is V T * M ® Ad P) and the 
2 

2 

linear subbundle /\ T*M®AdP of T*M® T*M®Ad P 

which is the vector bundle associated with JIC_C. 
Then from the second projection of the splitting (51) we 

get thefundamentalform FEA 2(JIC;Ad Pl. i.e .• 
2 

F:J1C-/\T*M®AdP. (52) 
If A : M_C is a principal connection. then its curvature is 
given by FA =FojIA. 

The local chart 
_..A k. k k k k k i . 
(~.a,t.a,t,,.. + a,..,;..a,..,,t - a,t,,.. - cija,ta',..) (53) 

of JIC is adapted to both the submanifolds S and 
2 

C X( /\ T * M ® Ad P) of J I C. Hence the local expression of 
M 

Fis 

(54) 

Proof: We know (see Ref. 4) that the sesquiholonomic 
bundle J2P-.JIP is an affine bundle whose vector bundle is 
(the pullback over JIP of) T * M ® T * M ® VP and that it ad
mits the canonical splitting 
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- ~ J2P = J2Pffi (/\ T*M ® VP) (55) 
J,P 

into the direct sum over J1P of the affine subbundle 

J2P C 1} (whose vector bundle is V T * M ® VP) and the 
2 

2 

linear subbundle /\ T * M ® VP of T "" M ® T * M ® VP. More-
2 

over, we know that the curvature R r : P--+ /\ T "" M ® VP of 

any connection r: P--+J1P is given by Rr = doJ1ror, 
2 

where d : 1;P--+ /\ T * M ® VP is the second projection of the 

splitting (55). 
Then we can prove, by means of a direct check, point by 

point, that all the previous structures and maps pass to the 
quotient with respect to the action of G. Moreover, we can 
prove that J2P /G is canonically isomorphic to J1(J1P /G). 
This proves the splitting (51) and the other related facts. 

Remark 1: The projectioQ F generalizes the differential 
of usual form sip: M--+T*M.Indeed,theformsip EA I(M)are 
nothing but the principal connections ofthe principal bundle 
P = M XR--+M (aswehaveC = T*M)andtheordinarydif
ferential is given by dip = FOjlip, where F: J1T""M 

2 

--+/\ T""M. 

Remark 2: Let Gp be the infinite Lie group of the princi
pal automorphisms of P over idM (gauge group). Then 
Sec(Ad P) can be considered as the Lie algebra of G p (gauge 
algebra). 

Gp acts naturally on the left on JkC and also on S and 
2 

/\ T * M ® Ad P. It is easily seen that this last action is noth-

ing but the adjoint action Gp xAd P--+Ad P (with the iden-
2 

tity on /\ T * M). The splitting (51) and the projection Fare 

both Gp invariant. 
By taking the one-jet extension (see Ref. 5) ofthe R-Lie 

algebra morphism (45) we get precisely the derivative of the 
action of Gp on J1C. In the same way, (6) is the derivative of 

2 

the adjoint action of Gp on /\ T "" M ® Ad P (with r = 2). 

Clearly these two representations ofSec(Ad P ) are F related. 

2. Applications of the formalism of the adjOint forms to the 
Yang-Mills equations 

Now it is a natural idea to apply the operators d and fj to 
FE A 2(J1C;Ad P). As these objects are canonical, we expect 
to find other important objects. In fact we obtain the follow
ing result. 

Theorem 2: We have 

0= dF E A 3(J2C;Ad P), (56) 

fjFEA V2C; Ad P), 0 = fj 2F E AO(J3C;Ad Pl. (57) 

Moreover we have the following interpretations. 
(i) dF = 0 reduces to the Bianchi identity, with respect 

to any connection A : M--+C, as we have 

(58) 

(ii) fjFreduces to the Yang-Mills operator (in the direct 
formalism, without regard to any Lagangian formulation), 
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which can act on any potential A : M--+C, as we have 

(fjF)OjzA=fjA(FOjlA)=fjAFA =JA, (59) 

whereJA =JoA andJEA I (C;Ad P) is an extemalcurrent. 
(iii)fj 2F = o reduces to the charge conservation identity, 

with respect to any potential A : M--+C, as we have 

0= (fj 2F)Oj~ = (fjA )2(FojIA ) = (fjA )2FA = fjAJA' (60) 

Proof It is a direct consequence of the previous defini
tions and results. 

III. APPLICATION OF THE ADJOINT FORMS TO 
LAGRANGIAN THEORIES 

A. The condition by which the Legendre map Is a 
coadjoint form 

Next we apply the formalism of the adjoint forms to 
Lagrangian theories. 

Let us assume a Lagrangian density 
m 

A: J1C--+/\ T""M, A EA m(J1C), (61) 

to be given. Its local expression is 

A = X' 0), 0) = dx l /\ ... /\ dxm, (62) 

where X' is a local function on J1C. 
The fiber derivative of A, with respect to the affine bun

dleJ1C--+C, is the map 
m 

DA : JC--+TM® V""C® /\T*M 

m 

~ /\T""M®TM®TM®Ad"" P, (63) 

where we have used (27). Then by considering the canonical 
isomorphism 

m (. > m-I 
/\ T*M ® TM --+ /\ T*M, (64) 

we obtain the Legendre map (see Ref. 5) 
m-I 

{JA = ( , )oDA :J1C--+ /\ T*M® TM®Ad"" P. (65) 

Its local expression is 

(JA = n:·aO);,. ®aa ®ei
, (66) 

where n1·a = a:·a X' are local functions on J1C and 
0);,. = a;"J 0) = ( - I);" -Idxl /\ ... /\ '{j'XA /\ ... /\ dxm. 

The following remark allows us to state the condition 
by which (J A is a coadjoint form. 

Lemma 3: We have the canonical linear isomorphism 
m-I m-2 m 
/\ T*M®TM~ /\ T""Mffi(VT""M® /\T""M) (67) 

2 

whose local expression is 

./,J..'''{J ® a --+ 1 ./,J..'''O) + 1 ·/,J..·"a V a .0. 0) 'f' ;,. " "1 'f' ;,." '1 'f' ;,. ,,'0', (68) 

where 0);,." = a"J 0);,.. 

Proof Indeed, by taking any (local) volume form 7]: 
m 

M--+ /\ T "" M and by using the associated (local) star isomor-
r m-r 

phisms, that is "": /\ T""M--+ /\ TM, the (global) isomor-

phism (67) is given by the composition 
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m-I .8idTM 2 

1\ T*M®TM -+ TM®TM~I\TME9 VTM 
2 

... (811) m - 2 m 

_ 1\ T*ME9(VTM® I\T*M). (69) 
2 

Then we find the following condition. 
Proposition 4 (Condition Co): The following conditions 

are equivalent. 
m-2 m-I 

(i) lJA : JIC-+ 1\ T*M®Ad* P<-+ 1\ T*M® TM 

®Ad* P, i.e., lJA EA m-2(JIC;Ad* P). 

(ii) A is factorable through the canonical projection 
2 

JIC-+C X 1\ T*M®Ad P. 
M 

(iii) We have locally ll1·a + llf.A = O. 
If one of the previous conditions is fulfilled, the local 

expression of lJ A becomes 

(70) 

Proof: For the previous Lemma we have (ij{:}(iii). More
over, by considering the chart (53) adapted to the splitting 
(51) over C, we have (ii)<::>(iii). 

B. The condition by which the Euler-Lagrange operator 
Is the coadJolnt differential of the Legendre map 

Without any specific assumption on the Lagrangian 
density A E A m(JI C), the Euler-Lagrange operator E A asso
ciated to A is a map (see Ref. 5) 

m m 

EA :J2C-+I\T*M® V*C~ 1\ T*M®TM®AdP. 

(71) 

Then, by considering the canonical isomorphism (64), EA 
can be viewed as a coadjoint form 

m-I 

EA :J2C-+ 1\ TM®Ad*P, EA EAm-'(J2C;Ad*P). 

(72) 

Its local expression is (see Ref. 5) 

EA =(i}f.Y'-J;..ll1·aCtJa)®ei, (73) 

where the formal derivative J;.. has been defined in (39). 
On the other hand, let us assume that the condition Co is 

fulfilled, so that lJA EA m-2(J,C;Ad* P). Then we may 
compute dlJ A E A m - '(J2C;Ad * P). We find 

dlJA =EA +(c~a~ll~,a-a;.Y')CtJa®ei. (74) 

Now we can ask whether dlJ A = EA' For this purpose 
we obtain the following result. 

Proposition 5 (Condition C1): The following conditions 
are equivalent. 

(i)lJA EA m- 2(J,C;Ad*P),dlJA =EA· 
(ii) A is factorable through the projection F: J,e 

2 2 

-+I\T*M®AdP, i.e., A = AoF, where A: I\T*M 
m 

®AdP-I\T*M. 

(iii) We have locally 

Proof: The local expressions (73) and (74) give (i)<=>(iii). 
Moreover, we see that the local vector fields 

u;",a = cr,a + iJ?.A, u1- = cr + c~ai az.k,a (76) , , , J J IJ a 

are a local basis for the F-vertical vector fields over JIC. 
Hence (ii)<::>(iii). 

C. The condition by which the Euler-Lagrange operator 
Is coadJolnt closed 

Now let us assume that the condition C I is fulfilled so 
that lJA EA m- 2(JIC;Ad*P) and EA =dlJA 
E A m - I (J2C;Ad * P). Then we can ask when it happens that 

EA is coadjoint closed. For this purpose, we find the follow
ing result. 

Proposition 5 (Condition C2 ): The following conditions 
are equivalent. 

(i) lJA EA m-2(J,C;Ad* P), dlJA = EM dEA = O. 
(ii) A = A of and A is (infinitesimally) adjoint invariant 

(see Remark 2), i.e., we have· 

Lads-A = 0, for any S E Sec(Ad P), (77) 

where L denotes the Lie derivative and adl is the vertical 
2 

vector field on 1\ T * M ® Ad P given by (6). 

(iii) Locally we have the conditions (75) and the other 
one 

ki-v..p7R 0 
CijY;"pUiC oL = , 

where A = Y CtJ, Y 
2 

I\T*M®AdP. 

(78) 

being a local function on 

Proof: It is easily seen that we have the formula 

S J dEA = (Lads-A)OF, (79) 

for each S E Sec(Ad P). Then (i)<::>(ii). Moreover, the local 
expression of Lads-A gives (ii)<::>(iii). 

Remark 3: The local expressions (75) and (78) (Utiya
ma's conditions) are equivalent to the (infinitesimal) gauge 
invariance of A, that is the invariance of A by the one-jet 
extension of the morphism (45) (see Remark 2). 

While in the direct approach (adjoint forms) we have 
theformulas8FEA '(J2C;Ad P)and8 2F= 0, in the Lagran
gian approach (coadjoint forms) we have EA = dlJ 
EA m-'(J2C;Ad* P) and d 2lJA = O. The correspondence 
of the two approaches is clear. 

It must be observed that a characterization of the criti
cal sections of a gauge invariant Lagrangian density A by 
means of the Legendre map lJ A (without writing the formu
las E A = dlJ A and d 2 lJ A = 0) appears in a paper of Garcia 
and Perez-Rendon. II 

D. The fundament_I Lagrangian 

Now let us assume (M,g) to be an oriented Riemannian 
manifold and also that a Riemannian metric h to be given in 
the adjoint bundle Ad P-+M. We denote by h :Ad P 
_Ad* P also the induced isomorphism. 

2 

Let s: 1\ T * M ® Ad P-+R be the quadratic form asso-
2 

ciated to the metric on 1\ T * M ® Ad P constructed by 
ll ;",a + lla.A - 0 ckai ll;",a _ !Ia CR - 0 i i -, ij;" k UjoL-. (75) means of g and h. Put 
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m 

(SO) 

where 11 = "liT ll) is the canonical volume form on (M ,g). The 
local expression of S, which follows from (54), is 

S = !g-t!'g«Phij(a~.A - a~,a - c~aAa~) 

x (tip,!, - 0:.,/3 - drsa~ ap), (SI) 

where hij = h (ej>ej ). 

The key property of the Lagrangian density ~ (which 
satisfies obviously the condition C l ) is 

(S2) 

as we see by using (SI). 
We have the following characterization of~. 
Theorem 6: Let A E A mIll C) be a Lagrangian density. 

Then the following conditions are equivalent (i) tJA = tJI , 

E A = dtJ A; and (ii) A = ~ + qJ, where qJ is (the pullback of) 
an arbitrary m form on M. 

Moreover, if Vh = 0 and if one of the previous condi
tions is fulfilled, then we have also 

(S3) 

Proof It is clear that if n A = tJ I then A = ~ + qJ', 
m 

where qJ': C ....... 1\ TM is arbitrary. Furthermore, if 

EA = dtJA it follows from the condition C l that qJ' is the 
pullback of an m form on M. The converse is obvious. 

If the Riemannian metric h is compatible with the ca
nonical operator d (recall that V is the canonical covariant 
derivative on C X Ad P ....... C), then the first formula (S3) fol

M 

lows from (S2) while the second one follows from {j 2F = O. 
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Remark 4: Let h be the Cartan-Killing bilinear form on 
AdP, i.e., 

(S4) 

for any S,l1 E Sec(Ad P). Then from (15) we obtain V h = O. 
Moreover, if G is semisimple [as is the case in which 
G = SU(n)], then h is not degenerate. Hence we may apply 
the previous theorem. The corresponding Lagrangian den
sity ~ is the one most used in classical gauge theories. 
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We point out that the eigenfunctions of energy-dependent separable potentials, which are 
commonly used in the relativistic three-body problem, form a complete set of states. The 
completeness property is important, since it is necessary in order to satisfy the optical theorem, 
and consequently to conserve probability. We show that there exists a large family of energy
dependent separable potentials whose eigenfunctions form a complete set. Although the 
eigenfunctions of these potentials are not mutually orthogonal, it is shown that in general they are 
linearly independent. 

I. INTRODUCTION 

Many three-body calculations have been performed in 
the past, 1-9 using as input the two-body amplitudes obtained 
from energy-dependent separable potentials. Thus, in the 
case of the various reactions of a pion with a deuteron, 1-6 the 
dominant pion-nucleon amplitude, which is that of the P33 

channel, has been derived from the energy-dependent sep
arable potential proposed by Woloshyn, Moniz, and Aaron, I 
while in the three-body treatment of nucleon-nucleon scat
tering proposed by Kloet, Silbar, Aaron, and Amado,7-9 the 
amplitudes for the pion-nucleon PII and P33 channels have 
been derived also from this kind of interaction. In the case of 
the nucleon-nucleon system, energy-dependent separable 
potentials have been proposed 10 for the I So and 3S1 channels, 
and they have been applied to study the effects of the nu
cleon-nucleon hard core in pion-deuteron scattering, II as 
well as in the three-nucleon bound-state problem. 12 Optimal 
forms for the S-wave nucleon-nucleon separable potentials 
have been obtained by Ahmad and Beghi, 13,14 while Safiudo 
has constructed a set of energy-dependent separable poten-

I 

tials for the kaon-nucleon system. 15 

The completeness of the eigenfunctions of the two-body 
interactions is important, since it is required in order to sa
tisfy the optical theorem. Therefore, by requiring that com
pleteness be maintained, one guarantees the conservation of 
probability. Let us consider, for example, the scattering of a 
projectile by a target which is a bound state of particles 1 and 
2. The elastic scattering amplitude obeys the Lippmann
Schwinger equation 

where V; is the potential between the projectile and particle i, 
Ko is the kinetic energy operator for the relative motion of 
the projectile and the target, and BI2 is the internal Hamil
tonian of the target. Since the amplitude T obeys the unitar
ity relation 

T - Tt = - 211"iT8(E - Ko - BdTt , 

if the eigenfunctions tPn of the Hamiltonian BIZ form a com
plete set, we get from the unitarity relation that 

(kotPoI T- TtlkotPo) = -211"i~ f dk(kotPoI T lk tPn)8(E- ~~ -En)(ktPnITtlkotPo) 

= - 211"i ~ f dkl (kotPol T IktPn) 1
28( E - ~ - En) 

= - ~ L u = - iko U TOT 

8J.t"r n n 8J.t"r , 

which is the optical theorem. Thus, we see that in order to 
satisfy the optical theorem one requires not only the unitar
ity condition, but also the completeness of the eigenfunctions 
of the two-body subsystem. 

II. THE EIGENFUNCTIONS OF ENERGY-DEPENDENT 
SEPARABLE POTENTIALS 

Since we are interested in the consequences of com
pleteness for the relativistic three-body problem, we will 
present in this section the solutions of the two-body problem 
for the case of the Blankenbecler-Sugar equation. 

An energy-dependent separable potential in a given 
partial wave is written in momentum space as 

V(k,k'; Z) =g(k)g(k ')b (Z), (1) 

-) On leave from Escuela Superior de Fisica y Matematicas, Instituto Poli
tecnico Nacional, Mexico 14 D. F., Mexico 

I~----------------------------------------
where k and k I are the magnitudes of the initial and final 
relative momenta of the two particles in the center of mass 
frame, and Z is the invariant mass squared of the system. 
The on-shell momentum q is related to Z by 

Z= [(mi +q2)1/2+(m~ +q2)1/2]2. 
(2) 

The Blankenbecler-Sugar equation for the two-body prob
lem is 

T(k k I. Z) = V(k k I. Z) + (00 wl(k") + w2(k ") k 112 dk· 
" " Jo wl(k "}ct>2(k ") 

X V(k, k "; Z)[Z - S(k ") 

+ iE]-IT(k ", k'; Z), (3) 

where 
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wj(k) = (k 2 + m;)1/2, i = 1,2, 

S(k)= [wI(k)+W2(kW· 

(4) 

(5) 

UsingEq. (I) into Eq. (3), we find thatthe solution ofEq. (3)is 

T(k, k'; Z) = g(k)g(k ')ID (Z), (6) 

where 

The continuum eigenfunctions of the potential (1) are 

f/! (k) = wl(k )w2(k) _I 6(k _ q) 
q wl(k)+W2(k)k 2 

(7) 

+ I g(k )g(q) (8) 
Z-S(k)+iE D(Z) , 

while the wave function of a bound state of invariant mass 
squared Sn is 

(9) 

where N!12 is a normalization constant (see Appendix A). 

III. COMPLETENESS 

In order to find under which conditions the complete
ness property is satisfied, we will follow the same method 
used by Henley and Thirring to prove the completeness of 
the solutions of the Lippmann-Schwinger equation for an 
energy-independent separable potential. 16 

Let us consider first the case when the potential (1) does 
not have any bound state, so that D (Z ) has no zeros in the 
negative real axis. In order to prove that the continuum ei
genfunctions f/!q(k) given by Eq. (8) form a complete set, we 
need to show that they satisfy 

("" wI(q) + W2(q) i dq f/!:(k )f/!q(k') 
Jo WI(q)w2(q) 

= WI(k)W2(k) _1- 6(k-k'). (10) 
wl(k) + w2(k) k 2 

If we substitute Eq. (8) and its complex conjugate into the 
left-hand side of Eq. (10), we get 

("" wIIq) + W2(q) q2 dq f/!:(k )f/!q(k') 
Jo WI(q)w2(q) 

1381 

= wl(k )w2(k) _1_ 6(k _ k') 
wl(k) +w2(k) k 2 

+ 1 g(k ')g(k ) 
S(k) -S(k') + iE D [S(k)] 

+ 1 g(k )g(k ') 
S(k')-S(k)-iE D*[S(k')] 

+ g(k)g(k') 1"" wl(q) + W2(q) q2 dq 
o WI(q)w2(q) 

X 1 1 g2(q) 
Z -S(k) -iE Z -S(k') +iE D*(Z)D(Z)' 

(11) 
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so that in order for Eq. (10) to hold, we must show that the 
sum of the last three terms in the right-hand side ofEq. (11) is 
equal to zero. If we use Eq. (7), we see that 

1 I D*(Z) -D(Z) -----= 
D(Z) D*(Z) D(Z)D*(Z) 

= - 'lTi q g2(q) , 
wl(q) + w2(q) D *(Z)D (Z) 

(12) 

while 

1 

Z - S (k ) - iE Z - S (k ') + iE 

1 [ 1 
= S(k) -S(k') +iE Z -S(k) -iE 

- Z-S(~')+iJ. (13) 

Using Eqs. (12) and (13), we can write the last term of the 
right-hand side ofEq. (II) as 

last = - ~ 1 g(k )g(k ') 
'lTi S (k ) - S (k ') + iE 

X ("" [wIlq) + w2(qW q dq 
Jo WI(q)w2(q) 

x[ 1 _ 1 ] 
Z -S(k) -iE Z -S(k') + iE 

X [D;Z) - D~Z)] 
_ 1 1 g(k )g(k ') 

2'ITi S(k) - S(k') + iE 

X ("" dZ [ I 
J(m, +m,)' Z - S(k) - iE 

- Z-S(~')+iE][ D~) - D*I(Z)]' (14) 

where we have used Eq. (2) to change the variable of integra
tion. Ifwe now consider the variable Z as a complex variable, 
then we see from Eq. (7) that for points Z not on the real axis 

D*(Z) =D(Z*), (15) 

so that if the function 1/ D (Z jis analytical everywhere except 
at the positive real axis and does not diverge when IZ I -+ 00, 

we can use Eq. (15) to close the contour as shown in Fig. 1, so 
that we can write Eq. (14) as 

y 

_-+-~~x 

FIG. 1. Contour of integration ofEq. (16). 
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last = - _l_g(k)g(k') 1 
211"i S(k) - S(k') + iE 

X J, dZ [ 1 
j Z-S(k)-iE 

1 ] 1 
Z -S(k')+iE D(Z) 

_ (k)g(k') 1 
- -g S(k) -S(k') + iE 

X[D[;(k)] - D*[;(k')]]' 
(16) 

where we have used Cauchy's theorem and Eq. (15). We see 
that Eq. (16) exactly cancels the second and third terms in the 
right-hand side of Eq. (11), so that Eq. (10) holds. 

The result (16) is based in the assumption that 1/ D (Z) is 
analytical, which means that D (Z) defined by Eq. (7) must 
not have any zero above or below the real axis. In order to see 
if this is true or not, it is of course necessary to know the 
explicit form of the function b (Z). Thus, in the next section, 
we will examine several forms for b (Z) which satisfy the re
quired conditions. 

If the potential (1) has bound states, then the poles of 1/ 
D (Z ) corresponding to the bound-state energies contribute to 
the closed integral ofEq. (16), since from Eqs. (6) and (AI6) 
we see that near a bound state of invariant mass squared Sn' 

1/D(Z)::::;Nn [1/(Z -Sn)]' (17) 

so that Eq. (16) becomes in this case 

last = - g(k )g(k ') 1 
S (k ) - S (k ') + iE 

{ 
1 1 

X D[S(k)] - D*[S(k')] 

+ INn [ 1 
n Sn - S(k) - iE 

- Sn - S:k ') + iE ]} 

_ (k)g(k') 1 
- -g S(k) -S(k') + iE 

X [1 1] 
D[S(k)] D*[S(k')] 

N !/2g(k ) N !/2g(k ') 

- ~ Sn -S(k) -iE Sn -S(k') + iE 

_ (k)g(k') 1 
- -g S(k)-S(k')+iE 

X [1 1] 
D [S(k)] D*[S(k')] 

- I tP~(k)tPn(k'), (18) 
n 

where we have used Eq. (AI8).lfwesubstitute Eq. (18) back 
into Eq. (11), we see that the completeness relation in the case 
where there are bound states is 
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I tP~(k )tPn (k ') 
n 

IV. ACCEPTABLE MODELS OF ENERGY-DEPENDENT 
SEPARABLE POTENTIALS 

As we mentioned in the previous section, in order to 
obtain Eq. (10) or Eq. (19), we had to assume that the func
tion 1/ D (Z) is analytical everywhere in the complex Z plane 
except at the real axis. This means thatD (Z) must not be zero 
above or below the real axis. 

An energy-dependent separable potential of the form 
(1), has been proposed by Woloshyn, Moniz, and Aaron I for 
the pion-nucleon P33 channel, where the energy dependence 
was chosen of the form 

b(Z)= 1/(Z+a), (20) 

where a is a real number, so that from Eq. (7), 

D (Z) = Z + a _ (<X> mIlk) + m2(k) k 2 dk g2(k) . 
Jo mI(k)m2(k) Z-S(k) 

(21) 

If we write the complex variable Z as 

Z=x+iy, (22) 

then we can write the imaginary part of Eq. (21), as 

ImD(Z) 

=y + y (<X> mIlk) +m2(k) k 2dk g2(k) , 
Jo mI(k)m2(k) [x-S(kW+y2 

(23) 

which, as we can see, never vanishes above or below the real 
axis, so that 1/ D (Z) is analytical in that region, and Eq. (10) 
or Eq. (19) is valid, which shows that the eigenfunctions of a 
separable potential with the energy dependence (20) form a 
complete set of states. 

As a second example, let us consider an energy depen
dence of the form 

1/b (Z) = a - 1/(Z + c), (24) 

with a and c real numbers. This type of interaction has been 
used by Schwarz, Zingl, and Mathelitsch I7 to represent the 
pion-nucleon PI I channel. The imaginary part of D (Z) is in 
this case 

(25) 

which, as we can see, also never vanishes above or below the 
real axis, and consequently Eq. (10) or Eq. (19) is also valid in 
this case, so that the eigenfunctions of a separable potential 
with the energy dependence (24) form a complete set. 

It is clear by combining Eqs. (20) and (24), that the fam
ily of separable potentials whose energy dependence is of the 
form 
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(26) 

where a j and Cj are real numbers, will give rise to eigenfunc
tions that form a complete set. 

In the case where there are bound states, the derivation 
ofEq. (19) requires that the poles of 1/ D (Z ) be simple, so that 
we need to show that D (Z), as defined by Eq. (7) with the 
energy dependence 1/b (Z) given by Eq. (26), has only simple 
zeros. If D (Sn) = 0, there is a bound state of invariant mass 
Sn' and we can subtract D (Sn) from Eq. (7), to get [using Eq. 
(26)] 

2 ~ 2[ 1 1] D(Z)=ao(Z-Sn)- £.. a j -- - ---

j = I Z + Cj Sn + Cj 

_ roo (i)1(k) + (i)2(k) k 2 dk i'k 
Jo (i) I (k )(i)2(k ) 

x [ Z _ S (~) + iE - Sn - S ~k) + iE] 

= (Z- Sn){a6 + f a; 
j= I (Z + cj)(Sn + c;) 

+ roo (i)1(k) + (i)2(k) k 2 dk i'(k) 
Jo (i) I (k )(i)2(k ) 

x 1 } (27) 
[Z-S(k)+iE1[Sn -S(k)+iE] , 

so that near Z = Sn' 

D(Z)::::;:(Z -Sn){a6 + .f (Z a; f 
.=1 +c j 

+ roo (i)1(k) + (i)2(k) k 2 dk i'(k) }, (28) 
Jo (i)1(k )(i)2(k) [Z - S (k W 

from which we see that the coefficient of (Z - Sn) never van
ishes at Z = Sn' and therefore the zeros of D (Z) are simple. 

v. LINEAR INDEPENDENCE OF THE EIGENFUNCTIONS 

Although the set of eigenfunctions (8) and (9) satisfy the 
completeness relation (19), they are not mutually orthogo
nal, as we show in Appendix B. Thus, it is not clear that these 
eigenfunctions really span the Hilbert space, since in order to 
do that they must be linearly independent. Thus, we will 
discuss next under what conditions the set of eigenfunctions 
(8) and (9) are linearly independent. 

As we have shown in Appendix B, the eigenfunctions (8) 
and (9) obey the nonorthogonality relations 

<r/I Ir/I } = {) + N I12 N II2 1 n m nm n m Sm _ Sn 

(29a) 

e' 1." } - N II2 g(q) 1 
'f/n 'f/q - n D [S(q)] S(q) - Sn 

x{ b(~n) - b [;(q)]}' 
(29b) 
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(i)1(q)(i)2(q) .!. {)(P _ q) 
(i)1(q) + (i)2(q) q2 

g(p)g(q) 
+ D *[S(p)]D [S(q)] 

1 
S(q)-S(p) 

x { b [S\P)] - b [;(q)]}' (29c) 

which in the limit of an energy-independent separable poten
tial b (Z) = const, reduce to the standard orthogonality rela
tions. 

Linear independence of the set of eigenfunctions (8) and 
(9), requires that the relation 

Lam Ir/lm} + roo (i)t!q) + (i)2(q) q2 dq a(q)lr/lq} = 0 
m Jo (i)t!q)(i)2(q) 

(30) 

is possible only with am = a(q) = O. If we multiply Eq. (30) 
on the left by <r/ln I and <r/lp I and use the nonorthogonality 
relations (29), we get 

La N II2N II2 1 [_1 ___ 1_] 
m m n m Sm -Sn b(Sn) b(Sm) 

+ roo (i)l(q) + (i)2(q) q2 dq a (q) 
Jo (i)1(q)w2(q) 

xN 112 g(q) 1 {I I} 
n D[S(q)] S(q)-Sn b(Sn) b[S(q)] 

(31a) 

~ N 112 g(P) 1 { 1 
-f: am m D *[S(P)] Sm - SIP) b [SIP)] 

__ 1_} + roo (i)t!q) + (i)2(q) q2 dq a(q) 
b (Sm) Jo (i)1(q)(i)2(q) 

x g(p)g(q) 1 
D*[S(PllD [S(q)] S(q) - SIP) 

x { b [;(P)] - b [;(q)]} = - alP)· (31b) 

These equations represent an eigenvalue problem of the form 

Ka= -8, (32) 

where the eigenvector a consists of the discrete set of 
numbers am and the continuum set of numbers a(q). Thus, if 
one solves the eigenvalue problem of the Hermitian operator 
K and finds that one of its eigenvalues is - 1, then the set of 
eigenfunctions (8) and (9) are not linearly independent. How
ever, if the operator K, defined by Eqs. (31) and (32), does not 
have the eigenvalue - 1, then the only vector that satisfies 
Eqs. (31) is am = a(q) = 0, which means that in that case the 
set of eigenfunctions (8) and (9) are linearly independent. 
Thus, we have shown that the set of eigenfunctions (8) and (9) 
form a complete set of states and in general are linearly inde
pendent, except in the special case when the operator K has 
the eigenvalue - 1. 
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APPENDIX A: THE BOUND-STATE WAVE FUNCTIONS 

If we introduce the plane-wave partial-wave states of 
relative momentum k that are normalized invariantly on the 
mass shell as 

(k Ik') = a>l(k }a>2(k) _I 6(k - k '), (AI) 
a>l(k) + a>2(k) k 2 

then they obey the completeness relation 

1= ("" a>l(k) + a>2(k) k 2 dk Ik )(k I. (A2) 
Jo a>l(k }a>2(k ) 

These states are eigenfunctions of the free Hamiltonian Ho, 
where 

Holk) =S(k)lk). (A3) 

Thus, with these definitions we can write the Blankenbecler
Sugar equation in operator form as 

T= V+ VGoT, 

where the free Green's function Go is given by 

Go = 1/(Z - Ho + iE). 

If we now define the full Green's function G as 

G = 1/(Z - Ho - V + iE), 

(A4) 

(AS) 

(A6) 

then we can write the Tmatrix TofEq. (A4) in terms of Gas 

T= V+ VGV. (A7) 

Introducing a complete set of plane-wave states of the 
form (A2) into Eq. (A4), we get 

(k IT Ik') = (k IV Ik') + l"" a>l(k H) + a>2(k ") k "2 dk " 
o a>l(k ")a>2(k H) 

X (k I Vlk "){ 1/[Z -S(k H) + iE] J 

X (k HITlk '), (A8) 

which is the Blankenbecler-Sugar equation (3). 
If the eigenfunctions of the Hamiltonian Ho + V form a 

complete set of states (as in the cases that we are studying in 
this paper), then we can write Eq. (A 7) as 

(kIT(Z)lk') = (klVlk') + ~(klVl~,,) Z~S" 

X (~ IV Ik') + ("" a>l(k H) + a>2(k H) 
" Jo a>l(k H)a>2(k H) 

xk,,2 dk "(k IVI~k') 

X {1/[Z - S(k H) + iE] J (~k.1 Vlk '), 
(A9) 

where the~" are the wave functions of the bound states with 
invariant mass S" (while an energy-independent separable 
potential can have at most only one bound state, an energy
dependent one can have several of them), and the ~k' are 
continuum states of invariant mass S (k H), that is, 

1384 

(Ho + V)I~,,) = s" I~,,), 
(Ho+ VlI~k') =S(kH)I~k·)· 
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(AW) 

(All) 

Near a bound state of invariant mass S", the T matrix 
(A9) is given approximately by 

(kIT(Z)lk')::::(klVl~,,) I (~"lVlk') 
Z-S" 

= [S" -S(k)](kl~,,)[1/(Z-S,,)] 

x(~"lk')[S" -S(k')], (AI2) 

where we have used Eqs. (AW) and (A3). We have, in the 
particular case of the potential (I), that the T matrix is given 
by Eqs. (6) and (7), as 

(k IT(Z)lk') =g(k)g(k') 

Therefore, at the invariant mass S" corresponding to a 
bound state, the term in large parentheses in Eq. (AI3) must 
vanish, that is 

_1_ _ ("" a>1(P) + a>2(P) p2 dp g2(P) = o. 
b (S,,) Jo a> 1 (P)a>2(P) S" - S (P) + iE 

(AI4) 

If we subtract Eq. (A 14) from the term in large parentheses in 
(A13), and use the Taylor expansion 

b(Z)=b(S,,)+(Z-S,,)[!!!!...] + ... , 
dZ Z=Sn 

(AIS) 

we see that for values of Z near the bound-state pole, the T 
matrix (AB) is given approximately by 

(k I T(Z )Ik') ::::N"g(k )g(k ')/(Z - S,,), (AI6) 

where 

N" = ( _ [ ~ db ] + ("" a>1(P) + a>2(P) p2 dp 
b dZ Z=Sn Jo a>1(P}a>2(P) 

g2(P) )-1 
X [S" _S(P)]2 ' (AI7) 

so that comparing Eq. (AI6) with Eq. (AI2), we see that the 
bound-state wave function is 

(AI8) 

From Eqs. (A2), (AI7), and (AI8), we see that the normaliza
tion of the bound-state wave function is 

= 1 + N" [ _1_ !!!!...] . 
b 2 dZ Z=Sn 

(AI9) 

Thus, we see that in the case of an energy-dependent separa
ble potential the bound-state wave functions are not normal
ized to unity. Of course, if the potential is energy indepen
dent, that is, if b (Z ) = const, then we get from Eq. (A 19) that, 
as expected, 

(A20) 
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APPENDIX B: NONORTHOGONALITY OF THE WAVE FUNCTIONS 

We will derive in this appendix the equivalent of the orthogonality relations for the eigenfunctions (8) and (9). Let us begin 
with the continuum eigenfunctions. Using Eq. (8), we have that 

1"" liJ. (k ) + liJ2(k) k 2 dk J/!:(k )f/! q' (k ) 
o liJ.(k }ll.I2(k) 

= liJ.(q}ll.l2(q) 1 t5(q _ q') + 1 g(q)g(q') + 1 g(q')g(q) 
liJ.(q) + liJ2(q) q2 S (q') - S (q) + iE D [S (q')] S (q) - S (q') - iE D * [S (q)] 

+ g(q)g(q') 1"" liJ.(k) + liJ2(k) k 2 dk g2(k) 
D *[S(q)]D [S(q')] 0 liJ.(k }ll.I2(k) [S(q) - S(k) - iE][S(q') - S(k) + iE]' 

so that adding the second and third terms on the rhs of Eq. (B l), we get 

second + third = g(q)g(q') {l l} _ g(q)g(q') 
S(q') - S(q) + iE D [S(q')] D *[S(q)] S(q') - S(q) + IE 

D*[S(q)] -D [S(q')] 

D [S(q')]D *[S(q)] 

g(q)g(q') 1 {l 1 
S(q')-S(q)+iE D[S(q')]D*[S(q)] b[S(q)] b[S(q')] 

_ 1"" liJ.(k) + liJ2(k) k 2 dk [ g2(k) _ g2(k) ]} 
o liJ.(k }ll.I2(k) S(q) - S(k) - iE S(q') - S(k) + iE 

g(q)g(q') 1 {l l} 
= S(q') -S(q) + iE D [S(q')]D*[S(q)] b [S(q)] - b [S(q')] 

_ g(q)g(q') 1"" liJ.(k) + liJ2(k) k 2 dk g2(k) 
D [S(q')]D *[S(q)] 0 liJ.(k }ll.I2(k) [S(q) - S(k) - iE][S(q') - S(k) + iE]' 

where we have used Eq. (7) in the third step. If we now use Eq. (B2) in Eq. (Bl), we get the nonorthogonality relation 

1"" liJ.(k) + liJ2(k) k 2 dk J/!:(k )f/!q' (k) 
o liJ.(k }ll.I2(k ) 

_ liJ.(q}ll.l2(q) J.- t5( _') g(q)g(q') 1 {l _ 1 } 
- liJ.(q) + liJ2(q) q2 q q + S(q') - S(q) D [S(q')]D *[S(q)] b [S(q)] b [S(q')] . 

For energy-independent separable potentials, b (Z) = const, and the second term of Eq. (B3) vanishes as expected. 

(Bl) 

(B2) 

(B3) 

We will obtain now the nonorthogonality relation between continuum and bound-state wave functions. Using Eqs. (8) 
and (9), we have that 

100 liJ.(k) + liJ2(k) k 2 dk f/!~(k )f/!q(k) 
o liJ.(k }ll.I2(k) 

= N.12 g(q) + N 112 g(q) 100 

liJ.(k) + liJ2(k) k 2 dk g2(k) 
n Sn - S(q) n D [S(q)] 0 liJ.(k }ll.I2(k) [Sn - S(k )][S(q) - S(k) + iE] 

= N !/2 g(q) + N !/2 g(q) 1 100 

liJ.(k) + liJ2(k) k 2 dk g2(k) 
Sn-S(q) D[S(q)] S(q)-Sn 0 liJ.(k)liJ2(k) 

X[Sn _lS(k) - S(q)-;(k)+iE] 

-N 1I2 g(q) +N./2 g(q) 1 {l +D [S( )] l} 
- n Sn-S(q) n D[S(q)]S(q)-Sn b(Sn) q -b[S(q)] 

_ N ./2 g(q) 1 {l l} (B4) 
- n D[S(q)] S(q)-Sn b(Sn) - b[S(q)] , 

where we have used in the third step the bound-state condition D (Sn) = 0, as well as Eq. (7). Of course, for an energy
independent separable potential, b (Z) = const, and the rhs of Eq. (B4) is equal to zero as expected. 

Finally, we will obtain the nonorthogonality relation between two different bound-state wave functions. Using Eq. (9), we 
have that 

100 liJ.(k) + liJ2(k) k 2 dk ~(k )f/!m (k ) 
o liJ.(k }ll.I2(k ) 

= N •12N 112100 

liJ.(k) + liJ2(k) k 2 dk g2(k) 
n m 0 liJ.(k}ll.l2(k) [Sn -S(k)][Sm -S(k)] 
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=N1I2N1I2 L"'a1J(k)+a12(k)k 2dk[ g2(k) _ g2(k) ] 
n m Sm -Sn 0 a1 J(k}a12(k) Sn -S(k) Sm -S(k) 

=N1I2NJ/2 1 [_1 ___ 1_] 
n m Sm -Sn b(Sn) b(Sm)· 

(BS) 

As expected, the rhs ofEq. (BS) is equal to zero if b (Z) = const.lfwe now combine Eq. (BS) with Eq. (AI9), we see thatthe non
orthogonality relation for n and m arbitrary is 

L
'" a1J(k) + a12(k) k 2 dk f/!:(k )tPm(k) = 8nm + N!/2N':// 1 [_1 ___ 1_]. (B6) 

o a1 J(k }a12(k) Sm - Sn b (Sn) b (Sm) 
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Multiply connected universes with nice physical properties can be obtained from a standard 
model through identifications under discrete groups. We classify the possible transformation 
properties of matter and gauge fields under these groups. The example of zero-curvature models is 
analyzed giving the number of inequivalent fields. 

I. INTRODUCTION 

It is now generally recognized that the mathematical 
framework of fiber bundles provides precise definitions of 
the concepts used in classical gauge theories. In particular, 
gauge fields are best described by connections on a principal 
bundle over a manifold and particle fields are considered as 
sections of vector bundles or spinor bundles associated to the 
principal fibration. Therefore an exciting possibility which 
arises in this picture is that a theory might contain distinct 
topological sectors, i.e., different fields that could be repre
sented, at a classical level, by sections of topologically ine
quivalent bundles with structure group G over a four-dimen
sional space-time M (see, e.g., Avis and Isham l

). In this 
approach it is known that the problem of the classification 
will depend crucially on the properties of the group G and of 
the base manifold M that have been chosen. 

As far as the topology of G is concerned, physical and 
mathematical considerations indicate that one can restrict 
the study mainly to compact groups. On the other hand, it is 
well known that Einstein's field equations describe the local 
geometry of the space-time but do not specify completely its 
topology. In fact, given any space-time (M, g) there exists a 
universal covering s~ce-time (M,g) such that M is simply 
connected and M = M / H, where H is a properly discontin
ous, discrete group of isometries without fixed points. 2 

Therefore, given a solution of the field equations one can first 
take the universal covering space-time (M,g) and then deter
mine the possible identifications by H. The space-times ob
tained in this way exhibit topological properties which, in 
general, are different from those of M. For example,2,3 when 
it is applied to the standard Friedmann models this proce
dure leads to multiply connected universes which have a 
number of promising features. In fact, through suitable iden
tifications, one can produce compact spacelike sections cor
responding to a present spatial radius of some fraction of the 
Hubble radius. In this "small universe" picture, the space
time is assumed to be topologically of the form M / H 
= (.2' / H ) X R where.2' is a three-space of constant curvature 

K. This provides a natural explanation of the apparent ho
mogeneity of the universe and good reasons for the micro
wave background isotropy. 3 

As observed by Ellis,2 this description is fully equiva
lent to a situation in which we would see a large universe 

built up out of many repetitions of a small elementary build
i~g cell. That is, H acts as a symmetry group on the universe 
M. 

However, if one adopts this point of view, it is no longer 
obvious that fields could be described as before by sections of 
vector bundles over M / H. Rather, if the above equivalence 
had to be reft.ected also on the possible field configurations, 
one should require that the physical fields "correctly" trans
form under the group H previously used to form the elemen
tary cell. 

In this paper, we address ourselves to the study of these 
laws of transformation. Given a properly discontinuous and 
free action of a group H on M, we classify the possible lifts to 
the bundle space of this action. For any lift, we define a field 
to be a section invariant under the action of H, and show that 
invariant sections may_be viewed as sections of an appropri
ate bundle over M = M / H. Having established the desired 
equivalence, we observe, however, that this result allows one 
to obtain twisted fields even by starting with a trivial bundle. 
In the following we shall sometimes understand the differ
ence between our description and the usual picture of fields 
as sections over a nontrivial base manifolds. In the following 
we will consider trivial vector hundles over a contractible 
base manifold. Although the extensions of our results to a 
more general case is still problematic, we observe that this 
last assumption does not seem to be very restrictive. For 
instance in the "small universe" picture it turns oue that a 
transition from a Rees-type chaotic cosmology to a homo
geneous and isotropic .50smology is possible only when 
K = 0, - 1, i.e., when M = R 4. 

In Sec. II we show that the lifts to a vector bundle over a 
manifold M of an action of H on M are classified by the 
isomorphism classes of vector bundles over M / H. In Sec. III 
we shall give some examples of this classification for cosmo
logical models constructed from the K = 0 standard Fried
mann solution. 

II. LIFTS OF GROUP ACTIONS 

As we have seen in the Introduction, we have to consid
er sections of a vector bundle which transform appropriately 
under the group H, i.e., h-invariant sections. 

In order to define what is an h-invariant section and 
how it is related to a section of a bundle over M / H, we need a 
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lift to the bundle space of the h action on the base manifold 
M. Given a lift ii, an h-invariant section will be a section (J' 

such that u(hx) = iiu(x). As we shall see, any h-invariant sec
tion of a bundle over M can be viewed as a section of an 
appropriate bundle over M 1 H and vice versa. 

In the following we shall consider the trivial vector bun
dle E over M with group G and fiber V. Given a trivialization 
E-+M X V of E and an h action of H on M we define a lift of 
the h action as a map ii: M X V-+M X V such that it is fiber 
preserving (i.e., it commutes with the ,..Brojection 
1r:M X V-+M) and is associative [i.e., (h;h2) (x,v) 
= ii l(ii2(x,v)), hl ,h2eH, (x,v)eM X V]. From these two re

quirements we see that any ii action can be obtained from a 
map ,p: M XH-+G such that 

1/J(x,h lh2) = ,p(h~,hIl1/J(x,h2) (1) 

as 

ii (x,v) = (hx,1/J(x,h )v). 

In the following we will denote by ,p also the action ii on 
M X V. Two actions are defined to be equivalent if they coin
cide up to a vertical automorphism of E. Then two maps ,p 
and ,p' will give equivalent actions if there exists a map g: 
M-+G such that 

,p'(x,h) = g(hX)-I,p(x,h )g(x). (2) 

We shall write ,p-::::.,p' or ,p'E[,p]. 
In fact, g(x) gives an automorphism of the fiber Ex over 

x, and Eq. (2) means that the diagram 

g r ~ ,Erg 
Ex::----t Ehx 

is commutative. 
Our problem will be classification on the maps 

,p:M XH-+G that satisfy (1) up to the equivalence (2). 
We will show the following proposition. 
Proposition: The lifts to EJJf an h action on M are classi

fied by the isomorphism classes of vector bundles over M 1 H 
with group G. 

ProotLet,pbeanyliftand(M X V)I,p be the orbit space 
of H in M X V under the action ,p. It is easy to see that 
(M X V)I,pisa vector bundle over M IHwithprojection 1r. If 
a: M-+M IH is the canonical projection and [x,v)", 
= {(hx,,p(x,h )v), heH 1 is the orbit that contains (x,v), the 

projection 1r is 

1r[x,v) '" = a(x). 

The local triviality follows from the fact that H is properly 
discontinuous: any a(x)eM 1 H have a neighborhood W such 
that a is a homeomorphism of each connected component of 
a-I(W) onto W. Let U be a connected component of 
a-I(W), then there exists a one to one map{3: W-+Uand a 
homeomorphism/: W X V-+1r- I( W) that maps (P,v) into the 
orbit that contains ({3(P),v). Now, if,p-::::.,p' then (M X V)I,p is 
isomorphic to (M X V)I,p'. In fact, let ,p'(x,h ) be defined by 
Eq. (2) and lP: E-+E be an isomorphism given by 

lP (x,v) = (x,g(x) -IV). 
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Then, ifpE[x,v)"" lP(P)E[X,g(X)-IV)"". Therefore there exists 
an isomorphism ip: E 11/J-E l,p', locally given by 
ip (P,v) = (p,g-I( {3 (P)v), VEV, peM IH. Vice versa, we must 
show that a vector bundle over M 1 H with group G and fiber 
V gives an action ,p. 

Let E' be such a bundle and a* E' = {(x,e')eM X E '1 
a(x) = 1r'(e') 1 the pullback bundle over M. AsM is contracti
ble, a* E ' is trivial and we have a trivialization lP: 
a*E'-+MXV: 

M X~f_'_a_, I~ 
where 1r(x,e') = 1r1(lP(x,e')) = x. 

We define a natural action Vh of H on a*E' as vh(x,e') 
= (hx,e') and then an action of H on M X V: ii (x,v) 
= lPVhlP -I(X,V). 

ii is an action because it commutes with 1r1 and it is 
associative: 1rlrpVhlP- 1 = 1rVhlP- 1 = h1rlP -I = h1r1 and 
lPVh, Vh,lP- 1 = lPVh,lP-llPVh,lP-l. If we now take another 
isomorphism lP': a*E'-+M X V it follows easily that 
,p = lPv h rp - I and ,p' = lP' v hlP' - I are equivalent. In fact, if 
{3 = lPlP,-1 we have {3,p'{3 -I =,p and hence, putting 
{3 (x,v) = (x,g(x)v), {3,p'{3 -I(X,V) = (hx,g(hx),p'(x,h )g(x) -IV) 
= (hx,,p(x,h )v), i.e., ,p-::::.,p'. Moreover, any automorphism of 
E ' gives an automorphism of a* E', and if[ ,p E' ] is the equiv
alence class of the actions given by E " we have that if E " is 
isomorphic toE' then [,pE' ] = [,pEN]. In fact, ifu:E '-+E" 
is an isomorphism, u(x,e') = (x,u(e')) is an isomorphism 
between (a*E')x and (a*E")x. This can be interpreted as a 
change of trivialization 

a1'~·E. 
MXV 

and we apply the same argument as before. 
Summing up, we have shown that any bundle E' over 

M 1 H gives an action of H on E and that isomorphic bundles 
give equivalent actions. This completes the proof of the pro
position. 

It is clear that any h-invariant section can be considered 
asa section ofE l,pover M IH and, vice versa, given a section 
u of E ' over M 1 H we can find a section (J' of E over M invar
iant under the action determined by E'. In fact, we define 

u(x) = lP (x,U(a(x)), 

where lP is a trivialization of a* E'. Here (J' is invariant under 
the action lPV hlP - I: 

u(hx) = lP (hx,U(a(hx)) = lP (hx,U(a(x)) 

= lPVh (x,U(a(x)) = lPVhlP-1u(X). 

Therefore, as we assumed that any field must be an invariant 
section, we have that there might exist a classification of 
fields based on their transformation properties under H. 
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III. EXAMPLES FROM COSMOLOGY 

In the following we shall consider some examples of 
universes that can be constructed from Friedmann models 
by making identifications under an appropriate discrete sub
group H of the complete isometry group of M. 

If the space-time M = M I H is to be time orientable. H 
must map each three-space (t = const) into itself. In this case 
the problem reduces to the Clifford-Klein space-form prob
lem2 of finding all the complete connected Riemann three
spaces.I of constant curvature K. As usual2.3 .I is assumed to 
be compact and orientable. 

As was said in the Introduction. multiply connected 
universes offer a very simple way to realize the specific initial 
conditions required by a chaotic cosmology. The model 
looks chaotic up until the epoch at which the entire finite 
volume of the universe (or of the elementary cell) becomes 
visible. At later epochs uniformity prevails since the observ
ers see multiple images of the same fundamental cell. In Ref. 
3, it is shown that thermalization of the background radi
ation is possible only for K = O. - 1 models. 

We shall restrict to the K = 0 case in which a complete 
classification of the groups H is available. 

There are only ten groups producing compact.I = R 31 
H. If orientability of.I is required then the number of admis
sible groups reduces further to 6. The six groups H; (i = 1-6) 
are explicitly described by Wolf 4 who. moreover. computes 
the first (singular) homology module with integer coeffi
cientsHI (.I/.Z) of the resulting quotients.I; = R 3IH;: 

H1(.I1,Z) = ZeZeZ. H 1(.I2,Z) = ZeZ2eZ2• 

Hl(.I3'Z) =ZeZ3, H 1(.I4.Z) =ZeZ2• 

Hd.Is.Z) = Z. Hl(.I6'Z) = Z4 eZ4• 

where Zp is the Abelian group Z IpZ. 
We can now apply the results on the classification of 

bundles 1 in order to classify the lifts of the H; actions. i.e .• the 
H;-inequivalent fields. In the following M; =.I; XR are 
noncompact. space- and time-orientable. four-dimensional 
manifolds. 

The inequivalent scalar real fields and spinor structures 
are classified by H I(M;,Z2)' the first (singular) cohomology 
module with values in Z2. In our case the Kunneth formula 
in cohomology (see. e.g.. Greenber~) gives 
H I(M;,Z2) =H 1(.I;,Z2). Moreover. H 1(.I;,Z2) = H 1(.I;.Z2) 
because Z2 is a field. and the universal coefficient formula 
gives H 1(.I;.Z2) = Hl(.I;.Z) ® Z2. We obtain 

1389 

H 1(.I1.Z2) = Z2 eZ2 eZ2• H 1(.I2.Z2 ) = Z2 eZ2 eZ2• 

H 1(.I3.Z2) = Z2' H 1(.I4.Z2) = Z2 eZ2• 

H 1(.IS'Z2) = Z2' H 1(.I6.Z2) = Z2 eZ2· 

When G is simply connected [e.g .• Su(n)] the inequiva-
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lent fields are classified by H4(M/.Z). which in our case is 
the zero module. 

U(n) fields are classified by H2(M;.Z) eH4(M;.Z), i.e .• 
by H 2(M;,Z). Again H 2(M;,Z) = H 2(.E;.Z). Now Poincare 
duality applies, giving H2(.I;,Z) = Hl(.I;.Z). In particular 
for n = 1 the same formula give us a classification of inequi
valent scalar complex fields. 

SO(n) fields are classified by H2(M/,Z2) = H 2(.I; ,Z2). 
Poincare duality gives H2(.I;,Z2) = H 1(.I;.Z2)' which was 
previously computed. 

Another interesting case is SU(3)/Z3 (see't Hooft6
). The 

classification is in term of H2(M;,Z3). We have 
H2(M;,Z3) = H2(.I;,Z3) = Hl(.I;,Z3) ®Z3: 

Hd.I1.Z3) = Z3 eZ3 eZ3, H 1(.I2.Z3) = Z3' 

H 1(.I3.Z3) = Z3 e Z3' H 1(.I4.Z3) = Z3' 

H 1(.IS,Z3) = Z3' H 1(.I6,Z3) = o. 
We see that in some cases the classification gives a finite 

number of topologically inequivalent fields. 
This leads to the possibility that the different members 

of a family of particles might be represented through topolo
gically inequivalent structures. 7 

We have seen that such structures in fact can arise by 
taking into account at the same time the structure group of 
the bundle and the isometry group of the base manifold. 

We note that the identification of points in M via H to 
produce M usually lowers the dimension of the group of 
isometries of the space-time.2 

This means that the existence of a set of distinct inequi
valent sectors in general is consistent only with some parti
cular cosmological models. 

Therefore. although only a complete field theory could 
substantiate these considerations. our simple examples may 
be considered also as an indication of possible connections 
between gauge groups and symmetries of the space-times. 
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For the system consisting of a neutral Dirac particle with anomalous magnetic moment. 
interacting with a fixed magnetic monopole. zero-energy bound states are constructed for each 
possible value of the total angular momentum. Results of Kazama and Yang for the charge
monopole system are used to deduce the existence of other bound states for this system. when the 
mass of the bound particle is nonzero. In the zero-mass case. there are no other bound states. but 
there are resonant states. and these are determined exactly. A noncompact. so(3.2) symmetry 
algebra of the zero-energy bound states is given for the finite-mass case and for the zero-mass case. 
In each case the infinite number of such states is associated with an irreducible Majorana 
representation of the algebra. 

I. INTRODUCTION 

This work continues the study of bound states and re
sonances of relativistic two-body problems involving mag
netic interactions. Earlier related works have discussed a rel
ativistic charged particle in a monopole field. 1 a Dirac 
particle with anomalous magnetic moment in a Coulomb 
field.2 a neutrino with anomalous moment in a Coulomb 
field. 3 a Dirac particle in the field of a magnetic dipole, 4 and 
various other charge-dipole models.5 The general forms of 
relativistic potentials describing the interactions between 
charges. magnetic monopoles. and magnetic dipoles (i.e .• 
anomalous magnetic moments) have been derived from field 
theory.6 Some of the techniques necessary to handle the sin
gular potentials which can arise in such problems have been 
developed. 7 

The problem considered here is that of a neutral spin-! 
particle having mass m and anomalous magnetic moment a. 
interacting with a fixed monopole having magnetic chargeg. 
It is assumed that a relativistic description of the particle in 
an external electromagnetic field Ff''' is provided by Dirac's 
equation with a Pauli coupling term iar f' r "Ff''' • in the usual 
notation. so that the Hamiltonian for the system under dis
cussion is 

H = uop + /3 (m + ()crr/~). (1.1) 

where () = 2ag and the remaining symbols have their usual 
meanings. [We use a to denote the Pauli matrices and also 
the 4 X 4 matrices 

relying on context to fix the meaning of a particular usuage.] 
Concerning physical applications. it is questionable to 

what extent the study of this H gives realistic information 
about the bound states and resonances of a neutron interact
ing with a fixed monopole. In particular. at the short dis
tances which characterize the strongly bound (zero-energy) 
states of H discussed below (if m and a are given the values 
appropriate to the neutron. and legl = !. where e is the elec
tronic charge). the strong field of the monopole would cer-

alOn leave from Department of Mathematics, University of Queensland, 
Australia. 

tainly detect the extended structure of the neutron. so that H 
might define a poor approximation to the true dynamics. 
However. the problem may be of interest at the substructure 
level of particles. Furthermore. the problem is of consider
able indirect interest because H is sufficiently simple to per
mit an exact determination of some (though not all) bound 
states when m > 0; and of bound states and resonances in the 
limiting case m = O. (If it should be found that one or more of 
the neutrinos has a magnetic moment. this latter limit could 
become physically relevant.) The Hamiltonian H therefore 
defines a simple relativistic model. in which some of the 
characteristic features of magnetic interactionsS can be de
termined exactly. The mathematical interest of the system is 
increased by the remarkable appearance of a noncompact 
Lie algebra so(3.2) as an invariance algebra of the infinite set 
of bound states associated with the eigenvalue E = 0 of H. 
This occurs whether or not m = O. 

The system with Hamiltonian H may be regarded as the 
special case Z = 0 of the charge-monopole system consid
ered by Kazama. Yang. and Goldhaber.8-11 who took 

H' = uo(p - ZeAl +/3(m + ()crr/~). (1.2) 

where A is the monopole potential. However. it must be not
ed that the structure of the conserved angular momentum 
vector. and indeed the possible values of the total angular 
momentum quantum number j. are quite different in cases 
with eg#O V = legl -!. legl + ! •... ) and eg = 0 V = !. ~ .... ). 
In the latter case. which is the one of interest here. the singu
lar monopole potential does not appear in H and the angular 
momentum therefore has the familiar form 

J = r /\ p + !a = L + !a. (1.3) 

Kazama and Yang9
•
10 found bound states of two types for 

H'. Type A occur forI> legl +!. and type B forj = legl-!. 
They found eigenfunctions of H' corresponding to eigenval
ue E = O. and hence to binding energies equal to m. for every 
j (types A and B). They also showed that there are infinitely 
many other bound states of type B for I () I sufficiently large. 
and found numerical estimates of some of the corresponding 
eigenvalues. Later Olaussen et al. 12 found approximate ana
lytic expressions for these type B eigenfunctions and eigen
values. In the meantime. Yang11 showed that there exists an 
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infinite number of bound states of type A for eachj value, 
such that 

(1.4) 

The type B bound states do not occur for the Hamilton
ian H. However, the "radial part" of the eigenvalue problem 
for H has the same structure as that for the type A bound 
states of H', so we are able to adapt relevant results of Ka
zama and Yang to the case we consider. 

The problem of determining resonant states of H in the 
case m > 0 remains intractable, but in the limit m = 0 we find 
that the radial problem reduces to one of the cases described 
by Barut et al.7 for which exact solutions can be given, corre
sponding to bound states and resonances. 

The coupling of a spin-! particle (with magnetic mo
ment) to a fixed monopole has been considered in various 
nonrelativistic approximations. 13 The variety of results ob
tained for binding energies reflects the fact that the nonrela
tivistic Hamiltonian with attractive aor/r potential is not 
essentially self-adjoint, and an ad hoc repulsive core or cutoff 
has to be introduced to regularize the eigenvalue problem. In 
contrast, the relativistic problem, whether for a charged or 
uncharged particle, has an effective potential which already 
has a repulsive l/~ core, and needs no regul~zation. The 
nonrelativistic approaches typically miss the strongly 
bound, zero-energy states found by Kazama et al. and our
selves, which are characterized by distances at which the 
nature of the core is critical. 

II. BOUND STATES WHEN m> 0 

Introducing the Hermitian matrix Ys (= ia1a2a3)' we 
note that i/3ys anticommutes with H. It is therefore conven
ient to adopt a representation of the Dirac matrices in which 
this matrix is diagonal. We take 

/3 = ~ ~, a = C~ -OiO'), (2.1) 

where 1 is the 2 X 2 unit matrix, so that 

i/3ys = (/0 0). 
-I 

The bispinor IJI is now written as 

(2.2) 

(2.3) 

wherefandg have two components each and the eigenvalue 
equation Hf/! = Ef/! becomes 

( - iaop + ()O',/"z + mIg = EJ, 

(iaop + () (O',/"z) + mlf = Eg, 

where 0', = aor/r. 

Introducing 

R = L·O'+ 1, 

so that, onf or g, 

R2=J2+i, {R,O',] =0, 

(2.4) 

(2.5) 

(2.6) 

we suppose now that f/! is also an eigenvector of J2 with eigen
value jV + 1), where 2j is a positive integer. Then we can 
write, in the coordinate representation, 
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rf=fk(r)Xk + f _k(r)x -k' 
(2.7) 

rg =gk(r)Xk + g -k(r)x -k' 

wheref ± k' g ± k are one-component functions, which van
ish at r = 0 and are square integrable on [0, 00 ); and X ± k are 
two-component vectors which do not depend on the radial 
variable r, and which satisfy 

RX ±k = kX ±k' k =j +!. (2.8) 
(Each X ± k can also be labeled by an eigenvalue of J3; we 
suppress these labels.) With a suitable choice of phases, we 
also have 

O',X±k = ±iX'Fk' 

Now 

aop = O',(p, + (i/r)R ), 

where 

p, = !(r-1r-p + p·rr- I). 

(2.9) 

(2.10) 

(2.11) 

Onf ± k andg ± k ,p, equals - i(d /dr), so that Eqs. (2.4) give 

(d, + k /r - () /"z)g _ k = imgk - iEfk' 

(d, -k/r-()/"z)gk = -img_k +iEf_k' 

(d, + k /r + () /"zlf _ k = - imfk + iEgk , (2.12) 

(d, -k/r+()/"zlfk =imf_k -iEg_ k, 

where d, = d /dr. 
Suppose for definiteness that () > 0; the treatment when 

() < 0 is quite similar and the corresponding results are ob
tained by interchanging the roles offk and gk> and off _ k 
and - g _ k' Consider first the case E = O. Then Eqs. (2.12) 
fall into two uncoupled pairs. 

The first pair is 

(d, + k /r - () /"z)g _ k = imgk' 

(d, + k /r - () /"z)gk = - img -k' 

and implies 

(2.l3) 

(
d2 _J:!!...._ k(k-l) +J:!!.... ~) _ 2 
r"z "z r + ~ gk - m gk' 

(2.14) 
This has the acceptable solution (square integrable, and van
ishing at r = 0) 

_ A k ~ 1 (k + I - 1 )! (2 ) _ 1 - 91r _ m, 
gk - k £,. mr e 

1=0 I!(k -1- I)! 

= Ak (2mrhr)I/2Kk _ 1/2 (mr)e - 91" (2.15) 

where A k is a constant to be determined by normalization, 
and Kj is a modified Bessel function. 14 The second of Eqs. 
(2.l3) then gives l4 

g _ k = - iAd2mr/1T)1/2Kk + 112 (mr)e - 91'. (2.16) 

The second pair ofEqs. (2.12) implies 

(
d2 +J:!!....d _ k(k-l) _J:!!.... ~\I" = 21" 

r "z' "z r + r4yk mJk' 

(2.17) 
which is also solvable in terms of Bessel functions, but has no 
acceptable nontrivial solutions. ThUSfk and from the last of 
Eqs. (2. 12),J _ k' must vanish. 
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The (unnormalized) eigenfunctions of Hand J2, with 
eigenvalues 0 and j(; + 1) = k 2 - 1, now follow from Eqs. 
(2.3) and (2.7). Because! ± k = 0, it follows from Eqs. (2.2) 
and (2.3) that these eigenfunctions are also eigenvectors of 
iPys, with eigenvalue - 1. (When () < 0, the corresponding 
eigenfunctions have iPys = + 1.) They are of essentially the 
zame form as the zero-energy eigenfunctions found by Ka
zama and Yang,9,IO 

The determination of the nonzero eigenvalues of H is 
much more difficult, and exact solutions have not been 
found. We have to deal with all four coupled equations 
(2.12). However, if we put (for the case () > 0) 

r = ()p, Ao = ()m, Bo = ()E, 

hl=Wk +gk)' h2= -!i(f-k +g-k)' (2.18) 

h3=Wk -gk)' h4= -!i(f_k -g-k), 
we obtain precisely the equations considered by Kazama and 
Yang (with their f.l replaced by our k ). We may then adapt the 
qualitative results obtained by Yang. II 

Thus, for any value ofj such thatj(; + 1) < 2m(), there is 
an infinite sequence of eigenvalues of H, which is bounded 
below, and bounded above by m; and there is an image set 
which is bounded above, and bounded below by - m. No 
estimates of the eigenvalues are available, and the forms of 
the corresponding eigenfunctions are unknown. For any val
ue of j such that j(; + 1) > 2m(), there are no nonzero eigen
values of H. If it should happen that 2m() equalsj(j + 1) for 
somej, then + m and - m are the only nonzero eigenvalues 
of H for that value ofj. 

It may be expected that, as in the m = 0 case (see Sec
tion III), the Hamiltonian H with m > 0 also exhibits reson
ances in Gamow's sense. 15 These would correspond to com
plex values of E for which Eqs. (2.12) admit a solution in 
which! ± k g ± k vanish at r = 0 and behave like exp(iA.r) as 
r-+rx;" where A. 2 = E 2 - m2. The problem of finding these 
resonance values E, and the corresponding functions, has 
not been solved. In fact it is difficult to see how the analysis 
sketched by Yang, for (real) nonzero eigenvalues, could be 
extended to give even qualitative results about the existence 
of resonances. 

III. BOUND STATES AND RESONANCES WHEN m = 0 

In this case Eqs. (2.12) reduce to two uncoupled pairs of 
coupled equations. Taking () > 0, and setting r = ()p, we have 

(dp + kip - l/p2)g -k = - iA!k' 

(dp -klp+ l/p2lfk = -iAg_k' 

(dp - kip - l/p2)gk = iA! _ k' 

(dp + kip + l/p2lf _ k = iAgk, 

where dp = d Idp and A. = ()E. 

(3.1) 

Consider first the zero-energy bound states (A. = 0), 
which are seen to be associated now with uncoupled first
order equations. These integrate to give 

g _ k = Ap - ke - lip, !k = Bpkel1p, 
(3.2) 

gk = Cpke - lip, ! _ k = Dp - ke - lip, 

where A, B, C, andD are constants. Solutions which behave 
acceptably at p = 0 and p = rx;, are obtained only if 
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B = C = D = O. It follows from Eqs. (2.3) and (2.7) that the 
resulting eigenfunctions of Hand J 2 are also eigenfunctions 
of Rand iPys, with eigenvalues - k and - 1, respectively. 
(When ()<O, these eigenvalues become - k and + 1.) It 
may be noted that with increasing angular momentum (in
creasing k), these eigenfunctions become more and more 
concentrated near r = O. 

Are there any nonzero eigenvalues of H? If A. is real and 
nonzero, then it can be seen from Eqs. (3.1) that for largep, 
each of g ± k ,f ± k behaves like 

(3.3) 

with c and d constant, and is therefore not normalizable. The 
answer is therefore no. 

We now seek solutions corresponding to resonant 
states, by allowing A. complex in Eqs. (3.1) and requiring that 
g ± k,f ± k vanish atp = 0 and behave like exp(iAp) asp-+rx;,. 
We can suppose A. =1= 0, since that case has been discussed. 
The first pair of Eqs. (3.1) gives 

(
d 2 _ k(k+ 1) + 2(k+ 1) -~fr =-..1. 

p 2 3 4 - k g - k' 
P P P 

(3.4) 

(
d 2 _ k (k - 1) 2(k - 1) _ ~~ = _ A. 21' 

P 2 + 3 4 k Jk' 
P P P 

while the second pair gives 

(
d 2 _ k(k - 1) _ 2(k - 1) _ ~)gk = -A. 2gk , 

p p2 p3 p4 
(3.5) 

(
d2 _ k(k-l) _ 2(k + 1) _~~ = _..1.2,/ 

p 2 3 4 k -k' 
P P P 

Consider the last equation. It is the same as the radial equa
tion we would obtain for a nonrelativistic spinless particle 
with total angular momentum k, mass! and energy A. 2, mov
ing in the purely repulsive central potential 

VIp) = 2(k + l)1p3 + l/p4, (3.6) 
which decreases monotonically for p > O. It is evident that 
there are no resonances for such a potential, and so! _ k 

must vanish. It then follows from the last of Eqs. (3.1) that 
gk =0. 

Now consider the first ofEqs. (3.4), which is of the form 
considered by Barut et al.7 Following their analysis, we seek 
a solution which behaves like exp( - l/p) asp-+O, and like 
exp(iAp) as p-+ rx;,. Setting 

g -k = G(pp-k exp( -lIp + iAp), (3.7) 

we find 

[d; + (~ - ~ + 2iA)d + (2iA. _ 2iM)] G = O. 
p2 P P p2 P 

(3.8) 
We now seek a solution of this equation which is a polyno
mial inp of finite degree. [This is a sufficient, though possibly 
not necessary, condition that g _ k as in Eq. (3.7) will have 
the right behavior as p-+rx;,.] Then we find that this degree 
must equal k, that is, 

k 

G(p) = L Anpn. (3.9) 
n=O 

Substitution of this expression in Eq. (3.8) leads to the condi
tion 
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AO 

Al 

A2 

W 

Ak_
1 

Ak 

iA 0 0 

-iAk iA-k 2 0 

0 -iA(k-1) iA+1-2k 3 

-

0 0 0 0 

0 0 0 0 

for the coefficients An' and hence to the condition 

det W= 0, (3.11) 

for A. Equation (3.11) is a polynomial equation of the 
(k + l)th degree in A. The polynomial always has A 2 as a 
factor, corresponding to the zero-energy case already dis
cussed, whereg _ k takes the form in Eqs. (3.2) and onlyAo in 
Eq. (3.9) is nonzero. The complex roots always appear in 
pairs A, - A *, each such pair corresponding to a single reso
nance at the energy value E - Re A, with width- 1m A. 

For example, when k = 1, 

det W= -A 2, (3.12) 

so there are no resonances in this case--on1y the zero-energy 
bound state. 

Whenk=2, 

detW= -A2(iA-1), (3.13) 

and there is a resonance (antibound state) with A = - i. 
Whenk= 3, 

det W = -A 2( - ,.1,2 - 4iA + 6), (3.14) 

and there is a resonance with A = ± v'2 - 2i. 
For k = 4 and 5, calculation of exact values for the 

roots of Eq. (3.11) is possible but increasingly complicated. 
For k;;.6, we are faced with a polynomial equation of degree 
greater than or equal to five, and must resort to numerical 
methods to find the roots to any desired accuracy. 

Once a nonzero root A has been determined, the corre
sponding coefficents An can be found from Eq. (3.10), and 
hence g _ k determined from Eqs. (3.7) and (3.9). Thenlk is 
given by the first of Eqs. (3.1); it has the form 

Ik = F(PJp -(k-I) exp( - lip + iAp), (3.15) 

whereFisa polynomial of degree (k - 1). We could alterna
tively findlk by applying the analysis of Barut et al.7 directly 
to the second of Eqs. (3.4). 

Because I _ k and g k vanish for all these resonances, the 
latter correspond, according to Eqs. (2.3) and (2.7), to eigen-
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functions of if3r5R with eigenvalue + 1. (For 8 < 0, the cor
responding eigenvalue is - 1.) It may be noted that if3r5R is 
a constant of the motion when m = 0 but not when m > O. 

IV. ZERO-ENERGY BOUND STATES AND 80(3,2) 
SYMMETRY 

It is convenient to introduce the Hermitian operators 

n = r/r, e = ~(DAL - LAn), 

which satisfy 

[n;,nj] =0, [e;.ej ] = -iEijkLk' 

[e;.nj] = i(8ij - n;nj ), 

e;nj - ejn; = EijkLk' 

e·n = i = - D·e, 

and then to define 

u = Rn + ie = nR + ie - ia A n, 

d = u t = nR - ie = Rn - ie + ia A D. 

It is then straightforward to check that 

Ru = u(R + 1), R d = d(R - 1), 

(4.1) 

(4.2) 

(4.3) 

(4.4) 
[u;,uj ] = 0 = [d;.dj ], [u;.dj ] = - 2R 8ij - 2i EijJk. 

In addition, we have, of course, 

[U;.-0] = i EijkUk' [d;.-0] = i Eijkdk' [R,J;] = O. (4.5) 

If we set, for i,j = 1,2,3, 

lij = EijkJk' 145 = R, 

1;4 = -/4; = !(U; + d;), 

I;s = - Is; = !i(u; - d;), 

(4.6) 

then relations (4.4) and (4.5) can be written in a standard 
form for so(3,2), 
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[lAB.lcD] =i(gAClBD +gBDlAC -gBclAD -gADlBcl, 
(4.7) 

where A, B, C, D run over 1 to 5, and the metric tensor 
gAB = diag(I,I,I, - 1, - 1). Note that each lAB is Hermi
tian. 

These operators all commute with the radial variables r 
and p" and can be thought of as acting in the vector space 
spanned by the Xk and X _ k, k = 1,2, .... In fact, they leave 
invariant separately the subspaces S + and S _ spanned by 
the Xk and X _ k, respectively, since none of the lAB change 
the sign ofR. (BecauseR does not have zero as an eigenvalue, 
it follows that the lowering operator d annihilates X I' and the 
raising operator u annihilates X-I.) On each of S + and S_ 
the lAB span an irreducible Majorana representation of 
so(3,2) which remains irreducible when restricted to so(3,1). 
To see this, take as so(3, 1) basis operators the lij and I j4 , and 
note that the two so(3,1) invariants have the form 

CI=!/ijlij -/j4/j4 

= J2 -1(u2 + d2 + u.d + d.u), 

C2=Eijklijlk4 = J·u + J·d. 

It follows from the definitions (4.3) that 

u2 = ° = d2
, u·d = (2R - I)(R - 1), 

d·u = (2R + I)(R + 1), j·u = ° =j·d. 

Therefore, noting the first ofEqs. (2.6), we have 

CI = -~, C2 =0. 

(4.8) 

(4.9) 

(4.10) 

In the infinite-dimensional irreducible representation [ko,c] 
ofso(3,1), wherejtakes values ko, ko + 1, ... , these two invar
iants equaJ16 (k ~ + c2 

- 1) and 2i koe, respectively, and it 
follows that we are dealing with the representation [!,O]. It is 
well known l7 that this extends in two different ways to irre
ducible Majorana representations ofso(3,2). In one of these, 
say R +' 145 takes positive eigenvalues; in the other, say R _, it 
takes negative eigenvalues. We see that we have the repre
sentation R ± on S ±. Note that the operator 0', inter
twines these two representations, according to the second of 
Eqs. (2.6), and that 

U 0', = - O',d, dO', = - O',U. (4.11) 

The Casimir operator of so(3,2) has the same value on 
R ± . In fact, it is given in each case by 

!Iijlij -lj4lj4 -ljs/js + (l4sf 
= - ~ + !(u2 + d2 

- u·d - d·u) + R 2 = - a, (4.12) 

using Eqs. (4.9). 
Because this so(3,2) algebra is independent of the radial 

variables, it underlies all problems involving Dirac's equa
tion (or even the Schrodinger-Pauli equation for a spin-! 
particle) with a centrally symmetric potential or external 
field. However, it is not an invariance algebra of any Hamil
tonian of such an equation, in general, and indeed it is not the 
invariance algebra ofthe zero-energy eigenspace ofthe Ha
miltonian H ofEq. (Ll), whether or not m = 0. 

To define the latter invariance algebra, consider first 
the case m = 0. Introduce (with 8> ° and r = 8p as before) 

U =pu, D =p-Id, (4.13) 

which can be seen to satisfy the same relations among them
selves, and with Rand J, as the u and d. [See Eqs. (4.4), (4.5), 
and (4.9).] Then the generators LAB' defined in terms of U, 
D, R, and J just as the lAB were defined in terms ofu, d, R, 
and J, also span a representation of so(3,2). The LAB can be 
seen to leave invariant the vector space Po spanned by vec
tors of the form 

ifJk =(p-lk+I)~-lIPx_J, (4.14) 

which is just the zero-energy eigenspace of H in the case 
m = 0,8>0 [cf. Eqs. (2.3) and (2.2)]. The invariance of this 
subspace can also be seen from the relations 

{H,R 1 = 0, [H,J] = 0, 
(4.15) 

HU= -p2DH, HD= -p-2UH, 

which hold when m = 0, and which are established with the 
help of Eqs. (4.4) and (4.11). 

Note that U is not a Hermitian conjugate to D as de
fined, so the LAB are not Hermitian. Nevertheless, they sa
tisfy on Po exactly the same relations as do the lAB on S_, 
spanning an irreducible Majorana representation R _ there. 
They are related by a complicated similarity transformation 
to Hermitian operators on Po. 

In the case m > 0, the zero-energy eigenfunctions of H 
are not eigenfunctions of R, but rather of 

IR I ,;" ER, (4.16) 

where E is the operator with eigenvalue ± 1 on each X ± k, 

and hence on S ± . With 8> 0, we define 

U' =~U(iP' _!i._i.)~(1 +E) +~(iP' + R -1 -i.)~(I-¢), 
m r r2 m r r2 

D' 1 .1(. R - 1 8) 1 (1 ) 1 ( . R 8) 1 ( 1 ) =--u 'p, +----- - +E +-u 'p, ---- - -E. 
m r r2 m r r2 

Then 

[U;,Uj] = ~2 [Uj>Uj ] ~ (1 +EJ{ZPr - R; 1 - ~) (iP, - ~ - ~) + ~2 [dj,dj ] 

1 (. R-2 8)(. R-l 8) XT(I-E) 'p, +-r-- riP, +-r-- r =0, 

and similarly 

[D;.Dj] =0. 
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Also, 

2 d 1 )(. R-1 ())(. R-1 ()) d 1(1 ) m U;D; = U; jT(l +E lPr ---r---;.z lPr +--r-- r + ;ujT - E 

(
. R ())(. R ()) 

X lPr + -;- - r lPr - -;- - r . (4.20) 

Withgk(r) as in Eq. (2.15), we have ongkXb 

(in _ R-1 -!!...)(in _ R-1 _!!...)=(d2_l:!!...d _ k(k-1) +l:!!...+!.:.)=m2, 
rr r r rr r r r r r r f3 r4 (4.21) 

so that the first term on the right-hand side of Eq. (4.20) 
reduces to 

(4.22) 

In a similar way, the second term reduces ong _ kX _ k [with 
g _ k as in Eq. (2.16)], to 

m 2d; uA( 1 - E). 

Then, on 

we have 

U;D; = u;dA(l + E) + d;uA(l - E), 

and similarly 

D ;U; = dju;~(1 + E) + ujd;!(l - E), 

so that 

[ U ;,D;] = [u;.dj B(l + E) - [uj,d;] ~(1 - E) 

= - 21R Ibij - 2i EijJk' 

(4.23) 

(4.24) 

(4.25) 

(4.26) 

(4.27) 

Using the same kind of manipulations we check that on such 
functions "', U, D, R, and J also satisfy the remaining rela
tions (4.4), (4.5), and (4.9) satisfied by u, d, R, and J. 

Defining LAB by analogy with LAB' we have, on the 
space p b of vectors spanned by", ofthe form (4.24), an irre
ducible R + Majorana representation of so(3,2). 

Like LAB' the operators LAB are not Hermitian, but in a 
similar way they are related by a similarity transformation to 
Hermitian operators on the zero-energy eigenspace P b. 

In closing this section, we remark that the irreducible 
Majorana representations of SO(3,2) are known to be inte
grable to unitary representations of the group SO(3,2) (or 
more accurately, of its double-covering group.) 

v. CONCLUDING REMARKS 

The appearance of zero-energy bound states for this 
system, as for the charge-monopole system considered by 
Kazama et al., is remarkable. Such zero-energy modes are 
also found for Dirac particles interacting with non-Abelian, 
su(2) monopoles,18 suggesting that their occurrence may 
have a topological interpretation. The operator i{3ys is diag
onal on all the zero-energy states found by Kazama et al. and 
ourselves. The corresponding solutions "'(x) of Dirac's equa
tion are necessarily static, and it can be seen that they are 
therefore eigenstates of CT, where C and T are the usual 
charge conjugation and time-reversal operators, acting on a 
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general spinor [for our representation (2.1) of Dirac matri
ces] as 

Ct/J(x,t) = a 2",*(x,t ), 

T",(x,t) = iajJys"'*(x, - t ), 

so that 

CT t/J(x) = i{3Yst/J(x). 

The other bound states (m > 0) and resonant states 
(m = 0) of H are not eigenstates of CT. Moreover, neither 
these states nor the zero-energy states are eigenstates of the 
parity operator 

P",(x,t ) = {3t/J( - x,t ), 

because of the presence of the pseudoscalar U r in H. 
It is also remarkable that the zero-energy states are as

sociated with a Majorana representation of so(3,2), whether 
or not m = O. We are familiar with accidental symmetries in 
bound-state problems, associated with finite degeneracies 
and compact invariance algebras, but the appearance in such 
problems of infinite degeneracies associated with noncom
pact algebras is quite unusual. It seems likely that noncom
pact invariance algebras can also be found for the zero-ener
gy bound states of the charge-monopole system, but we have 
not pursued that here. 

For the Hamiltonian H with m = 0, we have been able 
to determine the form of resonant states, occurring at all 
possible values of the total angular momentum except 
j = !(k = 1). Although this system may turn out to be unphy
sical, it is nevertheless satisfying to have found a relativistic 
model in which such states can be determined exactly. 
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The so-called "matching problem" in the earlier formulations of the reactive infinite-order 
sudden approximation (RIOSA) is analyzed in detail. The kinematics of a new, two-angle
dependent RIOSA scheme, which is based on an independent selection ofthe "frozen" angles in 
the reactants and products channels, is derived. It is shown that the only pairs of these angles to be 
excluded from consideration are those which violate the "collinearity conservation rule." The 
new scheme does not invoke any additional assumption which is not an inherent part of the 
RIOSA approach. It is free from the matching problem and treats the different arrangement 
channels in a completely symmetrical fashion. 

!.INTRODUCTION 

New theories, in general, and approximate schemes, in 
particular, rarely escape a number of revisions, modifica
tions, and generalizations before they acquire the "status of 
acceptability." The infinite-order sudden approximation for 
reactive scattering (RIOSA) does not constitute an exception 
in this respect. 

The value of a theoretical construction can be defined in 
simplified terms by its "external" and "internal" merits. The 
external merits characterize the ability of a theory to be in 
accord with the existing body of knowledge (both theoretical 
and experimental), on the one hand, and to produce new 
results and predict new phenomena, on the other. The inter
nal merits depend on the severity of the assumptions used 
and the degree of their generality and justifiability. 

Results of RIOSA studies on several atom-diatomic 
molecule reactive systems were evaluated in a number of 
studies. I-I I Here we shall address the question about the in
ternal qualifications of the RIOSA scheme. More specifical
ly, we shall examine in detail the so-called "matching prob
lem," which undoubtedly is a weak point of all the previous 
formulations. We shan show how the theory can be reformu
lated in a form which is free from this problem. A prelimi
nary account of elements of the new formulation was pre
sented by us earlier. 12 

The essence of the infinite-order sudden approximation 
is in assuming that the angle r between the collision vector 
R' and the axis r' ofthe target diatomic molecule (the primes 
denote physical coordinates) does not change in the course of 
the collision event. In the case of reactive scattering one 
should consider simultaneously at least two fixed ("frozen") 
angles ra; a = A, v, where A and v label different arrange
ment channels. The main question which arises in this re
spect can be formulated as foHows: How should the frozen 
angles in the reactants channel be correlated with those in 
the products channel, if at aU? 

In an previous RIOSA treatments an a priori one-to
one correlation between the fixed r A. and r v was assumed. 
Barg and Drolshagen3 considered the specific case of a light
heavy-light system for which rA. = rv in the limit H-+oo, 
where H stands for "heavy." Bowman and Lee l associated 

alChaim Weizmann Fellow 

with each angle rA. the angle y" = 1T" - rA.' Adopting the 
presumption about the one-to-one correlation between the 
frozen angles, one effectively introduces into the theory an 
additional parameter, the so-caned "matching" constant 
B"A. (see Sec. II). Selection of rA. and BvA. defines the value of 
r" (Ref. 13) (see also Sec. III). In the formulation of Bowman 
and Lee the value B"A. = 1 was chosen for aU rA. 'So In the 
scheme of Khare, Kouri, and Baer13 BvA. could acquire, in 
principle, any positive value. But once selected, it again re
mained the same for all r A. 'so 

It should be clearly understood that the fixing of BvA. is 
not a necessary requirement inherent in the RIOSA theory. 
The RIOSA dynamics does not determine the actual value 
(or set of values) of BvA.' Moreover, since the matching con
stant does not have any special physical meaning the very 
possibility of such a determination is questionable. Though 
in actual ca1culations l

-
ll the value of B"A. was selected using 

considerations of symmetry and those of numerical conve
nience, the choice, in general, remains arbitrary. The related 
ambiguity is usually called the matching problem. This 
problem may become a major drawback of the theory since 
nothing, in principle, precludes the final results from being 
B"A. dependent. The main conclusion to be drawn is that a 
fixed matching constant should not appear in the theory as a 
basic parameter. 

In general, different BvA. values may and should be cho
sen for different YA. values; moreover, a whole range of B"A. 's 
may correspond to each value of rA.' Shapiro and Zeiri l4 

suggested correlating the frozen angles via a turning point 
model. Effectively, this model assigns to each value of YA. its 
"own" (single) value of B"A.' Yet the restriction of the one-to
one correspondence between the angles remains. 

As will be shown below, the problem of the correlation 
between the frozen angles [i.e., of the selection of the value(s) 
of B"A] is equivalent to the question about the extent of the 
arrangement channels or about the border between them. In 
the RIOSA formalism the different arrangement channels 
are separated by a line (rather than by a surface, as in the 
exact 3-D treatmenes) which passes through the strong in
teraction region. In case of a quantum mechanical treatment 
the approximate so-called channel wave functions and their 
first derivatives (with respect to the propagation coordinate) 
are to be matched on this line. This gives rise to the term 
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matching problem. It should, however, be noted that this 
term is quite misleading, since the task of matching is that of 
solving a system of linear equations, and as such does not 
constitute any problem. Moreover, in the classical mechani
cal RIOSA scheme5

,7,12 one avoids the matching completely, 
propagating the trajectory across the borderline in a contin
uous fashion. The problem, however, remains. It concerns 
the borderline (we shall denote it rAy) itself. The principal 
importance of defining the borderline lies in that on r Av a 
collinear-type problem corresponding to a fixed YA should 
be converted to that corresponding to a fixed Yv and vice 
versa. Each pair (Y.\> Yv) defines rAv uniquely, and thus a 
one-to-one correlation between the frozen angles implies 
that one and only one borderline is associated with each 
fixed YA. and/or YV' Selection of a particular borderline, 
however, lacks any general physical justification, and the 
very perception about its uniqueness is nothing more than an 
a priori assumption. In principle, one should consider all the 
possible borderlines for each fixed Y., (or Yv). The possible 
"shrinkage" of the (continuous) manifold of all r Av 's in cer
tain particular cases should then be substantiated by the 
specificity of the system at hand, i.e., by the energy and 
masses of the interacting particles and the "shape" of the 
potential. Inclusion of a manifold of different rA;s for each 
fixed Y A (or Y v) means removal from the theory of the one-to
one correspondence between the frozen angles or of a "privi
leged" value of B vA ' We shall refer to the RIOSA theory 
based on an independent selection of the fixed values of Y A 

and Yv as the two-angle-dependent RIOSA. 
The classical and quantal two-angle-dependent RIOSA 

dynamics is presented in Refs. 12 and 16, respectively (a re
finement of the classical RIOSA is given in Ref. 17). Here we 
shall deal with the two-angIe-dependent RIOSA kinematics, 
which is common for both classical and quantal schemes. In 
Sec. II the arrangement channel representation and the 
RIOSA configuration space are defined. In Sec. III general 
kinematical relutions valid for any pair (YA.' Yv) are derived 
and analyzed. A brief summary is given in Sec. IV. 

Ii. THE RIOSA ARRANGEMENT CHANNELS 

The configuration of a three-atom system A-B-C in the 
center-of-mass body fixed frame may be described in each 
arrangement channel by a set of three coordinates R ~, r~ , 
and Ya' where a = A, v, K denotes the arrangement channel 
(see Fig. 1). Here, R~ and r~ are the a-channel (space-fixed) 
collision and diatomic separation vectors, respectively, and 
Ya is the angle between them. 

It is convenient to perform the foHowing scaling IS of tile 
physical. coordinates: 

RA = aAR~, r A = aA- Lr~, 

(1 ) 
where aA = (PA..",Jp-",cl I/4

, 

Here, 1lA..VK and IlVK are the reduced masses of the A.-channel 
projectile-diatomic target and the diatomic molecule, re
spectively. The v- and K-channel sealings are obtained from 
(1) by combining cyclically the A, Y, and K indices. Note that 
the scaling procedure does not alter the Ya angles, but it 
attributes to the system a unique effective mass 
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rl 

A 

FIG. 1. Arrangement channel coordinates of a three-atom system. 

Ii = [mA • mv· mJ(mA + my + m K )] 
1
12, (2) 

the same in all the arrangements lS
; ma is the mass of the a

channel projectile atom. 
It can be readily verified 13,15 that the interchannel rela

tion between the scaled vector coordinates (RA' r A.) and 
(Rv• rv) gives rise to an orthogonal transformation M 

where 

M= 

and 

(
cos{3VA. 

sin (3YA 
- sin (3VA.) 

COS{3vA 

cos{3v). = - [mA.mj(mA + mK)(mV + mK )] 112, 

(3) 

(4) 

sin{3, ..• = ...{"f-= cos21J,~~-. (5) 

The relations between the magnitudes of the vectors implied 
by (3) and (4) are 

and 

r.. = R; s.in2 /3., .. , + r~ (;o:';:! /3,.\ 

+. r, R.l cos y,:: sin 2/3,,1. , 

~ = R ~. sinz /3"A + r,. cos2 /3VA. 

Ri +~ =R~ +r... 

(6) 

(7) 

(8) 

Again, combining cyclically the A, v, Rnd K indices one easily 
obtains theA. ~ K and v+->- K analogs of Eqs. (3)-(8). 

A transparent d.escription of the arrangement channels 
is obtained by the use of cylindrical coordinates. Each chan
nel a( = A., Y, K) is represented by a cylinder, the axis of 
which coincides with the Ra axis. The case a = A, v is de
picted. in Fig. 2. Note that aJ.1 the axes have a common origin 
and the angle between the RA and Rv axes is chosen to be 
11' - {3VA. (the reason for this choice will become clear below). 

As already mentioned, the RIOSA scheme implies 
freezing the angles Ya (a = A, v, K). In what foHows we shall 
consider two channels at a time. The frozen angles define a 
fixed-YA plane and a fixed-yv plane (see Fig. 2) which repre
sent the RIOSA A-arrangement and v-arrangement configu
ration spaces, respectively. The two planes intersect along a 
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FIG. 2. The...1.- and v-arrangement channels represented in cylindrical c0-

ordinates. The fixed-y .. and fixed-rv planes Ithe RIOSA configuration 
spaces) intersect along the borderline r,v' 

straight line FAy passing through the origin. This line sepa
rates the RIOSA A. and v configuration spaces and will be 
called "borderline." Each pair of fixed Y A and Y v defines a 
borderline. Each borderline represents a continuous set of 
similar triangles formed by the three atoms. These triangles 
are the RIOSA A. ++ v transition configurations. AU the tri
angles belonging to the same set (represented by the same 
borderline) are characterized by the same values of five pa
rameters YA' YY' B yA , 'TJOA' and 'TJOy' whereByA , 'TJo;., and 'TJo.,. 
are introduced as follows: 

B YA = (rjrA)lr • ..tv 
(9) 

cot'TJDc = (Ra/ra)ir
AV

' a=A.,v. (10) 

Since Eqs. (9) and (10) define, in fact. the borderline FAy('TJOa 
is the angle between FAy and the Ra axis; a = A.. v) we shall 
refer to B yA , 'TJo;.. and 'TJov as borderline parameters. Fixing 
any two of the five parameters defines the remaining three 
and thus the borderline. This general statement is easily 
proved by noting that exclusion of the coordinates from Eqs. 
(6HS) gives 

B:'A - coe 'TJo;. sin2 PYA - cos2 PYA 

- cot 'TJOA cos YA sin 2{JyA = O. 

B .;:t 2 - coe 'TJo.,. sin2 P'VA - cos2 PYA 

+ cot TJo.,. cos yy sin 2{JYA = O. 

cos YA cot'TJo;. + B:'A cos yy cot TJo.,. 

+ (1 - B ~A ) cot /lvA = O. 

(11 ) 

(12) 

(13) 

This system of three nonlinear equations (11 H 13) with re
spect to three unknowns (two of the five parameters are 
fixed) has. in general, more than one solution. From pure 
geometrical considerations it follows, however, that in most 
of the cases only one solution will have physically meaning
ful values (see Sec. III). Note that Eq. (13) may be replaced by 
the equality 

(14) 

or 

B YA = sin 7]o.,./sin TJo;., (15) 
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which is easily obtained through dividing both sides of Eq. 
(S) by ~ and taking into account Eqs. (9) and (10). 

III. THE TWO-ANGLE-DEPENDENT RIOSA KINEMATICS 

In all the earlier RIOSA theories YA and BvA were effec
tively chosen as basic parameters subject to initial selection. 
Those then defined the values ofyl" TJOA' and 7]ol" and thus 
the borderline Fl.v' While YA assumed different fixed values 
from the range [0, 17'], BYA was kept constant. The drawbacks 
of such an approach were pointed out in Sec. I. 

Here we shall single out for initial selection the angles 
YA and Yv' "Equal rights" will be granted to each of the 
angles. and no correlation whatsoever between them win be 
assumed. This means that all the possible pairs of values of 
Y A and Y v are allowed and should be considered. The advan
tages of this approach are that (1) parameters (YA and Yv) 
subjected to initial selection have clear physical meaning; (2) 
the reactants and the products channels are treated in a com
pletely symmetrical fashion; and (3) since no a priori restric
tion on the choice of the pairs (YA' Yv) is imposed. no particu
lar value(s) of BvA enter the theory as basic parameter(s) and 
the matching problem does not appear at all. As a conven
ient auxiliary quantity BvA can be retained in the theory, but 
in each case its numerical value will be defined by the select
ed values of Y;. and Yv' In what follows we show how 
YA and Yv actually define the borderline F Av ' 

Once the values of the angles are fixed one calculates the 
borderline parameters B vA , TJo;., and TJOv from Eqs. (11 H 13) 
[(14)]. The solutions of Eqs. (11) and (12) with respect to 
cot TJoA and cot TJov are 

- cos YA cos PvA ± (B ~A - sin2 YA cos2pv;. )1/2 
cot'TJo;. =-----------------------------------

sin PvA 
(16) 

An immediate consequence of Egs. (16) and (17) is that the 
range of definition of BvA for a fixed YA is 

sin Yl.iCOSPvAi <BvA < <Xl. (IS) 

while that for a fixed Yv is 

0< Bvl. < l/sin Y v jcos PvAI· (19) 

Ifboth Y;. and Yv are fixed then the value of BVA is (uniquely, 
provided YA #0, 17' and y" #0, 17'-see below) defined and it 
satisfies the inequality 

sin YA icosPvAI<BYA <l/sin YviCOSPYAi. (20) 

[For YA = 0,17' and Yv = 0, 17'the" = "signs should be omit
ted in Eg. (20)). In fact, more restrictive inequalities can be 
obtained for the value of BvA defined by specific pairs of the 
frozen Y A and Y v' These inequalities follow from the require
ment of positiveness of cot 'TJo;. and cot 7]0.,. in Eqs. (16) and 
(17) [see definition (10)]. 

The fixed Y l. and fixed Y v assume. in general. values 
from ° to 17'. We analyze separately four cases. 

(a) 17'12<YA <17'. 0<Yv<17'/2. Then the first terms in 
the numerators ofEqs. (16) and (17) are negative or zero and 
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thus only the" + " sign in front of the square roots together 
with the inequality 

ICOS/1vA I <BVA < 1!ICOS/1vA I (21) 

can guarantee the positiveness of cot TJOA and cot TJOv' Note 
that only one pair of TJOA and TJov and, thus, only one border
line FAV' correspond to BVA in this case. 

(b) O<YA <rr/2, 0<Yv<rr/2. Now the first term in the 
numerator ofEq. (16) is positive and thus both choices" + " 
and " - " in front of the square root can lead to physical 
cot 'TJOA' Concerning Eq. (17) the situation is the same as in 
the previous case: only the positive value of the square root 
should be considered. The BVA ' thus, satisfies in general the 
inequality 

sin YA ICOS/1VA I <BVA < 1IICOS/1VA I. (22) 

[ICYA = 0 the" = "sign should be omitted in Eq. (22).] If the 
actual value of B VA implied by the fixed r A and Y v is such that 
in addition the inequality (21) is valid for it or 

BVA = ICOS/1vA I, (23) 

then, as in case (a), only the positive value of the square root 
in Eq. (16) should be kept. If, however, 

sin rA ICOS/1VA I <BVA < Icos/1vA I, (24) 
then Eq. (16) gives two physical values of cot 'TJOA' while only 
one such value of cot TJov is defined by Eq. (17). The physical 
implication of this can easily be understood by taking into 
account that each ofEqs. (16) and (17) depends only on one of 
the angles rA or r v and on the same BVA ' The conclusion to 
be drawn is the following: The same value of BVA ' which 
satisfies the inequality (24), can be obtained by fixing two 
different pairs (rA' rvd and (rA' rv2) with the same rA and 
rvl =l=rvl [note that not necessarily both rvl and rv2 arefrom 
the range [0, rr/2]-see case (d) below). This situation is mus
trated in Fig. 3: rvl =l=rv2 but r~'1 = <2 and thus [see defini
tion (9)] (rA' rvd and (rA' rvl) define the same BVA ' Though 
the value of BVA is the same the corresponding borderlines 
rAvl(rA' rvd and r Av2 (Y", rvl) are different. They are de
fined by different pairs ('TJOA I , TJOvI ) and (TJOA 2' 'TJOv2)' The fact 
that BVA defines (for a fixed rA) the borderline not always 
uniquely is an additional argument against the matching 
constant as a basic parameter. If BVA = sin rA ICOS/1vA I for 
rA =1=0 then the two physical values of cot TJOA coalesce to 
one, giving a single borderline corresponding to BVA ' 

(c) rr/2<rA <rr, rr/2 < rv <rr. In this case the first term 
in the numerator of Eq. (16) is negative or zero while that in 

A 

FIG. 3. Illustration of a situation when two different A ..... v transition COR

figurations (ABC and A 'BC) of three atoms, defined by the same r)' and r ,) 
"I roll' correspond to the same value of B VA (,.:" =":'2)' 
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Eq. (17) is positive. The general inequality for BVA is 

Icos/1v;..1 <B"A <l!sin r"lcos/1vA I. (25) 

[Ifrv = 17'the" = "sign should be omitted in Eq. (25).] If the 
value of BVA satisfies actually the more restrictive inequality 
(21) or 

(26) 

then only the" + " sign in front of the square roots in Eqs. 
(16) and (17) will lead to physical cot TJOA and cot TJOv' If, 
however, 

(27) 

both the" + " and the" - " signs in Eq. (17), but stiU only 
the" + " sign in Eq. (16), are acceptable. Then again two 
different borderlines correspond to the same BVA for which 
condition (27) is valid. This BYA can be defined by two differ
ent pairs of frozen angles (rA I> rv) and (rA2' Yv) with the 
same rv and rA I =l=rA2 (not necessarily both rA I and rA2 are 
from the range [17'/2, rr]-see the next case (d)). And again if 
BVA = (sin rv Icos/1YA 1)-1 for rv =1=17' the two physical values 
of cot TJOv coalesce, giving rise to only one borderline. 

(d) O<rA < 17'/2, rr/2 < rv <.rr. Then the first terms in the 
numerators ofEqs. (16) and (17) are positive andBl'A satisifes 
in general the inequality (20) with the" = " signs omitted for 
rA = ° and rv = rr. All the three distinct possibiJ.ities en
countered in cases (a)-(c) for the signs in front of the square 
roots in Eqs. (I. 6) and (17) can be realized here depending on 
which of the three conditions [(21) + (23) + (26)], (24), or (27) 
is actually satisfied by BVA . 

In order to obtain an equation for Bv;" for selected val
ues ofYA and r", substitute expressions (16) and (17) into Eq. 
(13). In accordance with the three possibilities mentioned 
above we arrive at three equations rather than at one: 

FI(BvA ; rA' rv) 

:=G(BVA; rAJ cos YA .+, B,;..H(Bv;..; rv) cos rv 

+ (sin2 rA - B ~A sin2 r,.) cos /1VA = 0, (28) 

F2(BvA ; rA' rv) 

== - G(B"A; rAJ cos r;.. + BVAH(BvA; r,,) cos r ... 

+ (sin2 rA - B:A sin2 rv) cos .oVA = 0, (29) 

F3(BvA ; rA' r,..) 

=G(B"A; rAJ cos r;.. - BVAH(BVA; rv) cos rv 

+ (sin2 rA -B~A sin2rv)cos/1"A =0, (30) 

where 

and 

G (B"A; r A )=(B ~A - cos2 f3v;.. sin2 r A) 1/2 

H 'B )-(1 B2 2a . 2 )1/2 I, VA; r,,:= - VA cos ,",VA sm rv . 

(31) 

(32) 

One or more ofEqs. (28)-(30) correspond to each of the 
cases (a)-(dl. From geometrical considerations it follows that 
one and only one B VA value is defined by any pair of selected 
YA =1=0, rr and rv =1=0,17'. In the cases characterized by more 
than one equation for BYA these equations should be solved 
successively until the physically meaningful value for By;.. is 
obtained. As criteria for selecting the physical value of BVA 
the inequalities presented above should be used. Thus, in 
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case (a) only Eq. (28) should be solved. Its physical solution 
will satisfy the inequality (21). Two equations for Bv;' corre
spond to case (b): Equation (28) with the inequality criterion 
(22) and Eq. (29) with the criterion (24). If the selected r;. and 
r y belong to case (c) again two equations should, in principle, 
be considered: Equation (28) with the inequality (25) and Eq. 
(30) with the condition (27). In case (d) one of the three equa
tions (28H30) with the criteria (20), (24), and (27), respective
ly, will furnish the physical value of By;.. The four cases (a)
(d) for the fixed r;. and rv and the "regions of validity" of 
Eqs. (28H30) are shown in Fig. 4. 

Once Bv;. is found [e.g., by numerically solving Eqs. 
(28H30)) the values of 1/;. and 1/ .. are calculated from Eqs. 
(16) and (17), respectively. The signs that should be used in 
front of the square roots will be prescribed by that one ofEqs. 
(28H30), which actually provides the physical value of By;" 
Equation (28) implies that the positive value of the square 
roots should be used in both Eqs. (16) and (17). Equation (29) 
dictates the" +" sign in Eq. (16) and the" -" sign in Eq. 
(17). Finally, the" - " sign in Eq. (16) and the" + " sign in 
Eq. (17) should be used if the physical value of By;. is the 
solution of Eq. 130). 

Note that By;', 1/0A., and 1/Ov' found in accordance with 
the prescription given above, will depend on /3y)., which is 
defined by the masses of the interacting atoms IEq. (5)]. This 
reflects the fact that the borderlines are parametrically sys
tem dependent. 

Analysis ofEqs. (28H30) together with the correspond
ing inequality criteria leads to a number of interesting con
clusions. Consider first Eq. (28). Let r;. = 0 and r v = 1T (one 
of the "RIOSA collinear" cases). Then taking into account 
expressions (31) and (32) we immediately arrive at the equa
tion 

FI(By;,; r;. = 0, rv = 1T) = Bv;' - By;. = 0, (33) 

which together with the inequality (20) implies that any finite 
positive Bv;. is a physical solution. The case r;. = 1T, rv = 0 
leads to the same Eq. (33). But the range of all physical By;. 's 
is defined now by the inequality (21). The existence of whole 
(continuous) manifolds of acceptable Bv;. 's and thus of differ-

(0) 

." 

'2 

1T' .". 

2 
y). 

FIG. 4. The four cases (aHd) for the fixed rA and r •. Equation (28) corre
sponds to the entire large square. The overlapping "regions of validity" of 
Eqs. (29) and (30) are depicted by oblique lines and dots, respectively. 
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ent collinear configurations, each of which can serve as a 
transition configuration, is reminiscent of the situation in the 
true collinear collisions (/a = O,ja = 0; a = ...i, v), for which 
any finite positive value of By;' can be chosen since the final 
results, e.g., transition probabilities and vibrational distribu
tion, are independent of this value. 

Choose now r;. = 0 or 1T and ry #0 or 1T. It is easy to 
verify that Eq. (28) does not have physically acceptable solu
tions for these cases at all. The conclusion to be extracted is 
that three atoms initially in a collinear configuration con
serve their collinear alignment for the whole duration of the 
reactive scattering event, ifr;. and ry are kept fixed. Select
ingrv = o or 1T and r;. #0 or 1T, we again obtain thatEq. (28) 
has only nonphysical solutions. Thus a reactive collision ini
tiated in a noncollinear arrangement of the reactants cannot 
end up with collinear alignment of the products, if r;. and r v 
are frozen. The two last conclusions can be referred to as the 
"collinearity conservation rule." This rule was, of course, 
known for true collinear collisions, for which, in the case of 
absence of force fields, it is a trivial consequence of the con
servation of the total linear momentum of the system. In 
contrast to the true collinear case the RIOSA version of the 
coUinearity conservation rule is derived here on the basis of 
pure kinematical arguments only. 

It can readily be verified that if Bv;' is a solution of the 
equation 

(34) 

where rA. #0, 1r, yy #0, 1T, and FI is defined by (28), then 
B vA 1 satisfies the equation 

FI(B :;.1; 1T - rv' 1T - r;.) = O. (35) 
Note that if By;. is the physical solution of Eq. (34), i.e., it 
satisfies the proper inequality criterion, then the inequality 
related to Eq. (35) will automatically be valid for B .;A I and 
thus B .;A I is the physical solution of Eq. (35). Choosing 
ry = 1T - r;. we conclude that both By;. and B .;A I satisfy the 
same equation 

F\(X; r;., 1T - rA.) = 0, X = By;" B .;AI. (36) 
But Eq. (36) has only one physical solution. This can be if and 
only if Bv;' = 1. 

While considering the RIOSA collinear cases we omit
ted the analysis of two possibilities: r;. = 0, rv = 0 and 
r;. = 1T, ry = 1T. Equation (28) does not provide physical val
ues of By;. for these possibilities. But their "legality" (from a 
kinematical point of view) is guaranteed by Eqs. (29) and (30). 
It follows immediately from Eq. (29) and the corresponding 
criterion (24) that any By;. satisfying the inequality 

o <Bv;' < Icos/3y;.1 (37) 

is a physical solution for r;. = 0 and yy = O. Analogously, 
Eq. (30) together with the condition (27) gives that all B .. ;. 's 
from the range 

1IIcos/3 .. ;.1 <ByA. < 00 (38) 

are acceptable for r;. = 1r and rv = 1T. Both Eqs. (29) and (30) 
obey the collinearity conservation rule, i.e., they do not have 
physical solutions when r;. = 0, 1Tbut Yv #0, 1Toryy = 0, 1T 

but r;. #0, 1T. It is easy to verify that if BvA. is the physical 
solution of the equation 

F2(By;.; r;., r .. ) = 0, (39) 
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where F2 is defined by Eq. (29), then B ~ 1 is the physical 
solution of the equation 

F3(B ,;;.1,17' - r", 17' - r,d = 0, (40) 

with F) defined by Eq. (30). 
The kinematical relations obtained above are those to 

be employed in actual numerical calculations. These calcula
tions should, in principle, take into account all the possible 
pairs of values of r" and ry which do not violate the collin
earity conservation rule. 

Calculate now the angle between the R" and R" axes in 
Fig. 2. Note that the fixed r" = 0 and fixed rv = 17' planes, 
corresponding to coUinear collision, merge to one plane con
taining both the R" and Rv axes. The so-called "skewed" 
angle between the two axes in this plane is equal to the sum 
"lQ). + 1/O'V for any borderline r"y, i.e., any finite positive 
Bv,,' Choosing Ov" = 1 and substituting it together with 
r" = ° into Eq. (16), in which the positive value of the square 
root should be used, we obtain 

cot 1/0" =(l-cos(Jy")/sin(Jy,, =tanl,By,,/2), (41) 

or 

(42) 

Since'TJO'V = 1/0" for By" = 1 [see Eq. (14)] we condude that 
the angle between the R" and Ry axes is 17' - /3y". 

Finally, we present alternative, more convenient forms 
of two expressions obtained earlier in the framework of a 
fixed-B"" RIOSA formalism. 13 Calculate first the value of 
the angle .:1 A-V between the R" and R" vectors (see Fig. 1) in 
the transition configuration. By definition 

cos.d"" = (R" • Rv)/R" Ry. (43) 

Expres$ing R" in (43) through R" and r" [Eqs. (3) and (4)) we 
obtain 

cos..::1"" = (R"/Ry)cos/3",, -(r,,/Ry) cosy" sin/3"". 
(44) 

Equation (44) defines .:1A-Y in any configuration of the three 
atoms. The transition configuration expression for cos .:1"y 
fonows from (44) by appl.ication ofEqs. (9) and (10), which 
yields 

cos ..::1 .. v Ir"v = (lIBv" cot"lO'V)(cot "lo" cos/3v" 

Show now how to obtain the value of the angle 'r" for 
given val.ues of r .. (7'f.O, 7i'") .tnd Bv).:' Stress once more th,~t 
only a B,.!.l which sa!hli(~~ one of the condi:tiof.1f. 

I cos /3"." I ,;:8."" -< tX'1 (46) 

or 

B"" = sin Y .. icos(Jv .. I, (46') 

if 0 < r" < 17'12, or the condition (46) with the " =" sign 
omitted if 17'12 <. r" < 17', leads to a unique definition of the 
value of rv' If such a Bv" is chosen one calculates cot 1/0. 
from Eq. (16) with the" + .. sign in front of the square root 
and then cot "lo" from Eq. (14). Once cot 1/0" and. cot 1/O'V are 
known the value of cos r v can be obtained from Eq. (13): 

O~" cot "lav 
(47) 
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IV. SUMMARY 

In this communication we gave a detailed analysis of 
the so-called matching prOblem in the RIOSA theory, and 
have shown that the problem concerns the question about 
the correlation between the frozen angles or about the bor
derline between the RIOSA arrangement channel configura
tion spaces, rather than the matching itself. We removed this 
problem from the theory by considering the angle param
eters r" and r" on equal basis and presuming no correlation 
whatsoever between them. Elimination of the angle-correla
tion requirement, which is an external, additional assump
tion and not a necessary, inherent condition of the RIOSA 
approach, considerably consolidates the physical founda
tions of this scheme. 

Initial. selection of the pairs of values (Y .. , Yv) and inclu
sion into consideration of aU the pairs which do not violate 
the colJinearity conservation rule results in the change ofthe 
status of quantity Bd: from a basic fixed-value matching 
constant of earlier formulations it converts to an auxiliary 
borderline parameter with no preselected value(s) in the two
angle-dependent RIOSA approach. An additional advan
tage of the new scheme is in that it treats the reagents and 
products channels in complete symmetry. 

The kinematical relations derived in Sec. III comple
ment the classical and quantal dynamics parts of the two
angle-dependent RIOSA presented in Refs. 12, 17, and 16, 
respectively. The expressions for physical quantities calcu
lated from the two-angIe-dependent RIOSA transition pro
babilities l2,7 or S- (R-) matrix elements 16 involve double inte
grals over r" and r y' This means that, in general, the RIOSA 
quantities should be caIcul.at<.'<i on a double grid of r", rv 
E[O, 17'). In certai.n particular cases, however, the specificity 
of the system (masses of the particles, interaction potential, 
total energy) may justify considering instead of the complete 
double grid only the "important" part of it, i,e., only those 
pairs (y". rvl which give non-l1egHgible contributions. This 
may be taken into account via mulliplication of the inte
grand by a weighting function Q (cos rA- ,cos r,,) of the prop
er form. The only general requirement on this function is 

f 1 f~ I Q(cos y", cos rv)d cos r" d cos rv = L (48) 

In contrast to aU earlier formulations of the RIOSA 
theory the new scheme furnishes approximate physical 
quantities which are independ(mt of additional. ~.t';sumptions, 
such as, e.g., a fixed numerical value of B vA ' As a conse
quence, these quantities should be viewed as the true RIOSA 
results and may be used to make ultimate inferences about 
the validity of the RIOSA approach for different reactive 
systems. Preliminary results of the application of the two
angle-dependent RIOSA theory to the F + Hz-+HF + H 
reaction are presented in Ref. 7. Further work on numerical 
implementation of the new scheme is under way, and the 
results will be reported in future publications. 
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Vector fields near caustics 
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The modified Lagrange manifold technique enables determination of the asymptotic series 
solution oflinear scalar wave equations near caustics of simple geometries. Here the technique is 
extended to include vector field considerations and more complicated caustic geometries. 

I. INTRODUCTION 

A commonly used approach for studying high-frequen
cy wave propagation in spatially inhomogeneous media is 
the geometrical optics or asymptotic series technique intro
duced by Friedlander l and extended by Keller and his co
workers (cf. Felsen and Marcuvitz2 for a comprehensive 
treatment and bibliography). For illustration, we consider 
the time harmonic electric field equation from Felsen and 
Marcuvitz in R 3 

V2 /f(r) + r f(r)/f(r) + 2V(/f(rj'· Vg(r)) = 0. (1) 

In Eq. (1), /fIr) is the field, ris the frequency,f(r) is the index 
of refraction, and g(r) = In [f(r)] 1/2. An asymptotic series 
solution of the form 

00 
/f(r)-exp{ir~(r)j L Edr)r- k (2) 

k=O 

is assumed. In Eq. (2), ~ (r) may be considered a phase and 
Edr) amplitudes. Substituting Eq. (2) into Eq. (1) and re
grouping by powers of r leads to the eikonal equation for the 
phase and the transport equation for the amplitudes, Eqs. (3) 
and (4), respectively, 

V~· V~ - fIr) = 0, (3) 

Ek V2~ + 2V~ (Ek • Vg(r)) + 2V~ (V· Ed + 2V(Ek_ 1 

• Vg(r)) + V2Ek _ 1 = 0, k>-O, E_I = 0. (4) 

The phase may be determined using the classical method of 
characteristics; the Ek follow from Eq. (4). At caustic (turn
ing) points, this procedure leads to unbounded field ampli
tudes.3 

An alternate approach, leading to bounded field ampli
tudes at caustic points, is the Lagrange manifold formalism 
introduced by Maslov4 and developed by Arnold,5 among 
others. In this approach, the electric (vector) field is repre
sented by a generalized Fourier integral ofthe form 

/f = J E(r,p,r)exp{ ir~ (r,p)jdp, 

where 
00 

E(r,p,r)- L Ek(r,p)r- k 
k=O 

and 

~ (r,p) = r • p - S (p). 

In the above, p may be regarded as a wave vector and S (p) is 
analytic and the generating function of a canonical transfor
mation. This technique has been applied to study caustics 
associated with acoustic (scalar) fields in stratified media in 
R 2(f(X,y) = f(x))(Ref. 6). Substitutingascalarintegralanalo-

gous to that above into the reduced Helmholtz equation ob
tains an eikonal equation similar to Eq. (3). The correspond
ing transport equation for the amplitudes determines the 
field on the caustic in terms of oscillatory integrals. On the 
caustic the Hessian determinant of the eikonal phase, i.e., (in 
R 2) det (a 2~ / api apj), vanishes. After the phase is trans
formed to a canonical form, the transformed integrals may 
be evaluated asymptotically using a modified stationary 
phase technique. The appropriate canonical form corre
sponding to a given eikonal phase is determined from the 
Hessian matrix of ~ (r). Caustics whose geometry corre
sponds to the Hessian matrix having one zero-eigenvalue 
have been considered for the acoustic field. In this note, we 
illustrate how the algorithm extends to those caustic geome
tries corresponding to the Hessian matrix having two zero
eigenvalues using the context of electric field propagation
to parallel some off-caustic considerations included in Fel
sen and Marcuvitz. For brevity and coherence of exposition, 
some involved calculational details (and considerations re
garding structural stability) have been left to more extensive 
references.6-8 To facilitate comparison with these references, 
we consider axial propagation, f(x,y,z) = f(x,y). Although 
the extension to R 3 is primarily algebraic, the principal con
siderations involved in this extension are also discussed. 

II. FORMALISM 

We assume Eq. (1) has an asymptotic solution of the 
form 

/fIr) - J E(r,p,r)exp{ ir(r· p - S (p)) jdp = 0 (r- 00), (5) 

where here r = (x,y), p = (Px ,py)' The algorithm proceeds by 
carrying the differentiation in Eq. (1) across the integral in 
Eq. (5), followed by a regrouping by powers of ir to obtain 

J dp exp{ir~ H (ir)2[p. p - f(r)]E + (iT)[2p(V· E 

+ E • V In g(r))] + (ir)O [V2E + 2V(E • V In g(r))] 1 
=O(r- OO

). (6) 

The coefficient of the (iT)2 term is Maslov's Hamiltonian. 
Then by invoking the stationary phase condition (Vp~ = 0), 
Maslov's Hamiltonian becomes an eikonal equation on the 
Lagrange manifold [r = VpS(p)] 

P • P - fIr) = 0, (7) 

which may be used to find the phase.3 For example, analo
gous to the classical case, using Hamilton's equations 
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x=2p", 
aH 

F" = - ax' y=2py, 
aH 

Fy = -ay' (8) 

leads to 

x = x(t,O), p" = p" (t,O), 

(9) 
Y =y(t,O), Py = py(t,O), 

where t is the time and 0 a parametrized initial condition. 
But on the caustic the map (t,O) -+ (x,y) is singular. Conse
quently, we may determine the phase by inverting the wave. 
vector (p) map, yielding 

t=t(p",py), 0= o (P",Py)' 

Then a direct substitution in the configuration space equa
tions explicitly determines the Lagrange manifold 

as 
x = x[t(p",py),O(p",Py)] = X (P",Py) = a' 

'P" 

as 
y =y[t (P",Py),O (P",Py)] = Y(p",py) = -a . 

'Py 
An integration leads to the phase 

(to) 

o (x,y,p",py) = xp" + YPy - S(p",py). (11) 

Iff(x,y) is cyclic in either variable, e.g.,J(x,y) = fIx), a 
simpler procedure applies for fIx) analytic. In this case the 
eikonal equation becomes 

pop - fIx) = 0, 

leading to the Lagrange manifold 

-f-l(P2 + 2) _ as 
x- "Py -a' 

'P" 
(12) -J ~S d - as O(P) _ as 

y - ap" apy 'P" - apy + y - apy' 

where 0 (py) can be made explicit from the initial conditions.6 

In either case, the equation of the caustic can be deter
mined by setting 

det{ a
2

tjJ } =0. (13) 
apx apy 

Each (Px'PY) satisfying Eq. (13) corresponds to a point on the 
caustic in configuration space obtained by substituting into 
the appropriate Lagrange manifold. The locus of these 
points specifies the caustic in configuration space. 

To obtain the transport equation for the amplitudes, we 
may proceed as with acoustic propagation. Briefly, the Ha
miltonian is Taylor expanded near the Lagrange manifold, 
resulting in 

pop - fIr) 

= pop - f(VpS(p)) + (r - VpS(p)) 0 D(r,p) 

= (r - VpS(p)) 0 D(r,p), 

where 

(14) 

D(r,p) = D = - f VJ[t(r - VpS(p)) + VpS(p)]dt. 

Substituting into Eq. (5) leads to 
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J dpexp[ir(rop-S(p))}{ - [(Vp oD)E+DVp oE] 

+2p[VoE+EoVlng(r)] 

+ (lIir)[V2E + 2V(E 0 V Ing(r))]} = O(r- 00). 

Then, requiring 

- [(Vp oD)E+DVp oE] +2p[VoE+EoVlng(r)] 

+ (lIir)[V2E + 2V((E 0 V lng(r))] = 0 (15) 

in a neighborhood of the Lagrange manifold leads to a trans
port equation if we introduce the flow 

i' = 2p, P = - D(r,p), (16) 

where the dots indicate time differentiation. That is, Eq. (15) 
holds-and consequently Eq. (5) is an asymptotic solution
if we allow the asymptotic series 

E = L Edr,p)r - k 

k=O 

to evolve along the transport equation 

Ek + [2p 0 (V lng(r)) - Vp 0 Di]Ek + V; Ek _ 1 

+ 2V(Ek _ 1 0 V lng(r)) = 0, (17) 

where i is the unit dyadic. Corresponding equations for 2, 
the magnetic field, follow either from duality or Maxwell's 
equations. 

As with the field away from the caustic, the first ap
proximation to the time-averaged Poynting vector (power 
density) .Y on the caustic (or, equivalently, the magnitude of 
the field vector E ~ ) 

.Y = Re(ffx2*)-~Eo/floE~ p, 

where Eo and flo are the permittivity and permeability, re
spectively, of vacuum, proceeds from the k = 0 term of Eq. 
(15), i.e., 

- (Vp • D)Eo - DVp • Eo + 2p(E· V lng(r)) + 2p(V' Eo) 

=0. (18) 

Multiplying Eq. (18) scalarly by E~ and the complex conju
gate ofEq. (18) by Eo, adding and introducing the flow in Eq. 
(16), leads to 

dE~ 2 
dt 2 -2Eo (Vp ·D)=O (19) 

and thus 

E~(t) = E~(O)exp{ - 2 J (Vp • D)dt }, (20) 

where here t assumes its more standard role as a position 
parameter [via Eq. (9)] on the caustic (analogous to arclength 
along a ray in the classical technique). A similar considera
tion leads to a transport equation for the polarization 

f!lJ = Eo/(Eo ' E~)1/2. 

Substituting for V p • D from Eq. (19) in Eq. (18) and regroup
ing obtains 

d:: +2p[f!lJ'Vlng(r)] =0, (21) 

analogous to the off-caustic transport equation. Finally, we 
note that propagation in a conductor adds a (dissipative) 
term proportional to aff / at in Eq. (1). As would be expected, 
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this term affects the transport equation for the field ampli
tudes [Eq. (17)], but the basic algorithm proceeds as above. 

III. COMPUTATIONAL CONSIDERATIONS 

The asymptotic evaluation of the field integrals 

J Edr,p)exp{ i-rt,6 (r,p) }dp, 

wheret,6 (r,p) and Edr,p) follow from Eqs. (11)and(17),atany 
field point [for definiteness taken at (ro,po)] proceeds by 
transforming the phase to its canonical form. If the Hessian 
determinant of t,6 (r,p) at ro is nonzero or the Hessian matrix 
has one zero-eigenvalue, the canonical form for the phase is 

~(ro,JJ)=t,6(ro,po)±.8i ±.8~. 
If the Hessian determinant is nonzero, ro is not on the caustic 
and n = 2. If the Hessian determinant vanishes, the expo
nent "n" may be obtained by forming 

F(t) = t,6 (ro,pxO + tel,PYJ + te2), 

where e l and e2 are the components of the zero-eigenvalue 
eigenvector. The first nonvanishing term in the Taylor series 
determines the value of n. The sign of.82 corresponds to the 
sign of this Taylor coefficient and the sign of.81 to the sign of 
the nonzero eigenvalue. If n = 2, 3, or 4, the coordinate 
transformations carrying the eikonal phase to the canonical 
form may be determined algebraically. If n>5, an applica
tion of the implicit function theorem is required.6 The result
ing integral is 

(a) three real equal roots .8 3 

J E(ro,p,-r)exp{ i-rt,6 (r,p) }dp 

= exp{ i-rt,6 (ro,po)} J J E(ro,/3I,/32,-r) 

X exp {iT( ±.8i ±.8md.81 d.82' 
where 

(22) 

If the Hessian matrix of t,6 (r,p) at Po has two zero-eigenvalues 
and the cubic terms in the Taylor series are not all zero, the 
eikonal phase (and hence the integral) may still be put into a 
form suitable for asymptotic analysis.9 To determine the 
form appropriate to a particular case, let the phase be repre
sented as 

t,6 (r,p) = t,6 (ro'po) + t30 p! + t21 P!Py + t 12 PxP; 

+ t03 P; + higher-order terms, 

where the tij are constants. If t30#0, equating the cubic 
terms to zero and dividing by P; obtains 

t30u3 + t21u2 + t l2u + t03 = 0, 

where u = Px/py • (If t30 = 0 and t03 #O, interchanging Px 
and Py yields an analogous cubic). The cubic may have four 
possible root combinations, each corresponding to a specific 
canonical form: 

fold, 

(b) three real unequal roots .8 ~ -.8 ~ ~ elliptic umbilic, 

parabolic umbilic, 

hyperbolic umbilic. 

(c) three real roots, two equal .8 i.8 2 + .8; 

(d) one real root, one complex conjugate pair .8 ~ +.8~ i (or .8 ~ +.8 ~) 

Ift30 = t03 = 0 and both t21 ,t12 #0 the corresponding form is 
the parabolic umbilic. If t30 = t03 = 0 and one of t21 or 
t 12 = 0, there is no corresponding canonical form. 

The case corresponding to three real equal roots repre
sents a symmetry where the two-dimensional propagation 
may be modeled as one dimensional and is not considered 
here. To determine the coordinate transformations carrying 
the eikonal phase to either the elliptic or hyperbolic umbilic 
(for clarity, represented as SiS2 + bsL b = ± 1), a linear 
transformation 

is first introduced. Then Si52 + bs~ is compared with the 
cubic terms in t,6 (r,p), obtaining a system of equations which 
can be solved for a,/3,u,tJ and putting t,6 (ro,p) in the form 

~ (ro,p) = t,6 (ro,po) + Si52 + bs~ + t4051 + t31S~S2 

+ t2~isi + t13SIS~ + t04S; + higher. 

The fourth-order terms may be removed by inserting the 
nonlinear transformation 
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.81 = SI + L AmnS'{'S~, 
m+n;>2 

.82 = S2 + L Bmns'{'s~ 
m+n;>2 

into the canonical form.8i.82 + b.8~, expanding, and mak
ing a term-by-term comparison. The result is a series of equa
tions for the Amn and B mn , specifying the transformation; 
this argument extends to the removal of higher-order terms 
as well.7 The coordinate transformation carrying the eikonal 
phase to the parabolic umbilic proceeds similary. First the 
linear transformation is introduced into the form sis 2 and 
the result is compared with the cubic terms in t,6 (ro,p), obtain
ing a system of equations for a,/3,u,tJ and putting t,6 (ro,p) into 
the form 

- 2 4 3 t,6 (ro,p) = t,6 (ro,po) + S IS2 + t405 I + t31S IS2 

+ t2~~si + t13SIS~ + t~~ + higher. 

The fourth-order terms may be removed by inserting the 
nonlinear transformation 
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,82 1 t04 1 1/4(52 + t4oSf) 
into the parabolic umbilic form,8 f,82 + ,8 ~, expanding, and 
making a term-by-term comparison. This leads to equations 
for the Am" and specifies the transformation. As with the 
other umbilics, this argument extends to remove other high
er-degree terms. (More complete treatments are given by 
Gilmore7 and Poston and Stewart.9

) The transformed inte
grals are of the form 

f E(ro,p,r)exp[ irtP (r,plldp 

= exp[ irtP (ro,po) 1 f f E(ro,{31,{32,r) 

(23) 

where 

(a (Px,py)) 
E(ro,{31,{32,r) = E(rO,p),f31,{32),Py f!31,{32),r) a f!31,{32) , 

"'-
and <P f!31,{32) is the appropriate umbilic. The asymptotic eva-
luation of the field integrals, Eqs. (22) and (23), has been 
detailed elsewhere6.8; for brevity we do not repeat it here. 

The extension of the basic algorithm to three dimen
sions is straightfoward, when Hessian has no more than two 
zero-eigenvalues. For these cases the formalism is as above 
and the principal considerations are algebraic. If the Hessian 
determinant of the eikonal phase at r 0 is nonzero or the Hes
sian matrix has one zero-eigenvalue, the canonical form of 
the transformed phase is 

tP(ro,(J)=tP(ro,po)±,8f ±,8~ ±,8~. 

Obtaining this form basically requires "completing the 
square" twice in the procedure leading to Eq. (22). If the 
Hessian matrix has two zero-eigenvalues, the canonical form 
is 

2 "'-
tP (r 0,{3) = tP (r o,Po) ±,8 1 + <P f!32,{33)' 

"'-
where <P is the appropriate umbilic. Obtaining this form 
from the eikonal phase follows from the splitting lemma. 7.9 
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First, the square is completed in the naturally occurring qua
dratic. Then the appropriate umbilic is identified by consid
ering the cubic in the remaining variables and coordinate 
transformations carrying the cubic (and higher) terms to the 
umbilic are obtained as above. The evaluation of the trans
formed integrals (using an integral with an umbilic in the 
phase as an example) proceeds by noting these integrals may 
be factored into the form 

exp{irtP (ro,po) 1 f f exp[ ir~ f!32,{33) ld,82 d,83 

X f Ek (ro,{31,{32,{33,)exp{ ± ir,8f ld,81· 

The classical stationary phase technique applies to the inte
gral over d,81. Each term in the resulting series is multiplied 
by an integral having the umbric as the phase. The asympto
tic evaluation of the "umbilic integrals" has been discussed 
elsewhere.8 The full asymptotic series of the above integral 
then consists of the terms in the asymptotic series due to the 
,81 integration, each of which is multiplied by an asymptotic 
series due to the asymptotic evaluation of the umbilic inte
gral. If the Hessian matrix has three zero-eigenvalues, the 
canonical forms for the transformed phase have been speci
fied by Amol'd. 10 This case is not considered here. 
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A fast compressional wave incident on an inhomogeneity in a fluid-saturated porous medium will 
produce three scattered elastic waves: a fast compressional wave, a slow compressional wave, and 
a shear wave. This problem is formulated as a multipole expansion using Biot's equations of 
poroelasticity. The solution for the first term (n = 0) in the multipole series involves a 4 X 4 system 
which is solved analytically in the long-wavelength limit. All higher-order terms (n;;;. 1) require the 
solution of a 6 X 6 system. A procedure for solving these equations by splitting the problem into a 
4 X 4 system and a 2 X 2 system and then iterating is introduced. The first iterate is just the solution 
of the elastic wave scattering problem in the absence of fluid effects. Higher iterates include the 
successive perturbation effects offluid/solid interaction. 

I. INTRODUCTION 

The scattering of elastic waves by a spherical inhomoge
neity in an elastic medium has been investigated by Ya
makawa,I-3 by Ying and Truell,4 and by Einspruch, Witter
holt, and Truell. S A review of the literature and a 
comprehensive presentation of the analysis was also given 
later by Yamakawa.6 In addition to the insight that these 
results provide for both scattering and attenuation of elastic 
waves in inhomogeneous materials,6 the formulas may also 
be used in developing approximate theories 7,8 and rigorous 
bounds9 for effective elastic constants of composite materi
als. 

Biot1°-12 has developed equations for elastic wave prop
agation in fluid-saturated porous media. Although some ap
proximate studies of wave speeds and attenuation in liquid
saturated porous media containing spherical regions with 
liquid replaced by gas have been presented by White13 and by 
Dutta and Ode,14 no comprehensive analysis of scattering 
from spherical inhomogeneities in porous media has yet ap
peared. For poroelasticity as well as for elasticity, the results 
of the single-inclusion scattering analysis will prove to be of 
importance for studies of attenuation of waves and also for 
theories of effective constants of composite porous materi
als. 

One major difficulty with the analysis of a single scat
terer in poroelasticity is the fact that the solution of a 6 X 6 
system of equations is required in general. Although a 6 X 6 
system is easily solved numerically, the main goal of the 
present study is to derive analytical results for the scattering 
coefficients which may then be used to provide some insight, 
especially into the coupling between fast and slow compres
sional waves in the presence of inhomogeneities. Since the 
slow compressional mode is highly damped at low frequen
cies, we expect the coupling between fast and slow waves due 
to mode conversion at interfaces may provide an efficient 
method of attenuating an incident fast wave. To study the 
attenuation in detail, it will be most helpful to possess an 
analytical expression for the scattering coefficients. Unfor
tunately, solution of the 6 X 6 system of equations requires 
on the order of 6! operations per coefficient. Furthermore, as 
in the elastic scattering problem, the lowest-order determi-

nants are degenerate (numerator and denominator vanish to 
lowest order in the long-wavelength limit) which makes the 
analysis still more tedious. Thus, the analytical problem is 
essentially intractable unless we enlist the aid of an automat
ic symbolic manipulator-which we will not do here. 

We solve this problem approximately by splitting the 
6 X 6 system into a 4 X 4 system and a 2 X 2 system with cou
pling terms. The chosen 4 X 4 system reduces exactly to the 
elastic scattering problem in the absence of fluid coupling 
terms. Treating the fluid effects as perturbations to the elas
tic scattering problem, the equations may be solved iterative
ly to obtain the scattering coefficients to the desired order of 
accuracy. 

Section II introduces the equations of poroelasticity 
and the general form of their solution. Section III presents 
the exact form of the multi pole expansions for the scattering 
of a fast compressional wave from a spherical inhomogene
ity. Section IV solves the equations exactly for the lowest
order multipole terms since this problem only requires solu
tion of a 4 X 4. Section V presents the general form of our 
perturbation-iteration scheme and applies it to the problem 
solved in Section IV to provide some insight into the method 
and the solution. Section VI presents the results for the high
er-order multi pole expansion coefficients. 

II. EQUATIONS OF POROELASTICITY 

Before proceeding to analyze the scattering of elastic 
waves from spherical inhomogeneities, we must first intro
duce Biot's equations of poroelasticity. Consider a porous 
medium whose connected pore space is saturated with a sin
gle-phase viscous fluid. The fraction of the total volume oc
cupied by the fluid is the porosity r/J, which is assumed uni
form within each constituent but which may vary between 
host and inclusion. The bulk modulus and density of the 
fluid are K, and p" respectively, in the host. The bulk and 
shear moduli of the (dry) porous frame for the host are K and 
p. For simplicity we assume the frame of the host is com
posed of a single constituent whose bulk and shear moduli 
and density are K m' Pm' and Pm' Inclusion parameters will 
be distinguished from host parameters by adding a prime 
superscript. The frame moduli may be measured directly or 
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they may be estimated using a general theory of elastic com
posites which has been developed recently. 8 

For long-wavelength disturbances (A. > h, where h is a 
typical pore size) propagating through such a porous medi
um, we define average values of the (local) displacements in 
the solid and also in the saturating fluid. The average dis
placement vector for the solid frame is u while that for the 
pore fluids is ufo The average displacement of the fluid rela
tive to the frame is w = tfJ (uf - u). For small strains, the 
frame dilatation is 

e = ex + ey + ez = V· u, (1) 

where ex, ey, ez are the Cartesian strain components. Simi
larly, the average fluid dilatation is 

ef = V· uf (2) 

(ef also includes flow terms as well as dilatation) and the 
increment of fluid content is defined by 

(3) 

With these definitions, Biotl
0-

12 shows that the strain-energy 
functional for an isotropic, linear medium is a quadratic 
function ofthe strain invariants l5 II = e'/2' and of t having 
the form 

2E = He2 - 2Cet + Mt 2 - 4p.I2 , (4) 

where 

12 = exey + eyez + ezex -l(r; + r; + Yz) , (5) 
and Yx' yy' yz are the shear strain components. 

With time dependence of the form exp( - iO)t ), the cou
pled wave equations of poroelasticity in the presence of dissi
pation are 

p.V2u + (H - p.)Ve - cvt + 0)2( pu + Pfw) = 0 , 

CVe - MVt + 0)2(pf U + qw) = 0, 

where 

and 

(6) 

(7) 

(8) 

The kinematic viscosity of the liquid is TJ, the permeability of 
the porous frame is K, and the dynamic viscosity factor is 
given, for our choice of sign for the frequency dependence, 
by 

F(t)=lltT (t)/[l +2T(t)/itJ} , 

where 

and 

T(5)= ber'(5)-ibei'(5) 
ber(5) - i bei(5 ) 

t = (O)h 2/TJ)1/2 • 

(9) 

(10) 

(11) 

The functions ber(t) and bei(5) are the real and imaginary 
parts of the Kelvin function. The dynamic parameter h is a 
characteristic length generally associated with and compar
able in magnitude to the steady-flow hydraulic radius. The 
tortuosity a> 1 is a pure number related to the frame inertia 
which has been measured recently l6 and has also been esti
mated theoretically. 17,18 
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The coefficients H, C, and M are given by l9,20 

H=K + tp. + oe, (12) 

C= [((o-tfJ)/Km +tfJ/Kf)/o]-I, (13) 

M= C/o, (14) 

where 

U= 1-K*/Km . (15) 

To decouple the wave equations (6) into Helmholtz 
equations for the three modes of propagation, we note that 
the displacements U and W can be decomposed as 

U = VY + Vx 13, W = V¢' + VXX , (16) 

where Y, ¢' are scalar potentials and 13, X are vector poten
tials. Substituting (16) into (6), we find (6) is satisfied if two 
pairs of equations are satisfied: 

(V2 +k;)13=0, X= -rs 13, 

where Fs = Pf/q and 

(V2 + k 2± ) A ± = 0 . 

The wave vectors in (17) and (18) are defined by 

k; = 0)2( P - p}/q) p. 

and 

(17) 

(18) 

(19) 

k 2± = (0)2/2Ll ) I b + I + [(b -/)2 + 4cd F/2} , (20) 

where 

b=pM -PfC, c=pfM -qC, 
(21) 

d=pfH -pC, l=qH -PfC, 

with 

(22) 

The linear combination of scalar potentials has been chosen 
to be 

A± =F ± Y+¢" 

where 

(23) 

F ± = d /[(k ± ..:j /0)2)2 - b ] = [(k ± ..:j /0)2)2 - I]/c. 

(24) 

With the identification (24), the decoupling is complete. 
Since (17) and (18) are valid for any choice of coordinate 

system, they may be applied to boundary value problems 
with arbitrary symmetry. Biot's theory will therefore be ap
plied to scattering of elastic waves for a spherical inhomoge
neity in Sec. III. 

III. SCATTERING FROM A SPHERICAL 
INHOMOGENEITY 

The analysis which follows will closely parallel Ya
makawa's analysis of scattering by a general elastic spherical 
obstacle. 6 

The boundary conditions21 which must be satisfied at 
the surface of the spherical inhomogeneity are continuity of 
the normal and tangential stresses 

(25) 
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and 

( 
1 au, au, U,) 

'T rfJ = It -; ao + a; - -; , 
continuity of fluid pressure 

p=Mt-Ce, 

(26) 

(27) 

and continuity of solid displacement u and of the normal 
component of the relative fluid/solid displacement w,. For 
convenience, the displacements (16) are separated into 
compressional and shear components as 

u = vr , ii = Vx f3 , 
(28) 

Then, for a plane-wave incident on a spherical obstacle, we 
need only consider 

and 

1 a (_2A ) 1 a (. 0 A ) e=-- ru, +-.-- SlO ue ' 
,-'2 ar r SlO 0 ao 

au, 
e =-, ar' 

(29) 

(30) 

WI, =Aol' - f (2n + 1)i"~j,,(k+r)P,,(cos 0), (40) 
k 2+ ,,=0 dr 

wle =Ao; - f (2n + l)i"l..j,,(k+r)~P,,(cosO). (41) 
k + 11= I r dO 

The time dependence e - ioJl is implicit. 
The reflected compressional waves are given for the sol

id by .. 
e l = 2: [B~+'h~'(k+r) -B~-'h~'(k_r)] P,,(cosO) , (42) 

,,=0 

d 
X-P,,(cos 0), 

rdO 
and for the relative fluid/solid displacement by .. 
tl= 2: [B~+'r_h~'(k+r)-B~-'r+h~'(k_r)] 

,,=0 

(44) 

- t = l..~ (,-'210,) + _.1_~ (sin OWe). 
,-'2 ar r SlO 0 ao (31) X P,,(cosO) , (45) 

The vector potential P is most conveniently defined as 

(32) 

where both PI and P2 satisfy (17). Then, if we choose the 
gauge so that V • P = 0 as we are free to do in the present 
problem, we find PI = 0 and 

P = - + a:;; ~ , (33) 

which relates f3 to the scalar solution of (17). The scalar 
potentials are related to the solutions of (18) by 

r=(A+ -A_)l(r+ -r_), (34) 

t/J= -(A+r_-A_r+)/(r+-r_). (35) 

The solution of (17) and (18) in terms of spherical Bessel 
functions j" and h~' and Legendre polynomials P" is well 
known. 

Following Yamakawa,6 the incident plane fast 
compressional waves for the solid satisfy 

eo = Aoeik+' cos 9 

.. 
=Ao 2: (2n + 1)i" j,,(k+r) P,,(cos 0), (36) 

,,=0 

(37) 

U09 = - ~ f (2n+ 1)i"l..j,,(k+r)~P,,(cosO), 
k 2

+ ,,= I r dO 
(38) 

and for the relative fluid/solid displacement .. 
to=Aor_ 2: (2n+ 1) i"j,,(k+r)P,,(cos 0) , (39) 

,,=0 

1410 J. Math. Phys., Vol. 26, No.6, June 1985 

10 = ~ [B~+'r_ ~h(I'(k r) 
I, ~ k2 d " + ,,=0 + r 

- " + -h~'(k_r) P,,(cosO) , 
B(-'r d ] 

k 2_ dr 
(46) 

.. [B(+,r 
Wle = 2: "2 - h ~'(k+r) 

,,=1 k + 

- " + -h(I'(k r) B(-'r d ] 
k 2_ dr"-

1 d 
X--P,,(cos 0). 

r dO 
(47) 

The reflected shear waves for the solid are 

A .. d 
t/J. Vxu2 = 2: C"h ~'(k.r) -P,,(cos 0), 

,,=0 dO 
(48) 

1 .. 1 
"2, = - -2 2: C"n(n + 1) - h ~'(k.r) P,,(cos 0) , (49) 

k. ,,= I r 

"29 = - _1_ f C" l..~ [rh~I'(k.r)] ~PII(COSO), 
k; ,,= I r dr dO 

(50) 

and for the relative fluid/solid displacement by (28) together 
with (48H50). 

The refracted compressional waves are given for the 
solid by 

e3 = f [D~ + 'j,,(k'+ r) - D~ -'j,,(k'_ r)] P,,(cos 0), 
,,=0 

(51) 

A ~ " • (k') " . (k' ) .. [D(+' d D(-) d ] 
u3

, = ,,~o (k '+ )2 d/" + r - (k '_ )2 d/" - r 

X P,,(cos 0) , (52) 
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A ~ n. (k') n. (k' ) 00 [D(+I D(-I ] 
U38=- n~1 {ki)2]n +r - {k,_)2]n _r 

1 d x -; dO Pn (cos 0) , (53) 

and for the relative fluid/solid displacement by 

t3= i [D~+lr_in{k'+r)-D~-lr+in{k'_r)] 
n=O 

X Pn (cos 0) , (54) 

00 [D(+lr d 
A ~ n - • (k' ) 
W 3, = £.. (k,)2 -d] n + r 

n=O + r 

- n + -in{k'- r) Pn{COS 0), 
D(-Ir d ] 

(k'_)2 dr 

(55) 

(56) 

The refracted shear waves for the solid are 

¢. VXU4 = i Enin{k ;r) Pn{COS 0), (57) 
n = I 

U4,= - _1_ i Enn{n+l)~in{k;r)Pn{cOSO), (58) 
(k ;)2 n= I r 

U48 = - _1_ i En ~~ [ryn{k;r)] ~ Pn{cosO), 
(k ;)2 n = I r dr dO 

(59) 

and for the relative fluid/solid displacement by (28) together 
with (57)-(59). 

Let the spherical inhomogeneity have radius a. Then 
the boundary conditions are given for r = a by 

a 
(H - 2.u)(eo + el ) + 2.u - (uo, + uI, + u2r ) - C{to + tl) 

ar 

= {H' - 2,u')e3 + 2.u' i. (U3r + U4r ) - Ct3' 
ar 

[ 
1 a a 

,u --(UOr + Ulr + U2,) + -(U08 + UI8 + U28) 
r ao ar 

- +(U08 + UI8 + U28)] 

=,u' [~~{U3' + U4r ) + i.{U38 + U48 ) 
r ao ar 

- ! (U38 + U48 )] , 

UOr + UI, + U2r = U3, + U4r , 

U08 + UI8 + U28 = U38 + U48 , 

Cleo + etJ- M{to + tl) = C'e3 - M't3' 

and 

(6O) 

(61) 

(62) 

(63) 

(64) 

The first four equations (6O}-(63) reduce to the usual bound
ary conditions for elastic wave scattering from an elastic 
sphere when fluid effects are neglected. The last two equa
tions (64) and (65) determine the relative fluid/solid motion, 
but they are also coupled to the first four equations. The 
orthogonality properties of the Legendre polynomials assure 
the independence of the coefficients for different values of n. 
For n = 0, the boundary conditions give four equations in 
the four unknowns B ~± I, D ~± I. For n> 1, the boundary con
ditions give six equations in the six unknowns B ~ ± I, Cn' 
D~±I,En' 

In general, we may write the equations for the coeffi
cients in the form 

P~;!;IB~+I+ p~;;;IB~-I+YnmCn +~n;!;ID~+1 

+ «5~;;; ID ~ -I + EnmEn = i"{2n + l)anm Ao, (66) 

where m = 1, ... , 6 corresponding to (6O}-(65), respectively. 
Defining 5 ± = k ± a and TJ = ksa, the coefficients in (66) 
become 

ani = - {[{H _ cr _) _ 2.u{n ~!~{n + 2)] 

Xin{s+) + ~ in-ds+)}, (67) 

P~TI = ± {[{H - cr =+=) _ 2.u{n ~!~{n + 2)] 

Xh~I{S ±) + ;:. h~~t!s ±)}, (68) 

Ynl = - [2.un{n + I)1TJ2] [TJh ~~ dTJ) - (n + 2)h ~I{TJ)] , 

(69) 
«5~TI = += {[{H' - Cr~) - 2.u'{n + l)(n + 2)/{s'± )2] 

X in{S'± ) + (4,u'/s'± )jn(5'± )} , (70) 

Enl = [2.u'n{n + 1)/TJ'2][ TJ' in _ I (TJ') - (n + 2)jn{TJ')] , (71) 

a n2 = -(2.u/S 2+)[{n+2)jn{S+)-S+in_I(5+)], (72) 

PW = ± {2.u/S 2± )[(n + 2)h ~I(5 ± ) - 5 ± h ~~ ds ± )] , 

(73) 

Yn2 = (,u/TJ2){ 2TJh ~~ dTJ) + [TJ2 - 2n{n + 2)]h ~I{TJ)} , (74) 

8n~1 = += [2,u'/(5'± )2] [In + 2)jn(5'±) 

-s'± in-dS'±)], (75) 

En2 = - (,u'/TJ,2){2TJ'in_ dTJ') 

+ [TJ,2 - 2n{n + 2)] in (TJ')} , (76) 

a n3 = (1IS+)[jn _ ds+) - [(n + 1)/s+]in(5+)] , (77) 

P~'fl= +=(1Is± )[h~~I(5±)- [In + 1)/s± ]h~I(5±)], 
(78) 

Yn3 = - [n{n + 1)/TJ2]h ~I{TJ), (79) 

«5~'fI= ±(1IS'±)[in-I(5')- [(n+l)/s'± ]in(5'±)], 
(80) 

En3 = [n(n + 1)/(TJ')2] in (TJ') , 

a n4 = (115 2
+ )in(5+), 

(65) P~"il= +=(1Is2±)h~I(5±), 

(81) 

(82) 

(83) 
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rn4 = - (Ihll[ l1h ~~ dl1) - nh ~'(11)] , 

81n~'= ± [lI($,±)2]jn($'±), 

(84) and 

(85) a06 = (r _Is +)jl($ +) , (107) 

(108) 

(109) 

En4 = [lI(11')21[11'jn_dl1')-njn(11')) , 

an' = -(C-Mr_)jn($+) , 

(86) P'o"t' = =F IF Of IS ± )h \1'($ ± ), 

(87) 8bt=' = ± (r~ IS'± )jl($'± ). 

P~'r' = ± (C -Mr Of )h~'($ ± ), (88) 

rn' =0, (89) 

81n'r' = =F(C' - MT~ )jn($'± ), (90) 

EnS =0, (91) 

and, finally, 

a n6 = IF -/S+)[jn- ds+) - [In + l)/S+]jn(S+ll, (92) 

P~"t' = =F (r Of Is ± l[ h ~I~ ds ± ) 

- [In + l)/s ± ]h ~'($ ± )] , (93) 

rn6 = - r. [n(n + 1)/112]h ~'(11) , (94) 

81n~' = ± IF ~ Is'± ) Un - ds'± ) 

- [In + l)1s'± ]jn(S'±)] , (95) 

En6 = r; [n(n + 1)1(11,}2]jn (11') . (96) 

Equations (67) - (96) are valid for all n> 1. For n = 0, 
Eq. (66) is replaced by 

P'o;!;' B'o+' +P'o;;;' B'o-' + 8'o;!;' D'o+' + 8'0;;;) D'o-' 

(97) 

for m = 1,3,5,6----corresponding to boundary conditions 
(60), (62), (64), and (65). The coefficients become 

aOi = - [(H - cr -)jo(s+) - (4,u/S+)jl(S+)] , (98) 

P'oI" = ± [(H - Cr)h ~'(S ± ) - (4,u/S ± )h \I,(S ±)], (99) 

81oI" = =F [(H' - CT~ )jo(S'±) - (4,u'/S'± )jl(S'±)] , 

a 03 = - (lIS+)jl(S+)' 

P'o"f'= ±(lIS±)h\I,(S±), 

8'o"f' = =F (lIS'± )j1(S'± ) , 

a os = - (C -Mr -)jo(S+), 

P'o'r' = ± (C-Mr Of }h~'(S ±), 

8'o'r' = =F(C' -MT~ )jo(s'±), 

(100) 

(101) 

(102) 

(103) 

(104) 

(105) 

(106) 

These equations give the complete solution to the prob
lem of scattering from a spherical inhomogeneity in a ftuid
saturated porous medium. The system of equations may be 
solved numerically without much difficulty for any value of 
n and any choice of w. In the following sections, the equa
tions will be analyzed in more detail for n = 0, 1, 2 and in the 
long-wavelength limit. 

IV. EXACT LONG-WAVELENGTH SOLUTION FOR n = 0 

In the long-wavelength limit (S ± ,11< I) we may use the 
asymptotic formulas for jn and h ~I' with small arguments22 

to simplify the coefficients in Sec. III. For n = 0, the system 
to be solved is only 4 X 4 and, therefore, may be treated ana
lytically. We find the coefficients to lowest order become 

and 

aOi = - (H -~,u - cr _), 

P'oI" = ± i4,u/ S 3± ' 

8'oI" = +(H' -~,u' - CT~), 

a 03 = - j, 

P'o"f' = +i IS 3± ' 

8'o"f' = =Fj, 

aos = -(C-Mr_), 

P'o~'= =F(ils±)(C-MrOf ), 

8'o~'= +(C'-MT~), 

(110) 

(111) 

(112) 

(113) 

(114) 

(115) 

(116) 

(117) 

(118) 

(119) 

Pbt='= ±i(r'f/S3±), (120) 

8bt= ' = ± r ~ 13 . (121) 

The solution of (97) with the coefficients (110)-(121) 
may be found using Cramer's rule for inverting a matrix. If 
the exterior scattering coefficients are written as B 'o± '1 Ao 
= N ± ID, then the relevant determinants are 

D=(r+-r_}(r'+ -r'_) [M'(H'- (C')2 _ .i.,u' +.i.,u) +O(S2 I], 
s~s~ M' 3 3 ± 

(122) 

N+= -i(r'+ -r'_) [(F _r_lM'(H,_(C'f _ .i.,u,+.i.,u) 
3s 3_ + M' 3 3 

+ (H-Cr_)(C'-MT+)-(C-Mr_}(H'-CT+ -: Il'+: 1l)+O(S2±)], (123) 

N- = i(r'+ -r'_) [(C -Mr _) (H' - CT _ - .i.,u' + .i.,u) - (C' -Mr _}(H - cr _) + O(S2±}] . (124) 
~~ 3 3 

Recalling that H = K + ~,u + C 21M, the scattering coefficients may be written as 

B(+'= _ iS 3+ Ao [K'-K+(C-Mr_}(C'IM'-CIM)] +(S IS_)3B(-' (125) 
o 3 K' +~,u + 0 

1412 J. Math. Phys., Vol. 26, No.6, June 1985 James G. Berryman 1412 



                                                                                                                                    

and 

B 1 - ) _ is 3_ Ao [(C _ Mr )(K' + ~ ) 
o -3M'(r+-r_)(K'+tJL) - 3JL 

-(C'-MT_l(K+ ~JL)+(C-Mr_)(C'-MT_l(Z', - Z)]· (126) 

To check the result, consider the elastic limit of the 
equations: C-o, M-o, s _ -0, F _ -0. Then, Eqs. (125) 
and (126) reduce to 

Bb+)= - is 3+ (K'-K)/3(K' +tJL) (127) 

and 

(128) 

Equation (127) is the standard result for elastic scattering 
from a spherical inhomogeneity. Equation (128) shows that 
slow compressional waves do not propagate in the absence of 
a pore fluid. 

v. PERTURBATION METHOD FOR n = 0 

Since solution of the 6 X 6 system of equations (66) for 
n> 1 requires on the order of 6!( = 720) multiplications per 
determinant, a complete analytical solution will not be at
tempted here. The aid of an automatic symbolic manipulator 
could be enlisted for solving this problem. However, we pro
pose instead to solve the problem approximately by intro
ducing an iterative perturbation method. Since the scatter
ing coefficients reduce to those for purely elastic scattering 
when no fluid is in the pores, the pore-fluid effects may be 
treated as perturbations to the elastic scattering. In particu
lar, the constants C and M ( = C I u) in Biot's equations are 
small compared to K and JL if the porous frame is well con
solidated, the porosity is not too great, and the bulk modulus 
of the pore fluid is comparable to (or less than) that of water. 

A formal perturbation method may be constructed with 
c = C IK as the small parameter. Thus, the elastic constants 
C,M, C', andM' will all be treated as 0 (cK). Atlowfrequen
cies, F + = H IC so r + = 0 (1/ c). Also at low frequencies, 
F_-o. 

The details of the perturbation method for n> 1 will be 
presented in the next section. In this section, we will apply 
the method to the case n = O. Since the exact solution was 
found in Sec. IV, this application will help to illustrate the 
strengths and weaknesses of the perturbation method. 

We will expand the scattering coefficients as 
00 00 

BI+) /:,3 "~Pbl+) 
o-~+~'" OP' 

p=o 
BI-)=/:,3 "~Pbl-) 
o-~-~'" op, 

p=1 

00 00 

DI+)=" cPd l +) DI-)=" cPd l -) 
o-~ Op' o-~ op, 

p=o p=1 

and rewrite the affected coefficients of Eq. (97) as 

(129) 

a Ol = -K-cK(CIM-F_) aOl +caOl , (130) 

15bt) = -K' - c(C'IC)K(C'IM' -r'_) 

=~bt) + c:5 bt) , (131) 
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I 
15bt) = (K' - CT'+) + c[(C,)2ICM'] K 

_1'1-) + ~I-) 
=<101 cUOI' 

aos = - cK(I- (M IC)F _)=caos , 

pbt) = - cK(iIS+)(I- (M IC)F _)==ciht)/s 3+ , 

Pbs) = (- iIS_)(MF + - cK)=cPbs)/s 3
_ , 

~ot) = - f(C'IC)K(I- (M'IC')F'_ )=c:5 bt) , 

~os)= -MT'+ +c(C'KIC)=~bs)+c:5bs), 

1 . CT 113'1
06
-) 

pbi)=---'- + 
c S3_ K c S3_ 

(132) 

(133) 

(134) 

(135) 

(136) 

(137) 

(138) 

I5bi) = - ~ CF'+ =~bi). (139) 
c 3K c 

In addition to (130)-(139), we define .8b;!;)==S3± pb;!;) for 
those values of m not mentioned explicitly. 

Substituting (129)-(137) into (97) and collecting terms 
which multiply the same power of c, we find the sets of equa
tions 

.8 bt )b bet ) + ~bt )d bet ) = a03 Ao , 
1'1-)d l -)--a A -p-I+)b l +)- ~I+)dl+) 
u os 01 - os 0 os 00 Uos 00' 

(140) 

(141) 

P· I-)bl-) + "I-)d l -) -a A -p-I+)b l +) ~I+)dl+) 
00 01 U06 01 - 06 0 06 00 - U06 00' 

and 

13- I+)bl+) + ~I+)dl+) 
01 01 UOI 01 

-a A -p-I-)b l -) ~I+)dl+) 1'1-)d l -) 
- 01 0 01 01 - U 01 00 - U 01 01' (142) 

.8 bt )b bt ) + 15bt )d bt ) = -.8 b3 )b bt ) - ~03 )d bt ) . 
Each of these three pairs of equations is a 2 X 2 system which 
is easily solved analytically. The equations have been written 
with the unknowns on the left and the knowns on the right
assuming that the pairs are solved successively. Higher-or
der terms may be found using this procedure but in this pa
per we will stop calculating after the first nontrivial correc
tions to the elastic scattering results. 

Solving the first pair of equations, we find 

bbet) = (- i13) [(K' - K)/(K' + tJL)] Ao , 

dbet) = [(K + tJL)/(K' + !JL)] Ao , 

(143) 

(144) 

which are the exact results for scattering from an elastic in
homogeneity. 

Solving the second pair of equations gives 

b l -) - (K) iAo [(C MF )(K' ~ ) 
01 - C 3MT+(K' +tJL) - - +3JL 

- (C' - MT _)(K + tJLl] , (145) 
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and 

dl -)- (K) Ao 
01 - C M'F'+ (K' + ~,u) 

X [(C-Mr_)(K' +~,u) 

od. Applying the same idea to the 6 X 6 systems for n;;;. 1, we 
will split each of these problems into one 4 X 4 system and 
one 2 X 2 system. The 4 X 4 system to lowest order gives the 
elastic scattering in the absence of fluid effects. 

As in (129), we will expand the scattering coefficients as 

- (C' -M'F'_ )(K +~,u)] . (146) 

Comparing (145) to the exact result for B h - ) in (126) shows 
that the approximate result is the same as the first two terms 
of the exact result except for the factor of (r + - r _) in the 
denominator of (126). This difference is expected since 
r + = 0 (l/E)whiler _ = 0 (1). Furthermore, thisdift"erence 
is inconsequential at low frequencies since r _ -0 in this 
limit. 

Solving the third pair of equations produces 

bl+)= _ (K) iAo (C-Mr_) 
01 C 3(K' + ~,u) 

X - - - +bhl)' (
C' C) 
M' M 

(147) 

The corresponding result for d hi) is not of direct interest. 
Again we see that (147) agrees with the first-order correc
tions contained in (125) as anticipated. 

(148) 

where the numerical coefficients are 

We conclude that this perturbation method works very 
well for determining the fluid-dependent corrections to the 
elastic scattering coefficients. 

VI. PERTURBATION METHOD FOR n;;;.1 

Now we need to expand the spherical Bessel functions 
in (67)--(96) for small arguments and also keep track of the 
o (E) contributions to these coefficients. For convenience, we 
define the special elastic constants 

For n = 0, we have split the 4 X 4 system of equations A + ==K - ~,u, A - H - 2,u - cr + . (150) 

into two coupled 2 X 2 systems using the perturbation meth- Then, the results become , 
a =,uF r,,-2 {2(n _ l)n _ [(n + l)(n + 2) A+] r2} F 1:''' K(CIM r) -"I ,,~ + (2n + 3) + ---;; ~ + - E ,,~ + - - a,,1 + Ea,,1 , (151) 

/3li)= ± ,uiG" {2(n+ 1)(n+2)+ [(n-1)n _ A± ]S2 }-E iG" K(!2- r _)=(l1I±)+E,8I+)) iG" 
"S,,-±+3 (2n -1) ,u ± S"/I M "I "I S,,-±+3' 

(152) 

inG" [ n 2] - inG" r,,1 = -,u(n+ 1)-- 2(n+2) + --1] ==r"I--' 
1]" + 3 2n - 1 1]" + 3 

(153) 

t51±)= ±,u'F(S' l"-2{2(n_1)n_[(n+l)(n+2) + A'± lIs' )2+[ (n+3)(n+4) 
"I " ± (2n + 3) ,u' ± 4(2n + 3)(2n + 5) 

A '± ] 4} 
+ 2,u'(2n + 3) (S'±) 

-EF II:" )"(E.:...)K(E.:...-r--::) [1 _ (S'+ )2 ]==81±)F II:" )"-2+E~I+)F II:" )"-2 
,,~ + C M' 2(2n + 3) "I ,,~± "I,,~ + , (154) 

E =,u'n(n + l)F (1]')"-2 [2(n - 1) _ (n + 1) (n')2 + (n + 3) (1]')4]==E (n + l)F (1]')"-2 
"I " (2n + 3) 4(2n + 3)(2n + 5) "I " , 

(155) 

a =,uF 1:'''-2[2(n _ 1) _ (n + 1) 1:'2 ] 
,,2 ,,~ + (2n + 3) ~ + , 

(156) 

/31±)= ... ,uiG" [2(n 2) n 1:'2 ]=/3-I±) iG" 
,,2 ... S"±+3 + + (2n-l)~ ± - ,,2 S,,±+3' 

(157) 

= ,uiG" [2n(n + 2) + (n - l)(n + 1) 2]== - inG" r,,2 1],,+3 (2n _ 1) 1] r,,2 1]"+3 ' 
(158) 

t51±)=±,u'F(I:" ),,-2[2(n-l)- (n+1) II:" )2+ (n+3) II:" )4]=81±)FII:" ),,-2 
,,2 ,,~± (2n+3)~± 4(2n+3)(2n+5)~± ,,2 ,,~± ' 

(159) 

E =,u'F(1],),,-2[2(n-l)(n+l) _ n(n+2) (1]')2+ 4n
2
+lOn+5 (1]')4]-E (n+I)F(1]')"-2 

,,2 " (2n + 3) 4(2n + 3)(2n + 5) ,,2 " , 
(160) 
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F ~,,-2 [ (n + 2) ~2 ] 
a,,3 = ,,~+ n - 2(2n + 3) ~ + , 

/31±)- iG" [In 1) (n-l) S2 ]==lJ I±) iG" 
,,3 - =+= S"±+3 + + 2(2n _ 1) ± ,,3 S,,±+3' 

inG" [ ",2] _ inG" 
r,,3 = (n + 1) ",n+3 1 + 2(2n _ 1) =r,,3 ",,,+3 ' 

~±)= ±F I~' )"-2[n _ (n+2) I~' )2+ (n+4) I~' )4]~I±)F I~' ),,-2 
,,3 ,,~ ± 2(2n + 3) ~ ± 8(2n + 3)(2n + 5) ~ ± ,,3,,~ ± ' 

E = n(n + 1) F (fl')" - 2[ 1 _ (",')2 + (",')4 ]=E (n + 1) F (fl')" - 2 
,,3 " "' 2(2n + 3) 8(2n + 3)(2n + 5) ,,3 " "' , 

a,,4 = F"S,,+-2[ 1 - S2+ 12(2n + 3)] , 

I±)_ iG" [1 S2± ]=l3I±) iG" 
/3 ,,4 - ± s "t 3 + 2(2n _ 1) - ,,4 S "±+ 3 ' 

iG" [ (n - 2) 2] - inG" 
r,,4 = - ",,,+3 n + 2(2n _ 1) '" =r,,4 ",,,+3 ' 

8 1±)= ±F I~' )"-2 [1 _ {S'± )2 + (s'± )4 ]=81±)F I~' )"-2 
,,4 ,,~ ± 2(2n + 3) 8(2n + 3)(2n + 5) ,,4,,~ ± ' 

E =F (fl,),,-2 [In + 1) _ (n + 3) (fl')2 + (n + 5) (fl')4]=E (n + I)F (fl,),,-2 
,,4 " "' 2(2n + 3) "' 8(2n + 3)(2n + 5) "' ,,4 " "' , 

artS = -EK(I-(MIC)F_)s2+ a"4=Ea,,s, 

/3~t) = - EK(I- (M IC)F _)S2+ /3~t)=EP~t)iG"/s"./3, 

/3 1- ) = (Mr - &K )~ 2 /3 I - )=( /3- I - ) + E.p- I - ))iG I~" + 3 nS + 11;, ~ - n4 - n5 n5 n ~ - , 

8~t) = - fiC'IC)K(I- (M'IC')r'_ )(S'+ )28~t)==E;5~t) F,,(S'+ ),,-2, 

8~s) = [MT'+ - fiC'IC) K] (S'- )28~4 )==(8~s) + E;5~s)) F,,{S'_ )"-2, 

I 

(161) 

(162) 

(163) 

(164) 

(165) 

(166) 

(167) 

(168) 

(169) 

(170) 

(171) 

(172) 

(173) 

(174) 

(175) 

and which is exactly the set for elastic scattering from a spherical 

a,,6 =r _a,,3 , 

/3 1+ ) - r /3 1+ )= /3- I + jiG I'~" + 3 ,,6- - ,,3- ,,6 ,,~+, 

/31-)=J..(C)r /31-)= 1 /3" 1-) iG" 
,,6 E K + ,,3 E ,,6 S "_+ 3 ' 

r,,6 =rs r"3=r"6 inG" I"," + 
3 

, 

8i"t) = r'_ 8~t )~~t ) F" (S'+ )" - 2 , 

(176) 

(177) 

(178) 

(179) 

(180) 

~-)-J..(E..)r' 81-)=J..~I-)F IS' )"-2 (181) 
,,6 - E K + ,,3 - E ,,6 ,,± ' 

E .. 6 =r; E,,3=E,,6(n + I)F"(,,,')"-2. (182) 

Substituting (148HI82) into (66) and collecting terms 
which multiply the same power of E, we first find the set of 
equations 

/3- 1+ )b I + ) + r- C + 81 + )d I + ) + E e "I ,,0 "I ,,0 "I nO ,,1 .. 0 

= i"(2n + l)a .. 1 Ao, 

l3~t)b~) + r"2 CnO + 8~t)d~) + E,,2 e,,0 

= i"(2n + l)a,,2 Ao, 

l3~t )b~) + r,,3 CnO + 8~t )d~) + E,,3 e,,0 

(183) 

= i"(2n + 1 )a,,3 Ao , 

l3~t)b ~) + r,,4 C,,0 + 8~t )d~t) + E,,4 e,,0 

= i"(2n + l)a"4 Ao, 
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inhomogeneity. The next set of equations we find is 

/3- I - )b I - ) + ~I - )d I - ) 
"s nO U"s ,,0 

= i"(2n + 1)71"s Ao -p~t)b~) - 8"t)d~) 

P~6)b~) + ~~6)d~) 
(184) 

= i"(2n + l)a,,6 Ao - l3~t)b ~) - r,,6 CnO 

- 8~t)d ~ ) - E,,6 e,,0 , 

which determines the lowest-order contributions to the scat
tered slow compressional wave. The final set of equations we 
will consider is given by 

/3-I+)b l+) - ~I+)dl+)-
"I "I + r,,1 C"I + u,,1 "I + E"I e,,1 

= i"(2n + 1 y:;' A - /3- 1+ )b I + ) 
P"I 0 "I nO 

-/3-I-)b l-) - ~I+)dl+) - ~I-)dl-) 
"I "I U"I ,,0 U"I "I' 

l3~t)b~t) + r"2 C"1 + 8"t)d~t) + E,,2 e,,1 

= - l3~2)b~I)-8~2)d~I)' 

l3~t)b~t)+r"3C"1 +8"t)d~t)+E"3e"l 

= - l3~3)b~I)-8~3)d~I)' 

l3~t)b~t) + r"4C,,1 + 8"t)d~t) + E,,4 e,,1 

- - /3-I-)b l-) - ~I-)dl-) 
- ,,4 "I U,,4 "I , 
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which determines the first corrections to the ordinary elastic 
scattering coefficients. 

To analyze the solution to (183), it is convenient to in-
troduce column vectors defined by 

(vo + I5vo)j a"i IF" s ~- 2, (v) + 15vdj==1J ~t) , 

(V2 + 15V2)j=y"j' (V3 + I5v3)j=;5~t) , (186) 

(V4 + I5v4)j==?"t), for j = 1, ... ,4. 

The first term on the left-hand side of each expression in 
(186) is the value of the right-hand side at w = O. The second 
term on the left-hand side contains the remaining finite fre
quency contributions. 

The first important observation about (186) is that 

(187) 

Then, applying Cramer's rule to (183), we find, for example, 
that 

b ~ri) = (Nb ID")F,,s,,+-2;n(2n + l)Ao, 

where 

(188) 

D" = det(v) + I5v), - v) + I5V2,V3 + 15V3,V3 + I5v4) (189) 

and 

Nb = det(vo + 15vo, - v) + 15V2,V3 + I5V3,V3 + I5v4). (190) 

Using the properties of determinants,23 the denominator of 
(188) becomes 

D" = det(v),l5v) + 15V2,I5V3 -I5V4,V3) + 0 (153) , (191) 
indicating that the lowest-order contributions to D" are at 
least 0 (15 2) = 0 (w4

). Similarly, the numerator is given by 

Nb = det(vo, - V),15V3 -15V4'V3) + 0 W) , (192) 

for n>2 and, furthermore, 

Nb = det(v),l5vo -I5V3,I5V3 -I5V4,V3) + 0 W) , (193) 

for n = 1, since VO=V3 in this case. 
Repeating the analysis for c"o, we find 

Nc = det(v) + I5v),VO + I5vo,v3 + I5V3 ,V3 + I5v4) = Nb + ... , 
(194) 

to lowest order in the frequency-dependent corrections for 
all n> 1. [See Eqs. (214) and (223) for further discussion of 
n>2.] Thus, we have derived very simply the well-known but 
important result that 

cnO=b~), for'n>l. (195) 

Another general result for (183), which will be needed in 
the subsequent calculations, is the value of (191) which may 
be shown to be 

D" =R" .S", 
where 

R" = I(P~t) + YIlt)) + (n + l)(P~i) + Y"i)) 

- 2jL'(n -l)[(P~t) + y"t') 

+ (n + l)(P~t) + YIlt))] I 
= - [S2+ In(2n - l)Jl] 

(196) 

and 

S" = I (;5~t) - ?"t)) - n(;5~i ) - ?"i)) + 2jL(n + 2) 

X [(S"t) - ?"t )) - n(;5~t ) - ?"t ))] I 

= - [(s'+ )2/(n + 1)(2n + 3)Jl] 

X I Jl'[(2n 2 + 4n + 3)A.'+ + 2(n2 + n + l)Jl'] 

+2jL(n;t-2)[n-t'+ +(3n+ l)Jl']), (198) 

to the lowest order in frequency. The relatively simple result 
(196) follows from (191) after some manipulation and noting 
the interesting intermediate results that 

I(P~t) + y"t') - n(p~i) + Y"t'! 
+ 2jL(n + 2)[ P~t) + YIlt) - n(p~t) + YIlt))] 1= 0, 

(199) 

I (;5~t) - ?"t)) + (n + l)(;5~i) - ?"i)) 

- 2jL'(n - 1) [;5~t) - ?"t) 

+(n+ l)(;5~t)-?"t))]1 =0, 

to the order at which we are working. 
It is also convenient to analyze (184) for all n> 1 before 

proceeding to the special cases. The 2 X 2 system is easily 
solved. The important elements ofthe solution are the deter
minant of the coefficients 

P~-; )~~6) - iJ~6 );5~-;) = (e IK)r +r'+ [nMS2_ 

+ (n + 1)M'(s'_ )2] + O(s~ ) 
(200) 

and the various combinations relevant to b !.o ), 
~(-)- ~(-) 
U,,6 aIlS - u"s a,,6 

=F"s,,+-2Inr'+ [(e-Mr_)s2+ 

+ M'r -(s'- )2] + 0 ((5'- )4)} , 
~(-)(/3-(+)+r )- ~(-)/3-(+) u"s ,,6 ,,6 U,,6 lIS 

= -r'+ [n(e-Mr_)s2+ +(n+1)M' 

X IF _ - r.)(s'_ )2] + 0 ((5 '_ )4) , 
~-)~(+) - ~ £(+) 
a;,s U,,6 U"6U,,S 

and 

= - nr'+ [(e' -M'r'_ )(5,+)2 

+M'r'_ (S'- )2] + O((S'_ )4), 

~-'E = - nr' M'r'I/;,' )2 + 0(//;" )4) lIS ,,6 + s~ - ~ _ • 

(201) 

(202) 

(203) 

(204) 

Equations (201H204) may be simplified somewhat in 
the long-wavelength limit. The frequency dependence as 
w-o of the various terms may be shown to be 

S2+ = o (w2
) , S2_ = O(w), r _ = O(w), 

rs = 0 (w) , r _ - rs = 0 (W3/2) • 

These relations will be used in our final results. 

(205) 

We now proceed to a more detailed analysis of the spe-
XI Jl[(2n2 + 1)A.+ + 2(n2 + n + l)Jl] 

+ 2jL'(n - l)[(n + 1)A.+ + (3n + 2)Jl] J ( 197) cial cases. 
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A.n=1 

For n = 1, the relevant determinants are 

DI = ib [p,rl(S'+ f/p,'] [p,'(3A' + 2p,') + 2p,(A' + 4p,')] , 

(206) 

Nb = Nc = - 3[vol - 8~t) + 2(V02 - 8~t))] {8~t) - €It) 

- 2p,[(8~t) - ( 13 ) - (8~t) - E I4)] 1 
= - to [p,rl(s'+ )2/p,'](p'/p - 1) 

X [p,'(3A ' + 2p,') + 2p,(A ' + 4p,')] , (207) 

Nd = det(v l ,8v I + 8v2,8vo - 8v4,v3) 

= - 3{ [P~t) + fit) + 2(P~t) + fit))] 

X [V02 - €It ) - 2p,(V03 - €It ) - (V04 - €It)))] 

- [VOl - €It) + 2(V02 - e\t))] [P~t) + rlt) 
- 2p,(P~t) + rlt) - (P~t) + rlt'l)] 1 

= - 3p,rl[(p'/p - 1)1J2p, - -fo(1J')2(2p, + 3p,')], (208) 

and 

Ne = det(v l ,8v I + 8v2,8v3 - 8vo,v3) 

= - 3{ [P~t) + fit) + 2(P~t) + fit))] 

X [8~t) - Ubt ) - 2p,(8~t) - Ubt ) - (8~t) - Vb: '))] 
- [8~t) - VOl + 2(8~t) - V02)] [P~t) + fit) 
- 2p,(P~t) + fit) - (P~t) + fit)))] 

= 3p,1J2 [(p'/p - 1)1J2p, + ~(S'+ )2( P, - p,')] . (209) 

The scattering coefficients for n = 1 to lowest order are 
therefore 

b ~t) = CIO = (Nb/DI) s ~ 13iFi Ao 

= (i/3S +)(1 - p'/p) Ao, 

d~t)=(Nd/DI)S ~13iFIAo 

= (ils +)(A'+ + 2p,') 

(210) 

[~(p/p' -1)p,' + (2p, + 3p,')] 
X Ao, (211) 

[ p,'(3A ' + 2p,') + 2p,(A'+ + 4p,')] 

and 

e lO = (Ne/Dds ~ 13iFI Ao 

ip,' [.If(1 - p/ p')(A'+ + 2p,') + 4( p, - p,')] 

= s + [ p,'(3A ' + 2p,') + 2p,(A ' + 4p,')] Ao . 
(212) 

The result (210) is well known but the other results (211) and 
(212) are usually not needed in analyzing the scattering from 
an elastic inhomogeneity. It is interesting to note that (210) 
and (212) vanish identically if the spherical inclusion has the 
same elastic properties as the host medium. Equation (211) 
does not vanish in this case since d ~t ) determines the cou
pling of the exterior compressional wave to the interior one. 
Then (211) reduces to iAoi S + as expected. 

Using (200)-(204) and (210)-(212) in the solution of 
(184), we find 
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b(-) - (K) iAo 1 
11 - C S + [ Ms 2_ + 2M'(S '_ )2] 

X{Cs 2
+ ! (4 - ~)+M'(F_-r'_)(S'_f 

- C'(S'+ )2(A'+ + 2p,') 

X . 
[.tp(p/p' - 1) + (2p, + 3p,')] } 

[ p,'(3A'+ + 2p,') + 2p,(A'+ + 4p,')] 
(213) 

We have used (205) in simplifying (213). Also notice that, if 
the spherical inclusion has the same properties as the host 
medium, (213) vanishes identically as expected. 

B.n>2 

For n>2, the relevant determinants are (196) and 

Nb = Nc = det(vo, - v\08v3 - 8v4,v3) 

= 2(2n + 1)( p, - p,')(n - 1){ (8nl - End - n(8n2 - En2 ) 

+ 2p,(n + 2)[(8n3 - En3 ) - n(8n4 - En4 )]j 

2(n -1)(2n + 1)(p,' -p,)(S'+ )2 

(n + 1)(2n + 3)p,' 

X { p,' [(2n2 + 4n + 3)A. '+ 

+ 2(n2 + n + 1)p,'] 

+ 2(n + 2)p,[n..t'+ + (3n + 1)p,']j , (214) 

Nd = det(v l ,8v I + 8v2,vo,v.) + 0(82) 

= 2(n - 1)(2n + 1)(p,' - p,){ [P~t) + fnt) 

- n(p~t) + fnt))] + 2(n + 2)p,[ P~t) + fnt) 

- n(p~t) + fnt))] 1 + OW) = 0 + OW), (215) 

using (199) and similarly 

N. = - det(v l ,8v I + 8v2,vo,v3) + 0(82) 

(216) 

The scattering coefficients for n>2 to lowest order are 
therefore 

b~) = cnO(Nb/Dn) FnSn+- 2r(2n + I)Ao 

and 

= 2(n - l)n(2n - 1)(2n + WFn p,(p, -p,')sn+-4rAo 

X {p,[(2n2 + l)A.+ + 2(n2 + n + 1)p,] 

+ 2p,'(n - 1)[(n + l)A.+ + (3n + 2)p,] 1- 1 (217) 

d~t)=enO =0+0(b~)8). (218) 

In particular, we find that 

and 

b ~t ) = C20 = ___ ~2::..:0:!:'f-L~( p,!::.-' ----I::.p,~) A:..:..!Lo ---
S 2+ [p,(9A+ + 14p,) + 2p,'(3A + + 8p,)] 

(219) 

(220) 

Using (200) - (204), (217), and (218) to solve (184), we 
find to lowest order in frequency that 
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b(-I- _(K) n(C-Mr_)S2+b~tl 
nl - C [nMS2_ +(n+I)M'(S,_)2] 

+ higher-order terms. (221) 

In particular, we find that 

b&tl = - (K IC) 401t(1t' -It) 

XCAo{ [ 2MS2_ + 3M'(S'_ )2] 

X [1t(9A.+ + 14Jt) + 2Jl'(3A.+ + Sit)] J -I, (222) 

using (205) again to simplify the final result. 
Although (221) is the dominant term in many situa

tions, it vanishes identically when It' = It. Since the case 
It' = It is important in applications of these results, we must 
reconsider the analysis for n>2 when the host and inclusion 
shear moduli are the same. First, note that Vo = V3 for n>2 if 
It = It'· Then, we find 

and 

Nb = Nc = det(vI,8vo - 8v4,8v3 - 8v4,v3) 

= Sn {VOl - E"nt I + (n + I )(V02 - E"ni I) 

- 2Jl(n - I) [V03 - E"nt 1+ (n + I)(V04 - E"ntll J 

= .,,21t(p'lp - I)Sn , (223) 

Nd = det(v l,8vI + 8v2,8vo - 8v4,v3) 

= Rn (VOl - E"nt I - n(v02 - E"ni I) 

+ 2Jl(n + 2) [ V03 - E"nt I - n(v04 - E"nt I)] J 

= - .,,21t(1 + [n/(n + 1)](p'lp)) Rn , (224) 

Ne = det(v l,8vI + 8v2,8v3 - 8vo,v3) 

= Rn (8~tl - VOl - n(8~il - V02) 
-( I -( I + 2Jl(n + 2) [8nt - V03 - n(8nt - v04)] J 

=.,,21t(I-p'lp)Rn , (225) 

where Rn and Sn are defined in (197) and (19S). 
Thus, when It' = It, 

b~l=cnO = .,,21t(p:p -I) Fn s~-2i"(2n + I)Ao, (226) 
n 

d~1 = _ .,,21t(1 + [n/(n + 1)](p'lp)) 
Sn 

and 

enO = [.,,21t(I-p'lp)/Sn] Fn sn+-2in(2n + I)Ao, (22S) 

where Rn and Sn simplify to become 

Rn = - [(2n + 1)/n] .,,21t , (229) 

Sn = - [(2n + 1)/(n + 1)](.,,'flt. (230) 

Thus, we find 

b~l=cnO =(I-p'lp)Fn Sn+-2i"nAo, (231) 

d~1 = [pip' + nl(n + I)] Fn S(:-21 i"(n + I)Ao, (232) 

enO = (l-plp')Fn S~-2 i"(n + I)Ao. (233) 

Using (200H204) and (231H233) to solve (IS4), we find 
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b(-I- _ n~ + 0 (K) nF £-n- 2 inA 
nl - C r+[ nMS2_ +(n+l)M'(s,_)2] 

X {In + I) [Cs 2
+ (I + n: 1 ~)] 

- [ C'(S'+ f (;, + n: J 
+ (2n + I)M'(F _ - r'_ )(S'- f} , (234) 

which is valid only for inhomogeneities that satisfy It' = It. 
The analysis of the leading terms in the expansion for 

the slow-wave scattering coefficients is now complete. To 
obtain the first corrections to the elastic scattering coeffi
cients due to pore-fluid effects, we must solve (IS5). To do so, 
we would need d ~l I in addition to the coefficients b ~t I, 
d ~t I, and b ~l I which we have already obtained. Since the 
analysis needed to derive d ~l I is straightforward but tedious 
and since these correction terms are of doubtful importance, 
we will not calculate d~l I here. We will, however, present 
the general form of the solution for b ~t I since it follows quite 
easily from the algorithm developed for solving (IS3). 

The denominator in Cramer's rule for (ISS) is the same 
as for (IS3) and is given by (196). The determinant in the 
numerator of b ~t I is 

Nb = det(vs + 8vs, - VI + 8vl ,8v3 - 8v4,v3 + 8v4) , (235) 

where the new column vector is chosen to be 

(vs + 8vs)1 = [ in(2n + 1 )anl Ao - iJ ~t Ib ~t I 

- P~l Ib ~l I - 8~t Id~t I - 8~1 Id~l 1]lb ~l I, 
(236) 

To lowest order in frequency, 

Nb = det(vs, - vl,8v3 - 8v4,v3) = - Sn {VSI + (n + I)VS2 

- 2Jl'(n - I)[VS3 + (n + I)VS4] J , (237) 

whereSn is again given by (19S). Furthermore, using the fact 
that A. _ = - 2Jl at low frequencies, we have 

{P~ll + (n + I)P~21 - 2Jl'(n - 1)[ P~31 + (n + I)P~41] J 

= - [2(n -1)/(2n -I)] S2_ (It -It') (23S) 

and 

{8n1 1+ (n + 1)8~2 1_ 2Jl'(n - 1)[8~3 1+ (n + 1)8~4 I] J 

= [n(n - 1)/(2n + 3)](S'_ fit' . (239) 

Equations (23S) and (239) may be used to simplify (237) and 
the result is then substituted into 

b ~t 1= (NbIDn)b ~l I. (240) 

Once d ~l I is known, (236H24O) may be used to find b ~t I: 
The analysis of all first-order corrections to the elastIC 

scattering coefficients is now complete. 

VII. DISCUSSION 

In this paper, we have derived the multipole scattering 
coefficients in a fluid-saturated porous medium. In the long-
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wavelength limit, the exact analytical expressions were ob
tained for n = 0 and approximate expressions were obtained 
for 11 > 1. A small parameter expansion was presented which 
treats all pore-ftuid effects as perturbations to the elastic 
scattering in the dry porous frame. The first terms in the 
slow-wave multipole expansion were calculated explicitly. 
The general formula for obtaining the lowest-order ftuid
dependent corrections to the usual elastic scattering coeffi
cients was also presented. 

These results have a multitude of possible applications. 
One straightforward application is the calculation of energy 
loss from elastic waves due to scattering by randomly dis
tributed particles.6 The attenuation of elastic waves may be 
estimated directly from the results of such an analysis. A 
second important application is to the estimation of Ilow
frequency) effective constants for composite porous media 
containing multiple pore ftuids. In fact, it is not difficult to 
show by using techniques already established for elastic ma
teria1s8 that (126) leads to the Reuss average24 (or Woods 
formula) for the effective low-frequency bulk modulus of a 
composite ftuid and that (213) leads to known effective medi
um results for the permeability of a composite porous medi
um.2S 

Detailed discussion of the applications of these results 
will be presented elsewhere. 
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A mean-field solution of the reflection of a spherical acoustic wave 
from a rough interface 
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We use mean-field methods to calculate the reflection by a rough interface of incident acoustic 
waves emanating from a point source. The calculation is accurate to second order in roughness 
height. For the special cases of very long and very short roughness wavelengths, we find closed
form expressions for the reflected field. We give special attention to the head-wave arrival and find 
the roughness can attenuate or enhance head-wave arrival amplitUde depending on the velocities 
and densities of the media. The roughness can also cause a delay of the head-wave arrival though 
the apparent velocity is not changed (to second-order accuracy). As a prerequisite to the rough
interface calculation, we consider a smooth interface and find an asymptotic method of 
calculating the reflected field which avoids severe distortions of the path of integration. 

I. INTRODUCTION 

Head-wave arrivals are essentially a diffraction pheno
menon arising from waves which graze an interface at near
critical angles. We expect that small roughness in the shape 
of the interface can alter significantly the interaction of these 
waves with the interface. This paper addresses this question 
by examining the reflection from a rough interface of acous
tic waves generated by a point source. 

We assume that the roughness is small on the scale of 
the acoustical wavelength being considered. Rather than use 
standard perturbative methods, however, we use mean-field 
techniques. 1-5 These methods allow a description of the re
peated scattering of waves as they graze along the rough 
interface. For the special cases of very long and very short 
roughness wavelengths, we are able to arrive at closed-form 
expressions which show that the roughness can alter both 
the amplitude and arrival time of the head wave, though to 
second order in the roughness height there is no change in 
the apparent velocity of the arrival. In particular, for the 
very rough case, the analysis shows that it is possible for the 
roughness to cause an increase in the amplitUde ofthe head
wave arrival. 

Before considering a rough interface we consider the 
flat case. Well-known methods of asymptotically evaluating 
the reflection of spherical waves from plane boundaries6 re
sort to severe distortions of paths of integration. We present 
a method where only small distortions are necessary. Not 
only does this method allow one to study the more complex 
problem where roughness is present, it also gives a more 
accurate value of the overall amplitude of the smooth bound
ary head-wave arriva1. 

II. A SMOOTH INTERFACE 

The acoustic waves are governed by the equation 

pV· (p-IVp) + (j)2$lp = 0, (1) 

')Present address: Department of Geology, University of South Carolina, 
Columbia, South Carolina 29208. 

b) Present address: Department of Geology , Rice University, Houston, Tex
as 77251. 

where p is the pressure field while p and s are the position
dependent density and slowness. We wish to put a smooth 
boundary at z = 0 so that p and s take on the values PI and s I 
(P2 ands2) for z>O (z <0). 

We will use the convention of representing a three-di
mensional vector by lowercase letters and its projection in 
the x-y plane by uppercase letters; for example, a three-di
mensional position vector is written r = (R,z) with R = (x,y). 
Wave vectors are denoted in a similar fashion. In medium 1, 
a plane-wave component satisfying Eq. (1) has a three-di
mensional wave vector (K,kd with the z component 

kl = ({j)2si - K2)1/2. (2) 

The root in Eq. (2) is always taken such that Im{kd>O. 
Likewise, in medium 2, we have the three-dimensional wave 
vector (K,k2 ) with the z component 

k2 = ({j)2~ _ K 2)1/2, (3) 

with 1m (k2)<0. 
A point source is located on the positive z axis at zoo The 

incident field is 

i f e,1('R+ik,lz- zol 
p. (r)=- dK----

me 21T kl 
(4a) 

= i 100 

Jo(KR)k 1- leik.lz-ZoIK dk. (4b) 

Inspection ofEq. (1) shows thatp and the normal deri
vativep- I ap/an must be continuous across the boundary. 
Thus, the reflection coefficient for an incident plane-wave 
component of the source field is 

B = P2k l - Plk2 . (5) 
P2k l +Plk2 

Since (4a) is an integral over plane waves, we have the reflect
ed field 

Preft 
=i roo {{j)2pi(s~ -si)+(pi +pi)ki -2PIP2klk2} 

Jo (j)2(pisi - pi~) + K2(pi - p~) 
J. (KR )eik,(Z + Zo) 

X 0 KdK. (6) 
kl 
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The factor in braces is B after rationalizing the denominator. 
The rationalization causes an apparent pole; the residue is 
zero, however, so it does not contribute to the total response 
of the system. Definingz. = Iz + zol, (6) can be expressed as 

Preft =i[(()2pi(~ -siJlI-(pi +p~) ::'1 -2PIP212]' 

(7) 

where 

1 _ r"" K dK Jo(KR )e
iktz

• 
1- Jo kl [(()2(p~si - pi~) + K2(pf - p~)] 

(8) 

and 'k 

L
"" K dK kz!o(KR le' t

Z
' 

12 = [2( 2.2 L.2) K 2( 2 2)]' o (() P2S1 -PIS'l + PI -P2 
(9) 

Weare interested in propagating disturbances at large dis
tances from the source. Hence in (8) and (9), we can restrict 
the range of integration to O<K <(()S I and use the asymptotic 
representation for the Bessel function 

Jo(KR )-(2/1rKR )1/2 cos (KR -1T14). (to) 

When using (10) in (8) and (9), stationary points occur only 
for the component of the cosine in (to) varying as 
! exp [i(KR - 1T I 4) ]. Thus, retaining this term in each of the 
integrals and making the variable changes 

K = (()SI sin 0 (11) 

and 

z. = I" cos t/J and R = I" sin t/J, 

we obtain 

1 - i1l"/4( )-2 ( (()SI )112 [/2 dO (sin 0 )1/2 I::::,e (()SI --
21TR 0 a + b sin2 0 

_. ((()S )112 [/2 dO cos 0 (sin 0 )1/2 1
2

::::,e 111"/4 __ I 

21TR 0 a + b sin2 0 

(12) 

(13) 

X(~/si - sin2 0)1I2ei«>StltCOSI6 -t,6), (14) 

where 

a=p~ -pi(~/si) and b=pi -p~. (15) 

Evaluation oft 13) and (14) by the method of steepest descents 
is then in line with the asymptotic development of the far 
field. The factor (sin 0)1/2 in (13) and (14) is caused by the 
asymptotic expansion of Jo(KR ). Thus stationary points near 
o = 0 caused by this factor are only apparent and we can see 
from (8), (9), and (11) that actually there are no stationary 
phase contributions near 0 = K = O. 

The phase in (13) has a stationary point at 0 = t/J. A 
steepest descents evaluation then gives 

11-:::=.-i((()SI)2 I" ei«>Stlt. (16) 
al"2 + bR 2 

To evaluate (14), we recognize that the factor 
(~/si - sin2 0)1/2 is rapidly varying when s2/s1 < 1 and 0 
approaches the critical angle Oe, 

(17) 

This variation is most easily handled by including the factor 
(Sin20e - sin2 0 )1/2 in the phase 
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I _e- 11r14 __ I . ((()S )112 [/2 dO cos 0 (sin 0 )1/2 
2- 21TR 0 a+bsin20 

xexp[iN cos(O - t/J) + pn(~/si - sin2 0)], (18) 

where 

N = (()Si/L> 1. (19) 

Let the exponent in (18) be ",. The stationary points of", are 
at the roots of 

sin(O - t/J )(sin2 Oe - sin2 0) = (il2N )sin 20. (20) 

We shall concentrate on evaluating the head-wave con
tribution from the 12 integral in the regime t/J>Oe as have 
others.6--1O 

Only in the case t/J>Oe does the head wave arrive, so 
that, despite having a much smaller amplitude than the di
rect wave, the head wave can be cleanly and clearly recog
nized. Therefore, throughout the remainder of this paper we 
discuss the head wave only in the regime t/J>Oc' See Fig. 1. 

Case (a) Separate stationary points: If 
It/J - Oe 1 ~ O(N-IIZ), and t/J> Oc' one root occurs at 

Ol=t/J +O(N- I) (21) 

and another at 

The steepest descents evaluation of the contribution at 
01 is 

12 16 = - i 2. _ _ e""Stlt. z. (~R 2)112 . 
t al"2 + bR 2 si 1"2 

(23) 

When contributions (23) and (16) are substituted into (7), one 
obtains the specularly reflected contribution to the reflected 
field 

(24) 

where B is evaluated at K = (()SI sin O. 
The steepest descents evaluation at O2 gives the head

wave contribution. The values of the exponent and its second 
derivative at the stationary point are 

1m(t) 

o 

stationary I phase points 

• '2 +'1 
Re' 

branch cut 

'1/2 

FIG. 1. A sketch of the asymptotic (S,IlIr> 1) path of integration in (J space. 
The stationary phase points (J, and (J2' corresponding to Eq. (21) and (22). 
are marked. This path of integration should be compared and contrasted 
with that given by Fig. 6.9 of Aki and Richards6 for general integration of 
the reflected wave amplitude. not just in the asymptotic regime. The simpli
fication aft'orded by asymptotic evaluation (this figure) of the head-wave 
integral is apparent. 
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(25) 

.1." . ((1 + sin
2

Oelsint,b (1 + cos
2

Oe)COSt,b) 
'I' = - IN + -=--------=.~~ 

sin Oe cos Oe 

+ 2N2 sin2(Oe - t,b) + 0(1). (26) 

The first term in (26) determines the sign on the phase factor 
coming from the stationary phase evaluation of the integral. 
Weobtain 

1 sin 0 ( cos 0 )3/2 1
2

18 =_ e e 
, tlJSI (2eR)1/2 ,ulsin(t,b - Oe)1 

X exp [itlJSIJl cos(Oe - t,b)] . (27) 

a + b sin2 Oe 

Define the head-wave arrival time 

Th = sIJl cos(Oe - t,b ) 

= siz. sec Oe + s2(R - z. tan Oel. (28) 

The length of the ray path through medium 2 is 

L = R -z. tan Oe' (29) 

See Fig. 2. Use (27)-(29) in (7) to obtain the head-wave contri
bution 

p = ~ (~)1I2 PI _S_2_ exp(itlJTh) . (30) 
head ...2 ...2 R 1/2L 3/2 

tlJ e P2 S] - S2 

Equation (30) differs from the expression in Aki and Rich
ards6 by a factor of (2/ e) 1/2. Their derivation involves distort
ing the path of integration and identifying the head-wave 
contribution as being due to a region where the phase is slow
ly varying. Their evaluation of the contribution due to the 
slowly varying phase involves further approximations wher
eby the factor (2/e)1/2 is lost. 

Case (b) Comingled stationary phase points: If 
It,b - Oe 1<0(N-1/2), andt,b>Oe' the roots of (20) merge with 
the root at 

03 = Oe + e3ifT/4/(2N)1/2 + O(N-I). (31) 

The values of the exponent and its second derivative in (18) 
are then 

1 ( sin(20 le3ifT/4) 
r/J = iN cos (03 - t,b ) + -In - e 1/2 

2 (2N) 
(32) 

and 

If---L----~ 

FIG. 2. Sketch ofthe geometrical configuration. The surface marked "In
terface" is fiat in Sec. II ofthe paper. but rough in Sec. III. 
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r/J" = - i2N + cot(20eH2N)1/2e -3ifT/4, 

so that 

( 
R )1/2 e - ifT/8 sin Oe (cos Oef/2eiN 

- 12 r;;,;.------ , 
tlJSI 23/4 N 3/4 (a + b sin2 Oe) 

for It,b - Oe I <0(N- 1/2). 

(33) 

(34) 

We are by no means the first to discuss the behavior of 
head-wave reflection from a planar interface nor are we the 
first to investigate the behavior of head-wave amplitude for 
observation angles far away from the critical angle Oe or in 
the neighborhood of the critical angle. 

Using a uniform asymptotic scheme of approximation, 
after considerable effort Brekhovskikh 7 obtained results for 
the head-wave amplitude which differ from ours by a factor 
of 1.02 (representing our numerical evaluation of an infinite 
product obtained by Brekhovskikh 7). 

We regard the present section, then, as a uniform nota
tion for the rest of the paper and as providing confirmation 
(vis-a-vis Berkhovskikh's 7 results as a template) of the essen
tial soundness of the asymptotic method we use for evalua
tion of the head-wave integrals. The 2% difference from the 
lead term in an asymptotic evaluation (ours) versus the more 
precise, but much more involved, result based on a method 
of uniform asymptotic approximation a la Brekhovskikh,7 

we do not regard as significant. Further, in the rough surface 
case (to be addressed in the next section of the paper) the 
general complexity of the resulting head-wave integrals 
would seem to preclude use of a uniform asymptotic approx
imation beyond lowest order. Recourse to numerical evalua
tion of the relevant integrals would seem to be the only ave
nue open except in special cases-two of which we address to 
illustrate the diversity of behaviors possible for head waves 
reflected from a rough surface. 

III. A ROUGH INTERFACE 

Now we examine the interaction of an acoustic wave 
with a rough boundary described by 

Z=F(R). (35) 

The magnitude of Fis small compared to the acoustic wave
length and the average value of F is zero. The density and 
slowness are PI and S I (P2 and S2) above (below) the bound
ary. 

Again, a point source is located on the z axis at Zo and 
radiates the incident field given by (4a). The total field in 
medium 1 expressed in plane-wave components is 

PI(r) = f dK{Pi(K)eik,lz-zol 

+ PR(K)eik'Z}e''K'R 

and in medium 2 is 

P2 = f dKPr(K)e-ik,Z+I'K.R 

(36) 

(37) 

The plane-wave coefficients of the incident field Pi (K) are 
given by (4a), while the coefficients of the reflected and trans
mitted fields PR (K) and Pr(K) are found by satisfying the 
boundary conditions at the rough interface. 

Again, p and the normal derivative P -I ap/ an must be 
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continuous across the rough boundary. The first condition 
gives 

f d K { 1Ti (K)e - ik,F + P R (K)eik,F 

- PT(K)e- ik2FJeiK ' R = 0, (38) 

where 

1T/(K) = Pi (K)eik,Zo. (39) 

A vector in the normal direction is n = Z - ap faR, where 
the derivative denotes a gradient operation with respect to x 
andy. Thus the second boundary condition gives 

f dK{1TI(K)[k l +K· ;=] e-ik,F 

-PR(K)[kl-K. :] eik,F 

- :: P T(K) [ k2 + K· :] e - ik,F }eiK ' R = O. 

(40) 
Take the K' Fourier components of (38) and (40). Also, 

to remove the derivative term in the second equation we 
write 

ap eikF = ~ ~ (eikF ) 
aR ik aR 

(41) 

and integrate by parts. We then have the equations 

f dK f dR{1Ti(K)e- lk,F +PR(K)eik,F 

- PT(K)e-lk,FJei(K-K').R = 0 (42) 

and 

f dK f dR{1Ti(K)[kl+K.(~~K')]e-ik'F_PR(K) 
X [kl + K· (K - K')] eik,F _ PI PT(K) [k2 

kl P2 

+ K· (~: K')]e - ik2F }el(K - K'). R = O. (43) 

Questions have been raised regarding the validity of ex
tending the expansions into outgoing plane waves (36) and 
(37) up to the boundary P(R) (Ref. 11). In fact, it has been 
shown that sometimes the plane-wave coefficients can be 
divergent. 12 Nevertheless, plane-wave expansions (the so
called Rayleigh ansatz) can be used in a convergent manner 
by truncating the limits of integration in (36) and (37), finding 
plane-wave coefficients which minimize the error in the re
sulting equation, and then letting the limits of integration 
increasel3 (see, for example, Ref. 14). We will assume that 
(42) and (43) can be solved as they stand, which is true for a 
large class of surfaces. IS 

To find a mean-field solution of (42) and (43), we break 
the transmitted and reflected plane-wave coefficients into 
statistically sharp and fluctuating components 

PR(K) = (PR(K) + c5PR(K), (44) 

PT(K) = (PT(K) + c5PT(K), (45) 

where angular brackets are reserved throughout to denote 
an ensemble averaging operation. 

Taking P (R) to be described by a random Gaussian pro
cess, we can then write 

(46) 

Substituting (44) and (45) into (42) and taking an ensemble 
average gives the exact equation 

[1T;(K) + (PR (K)] exp( - !k i (P 2») - (PT(K) 

Xexp( -! k~ (P 2 ») 

+ (21T)-2 f dK' f dR{ (c5PR(K')i
kiF

) 

_ (c5PT(K)eikiF) }ei(K' -K)'R = o. (47) 

The primed wave-vector components k i and k i are 
(2) and (3) evaluated atK'. Subtracting (47) from (42) gives an 
equation satisfied by the fluctuating parts of the fields 

[c5PR (K)exp ( - ~ k i (P 2) ) - c5PT (K)exp( - ~ k ~ (P 2) ) + (21T)-2 f d K' f dR{ (PR (K ') [elk IF 

-exp ( _+k i)2(P2»)] - (PT(K')[e- ikiF 
-exp ( - ~ (k i )2(P2»)] +1Ti(K')[e-ik,F 

- exp ( - ~ (k i )2(P2»)]} e'1K' -K)·R = - (21T)-2 f dK' f dR{c5PR (K')[ eiklF - exp( - ~ (k i )2(P2»)] 

_c5p(K;.)[e- ikiF -exp( _+k i )2(P2»)] + (c5P(KR)elk,F) 

_ (c5P (K;')e -Ik iF) }e11K' - K)' R • 

Likewise, substituting (44) and (45) into (43) and taking an ensemble average gives the exact equation 

[1Ti(K) - (PR(K) ]kl exp( - !ki (P 2») -P lfp2(PT(K)k2 exp( - !k~ (P 2») - (21T)-2 

X f dK' f dR{[k i + K'· (:~ - K)](c5PR(K')eik IF) +~ [ki + K'· (:~ - K)] 

X (c5PT(K')e -ikiF) }ei(K' -K)·R = o. 
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Subtracting (49) from (43) gives the second equation satisfied by the fluctuating components 

c5PR(K)k l exp( - ~ ki (F2») + c5PT(K) k;:1 exp( - ~ ki (F2») + (21T)-2 f dK' f dR{ (PR(K') 

X [e
ikiF 

_ exp( _ ~ (k; )2(F2»)][ k; + K'· (!'; -K)] + (PT(K') [e-
ikiF 

- exp( - ~ (k i)2(F2»)] ~: 

X [ki + K'· (!~ - K)] _1Ti(K,)[/k iF _ exp( _ ~ (k ;)2(F2»)][ k; + K'· (!~ - K)]} ei(K'-K)'R 

= (21T)-2 f dK' f dR{c5PR (K')[ eik iF - exp( - ~ (k; )2(F2) )] [k; + K'· (!'; - K)] 

+ c5PT(K')[e -ikiF _ exp( _ ~ (k i)2(F2»)] ~: [k i + K'· (!~ - K)]} ei(K' -K).R. (50) 

The basic mean-field method is to ignore the right-hand sides of(48) and (50). Thejustification of this stems from the fact that 

the quantities (c5PR(K')ikiF ) and (c5PT(K')eik iF) are required in the mean-field equations (47) and (49). Hence, as far as the 
mean field is concerned, neglect of the right-hand sides of (48) and (50) is tantamount to ignoring the irreducible statistically 
sharp components of triple correlations of c5PR and c5PT with two phase factors, each of the form exp (ikF). Furthermore, we 
will later expand the exponentials in the equations, keeping only terms to order (F2). When (48) and (50) are used to evaluate 

the terms (c5PR (K')eikiF ) and (c5PT(K')elkiF) required in the mean-field equations, the right-hand sides of(48) and (50) give no 
contribution to order (F2). 

Choosing F(R) as a random Gaussian process with homogeneous stationary statistics, we have 

(F(R)F(R') = (F2)A (R - R'), with A (0) = 1 and A (R) =A (- R). (51) 

Equations (48) and (50) can now be solved for c5PR and c5PT and the quantities (c5PR(K')eikiF) and (c5PT(K')e-ikiF) 
needed in the mean-field equations (47) and (49) can be evaluated. Making the variable change ~ = R' - R, we then find 

~(kl +~: k2)(c5PR(K)eik'F(R) 

and 

= f dK'ei(K'-K).R f d~{1Ti(K')[ - k;:1 +k; + K'.(!';-K)] 

Xe-(1I2)(ki)2(F')[l,kj(F2)A(~)_I] _ (PR(K,)[k2PI +k; + K'.(K',-K)] 
P2 k I 

Xe-(1I2)(kj)2(F2)[e-klki(F2)A(~)_ 1] + (PT(K) PI [k
2
-k

i 
_K'.(K,-K)] 

P2 k2 

~(kl +~: k2)(c5PT(K)e- ik,F(R) = f dK' ei(K'-K)'R f d ~{1Ti(K')[ kl + k; + K'· (!'; - K)] 

Xe-(1I2)(kj)'(F2)[e-kik2(F2)A(;)_I] + (PR(K')[kl-k; _ K'.(!';-K)] 

X e - (1/2)(k i)'(F') [l ik,(F')A (;) - 1] + (PT(K') [ - kl - k i PI 
P2 

_ K' • (K', - K) PI]e - (1/2)(k i)'(F') [e - k,k i(F')A (;) _ 1] }ei(K' -K)·; . 
k2 P2 

(52) 

(53) 

We can expand exponents to order (F2) and substitute (52) and (53) into (47) and (49) to obtain equations for the mean-field 
(PR (K) and (PT(K), obtaining 

1Ti(K)(1 + al) + (PR(K)(1 + btl- (PT(K)(l + ctl = 0, 

kl1Ti(K)(l + a2) - k l(PR(K)(1 + b2) - (PI/P2)k2(PT(K)(1 + C2) = 0, 
with 

(54a) 

(54b) 

a l = - ~ ki(F2) + (F2) f dK' (k; +~: ki)-IA(K-K'){(k; +ki)[ki +(K-K')·K] +klk;ki(l-~J}' 
(55a) 
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b. = - ~ ki (P 2) + (P 2) f dK' (k i +:: k ~) -·A (K - K'+k i + k~)[ ki + (K - K') 0 K'] - k.k ik ~(l - ::)} , 
(55b) 

c. = -~ki(P2) + (p2) fdK'(k i +P. k~)-·A (K - K') {PI (k i + k~)[ki + (K - K') oK] + k ik2ki( l-P.)}, 
2 P2 P2 P2 

(55c) 

a2= - ~ ki(P2) + (P2) f dK'(ki +::ki)-·A(K-K'){[ki+(K-K')oK] 

X [k ~ P. - k. _ (K - K') 0 K] + P. [q + (K _ K') 0 K] [k i + k. + (K - K') 0 K]} , 
P2 k. P2 k. 

(55d) 

b2= - ~ ki(P2) + (P2) f dK'(k i +:: k~r·A(K-K'){[ki +(K-K')oK] 

X[k i :: +k. + (K-:') oK] +:: [ki +(K-K')oK][k i -k.- (K-:')
0 

K]} , 

c2= - ~ ki(P2) + (P 2) f dK'(k i +:: ki)-·A(K-K'){[ki +(K-K')oK] 

(55e) 

X [k i - k2 - (K - K') 0 K] + [k i + (K _ K') 0 K] [k i + k2 P. + (K - K') 0 K P.]} . (55t) 
k. P2 k2 P2 

Notice that to do the expansions, exponents like k.k i (P 2)A (~) must be small. Wave vector k. is on the scale of the 
reciprocal wavelength of the acoustic energy while the range of k i is prescribed by the wavelength of the surface roughness. 
Therefore, the condition necessary for small exponents is that the maximum slope of the surface profile times the ratio of 
roughness height to wavelength must be small. 

The solution of (54) for the mean reflected wave is 

(PR(K) = -1T.(K) k2P.(l + c2)(l + a.) - k.(l + a2)(l + C.lo2 . (56) 
I k2P.(l + c2)(l + b.) + k.(1 + b2)(l + C.lo2 

We recognize that Eqs. (55) are all of quadratic order in P, which is the degree of accuracy of the overall mathematical 
formulation. Hence, to this same order, we have 

(PR(K)=1T j (K) k.-k2P./P2 {I + (ki -k~P!)-· [PI k.k2[2(c.-c2) 
k. + k 2P./P2 P2 P2 

+ (a2 - a.) + (b2 - b')l + ki(a2 - b2) - ki :: (a. - b.)]} . (57) 

Inspection ofEqs. (55) reveals rather complex functions 
involving quite sophisticated integrals over the power spec
trum of the surface roughness fluctuations. While amenable 
to numerical procedures, they are too complicated for much 
physical insight to be gained as they stand. Fortunately, two 
limiting cases provide a great deal of insight into the effect of 
surface roughness on head-wave propagation. They are (a) if 
the roughness power spectrum can be approximated by a ~ 
function, A (K) = ~(K)-corresponding to a variation of 
roughness on a spatial scale much longer than the wave
length of interest, and (b) if the roughness power spectrum 
can be approximated by a constant Ao out to a very large 
wave number G and zero beyond G--corresponding to a 
variation of roughness on a spatial scale much smaller than 
the wavelength of interest. 

Ao Roughness on a spatial scale much longer than the 
wavelength of Interest 

With A (K) = ~(K), we can evaluate (55) to find 

(58a) 
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a2=~k.(P2)[ -3ki +k.k2P./P2+4k~P./P2], 
2 k. + k2P./P2 

(58b) 

b.=b2=!ki(P2), (58c) 

c.=c2=!ki(P2). (58d) 

We then evaluate (57) to obtain 

(PR(K) = 1Tj k. - k2P./P2 {l- 2(p2)ki} . (59) 
k. + k2P./P2 

Hence, for the nearly smooth surface, the effect is to cut the 
amplitude of the coherent component of the reflected field. 
This simple result serves as a check on the long calculation 
by which it was derived. Since the acoustic wavelength is 
much smaller than the wavelength, the roughness of the en
semble members is simply that of flat surfaces shifted from 
z = 0 by a random Gaussian distribution. The reflection am
plitude for each member is 

PR = 1T
j
(K) k. - k2P./P2 ejk ,2F. (60) 

k. + k 2P./P2 
Then by (46) ensemble averaging gives (59) to second order. 
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B. Roughness on a spatial scale much smaller than the 
wavelength of Interest 

In this case, we take the correlation function to be 
A (K) = 1/1TG 2

, forlKI <G, 
= 0, forlKI > G. (61) 

Notice that this preserves 

f dKA (K)= 1. (62) 

We evaluate (55) to find 

°1 = -~ki(F2) + 2(F2) [w2si +i klG (I_PI)] +O(G- I), 
2 (1 + PI/P2) 3 P2 

(63a) 

bl = -~ki(F2) + 2(F2) [w2si -i klG (I_PI)] + O(G-I), 
2 (1 + PI/P2) 3 P2 

(63b) 

CI = - ~ k~ (F2) + 2(F2) [PI W2~ + ik2G (1 _PI)] + O(G -I), 
2 (1 + PI/P2) P2 3 P2 

(63c) 

02 = - ~ ki (F2) + 2(F2) [PI W2 (si + ~) + i K
2
G (1 _ PI)] + O(G -I), 

2 (1 + PI/P2) P2 2 6k l P2 
(63d) 

b2 = - ~ ki (F2) + 2(F2) [PI w2 (si + s~) _ iK
2
G (1 _ PI)] + 0 (G -I), 

2 (1 + PI/P2) P2 2 6k l P2 
(63e) 

C2 = - ~k~ (F2) + 2(F2) [W2 (si +~) + iK
2
G (1 _PI)] + O(G -I). 

2 (1 + PI/P2) 2 6k2 P2 
(63t) 

Substitution of (63) into (57) gives 

(PR(K) = 1T
j
(K) kl - k2PI/P2 {I + 

kl + k2PI/P2 

The result for the slightly rough or the very rough sur
faces, Eq. (59) or Eq. (64), respectively, can be used in the 
ensemble average of Eq. (36) to obtain the statistically sharp 
component of the reflected field for a point source. The 
quantity in braces in (59) or (64) is of the form 1 + 0' and can 
be expressed as eU to second order. The evaluation of the 
specularly reflected contribution proceeds as in Sec. II with 
eU regarded as a slowly varying factor. Thus the specular 
reflection is altered by the factor eU evaluated at the station
ary point. 

The evaluation of the head-wave contribution requires 
more care since the roughness modifies both the original 
head wave and causes scattering into and out of the head
wave region. The contributions to (59) or (64) which provide 
input to the head wave are those in which k2 occurs to an odd 
power, for then we have a square root branch integral to do 
in the far field. Further, the head-wave contribution arises 
from those places in the integral over K where k2~0 (S2 < s d. 
Hence, in attempting to extract those factors in (36) which 
contribute to the head wave, we can be guided by the tech
niques of Sec. II and use them in the following way. 

(1) Extract those factors in (59) or (64) which have a 
single power of k2 mUltiplying them. 

(2) Since the dominant variation as far as the integral 
over K is concerned is from k2~0, i.e., k2~W2 ~, in the 
resulting expression set kl = w(si _ ~ )1/2. 

Equation (59) shows that for a slightly rough surface, 
the single powers of k2 are the same as in the smooth case. 
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(64) 

I 
Hence, the head wave is merely altered by the attenuating 
amplitUde factor exp [ - 2(F2)w2(si - ~)]. 

For a very rough surface, identifying the single powers 
of k2 in (64) shows that the head wave is altered by the factor 

exp{ - (F2) {W2[~ (3PI _ 1) + si (PI - 3)] 
1 + PI/P2 P2 P2 

_ i2G (1 _ PI)2 wS2 }} • (65) 
3 P2 (si /~ - 1)1/2 

While others (e.g., Refs. 16 and 17) have also examined 
the behavior of scattering of waves from rough and random 
surfaces, we believe that our results extend upon those pre
vious works in that we provide an explicit result for the mean 
reflected field and go further in deriving the head-wave arri
val times with additional effects due to path variations. In 
addition we believe the possible enhancement of the head
wave amplitude, which we obtain, is a completely new effect 
of potentially great significance to seismic exploration of the 
Earth. 

IV. DISCUSSION AND CONCLUSIONS 

Several interesting facts are evident. First, in the very 
rough case (65), it is possible for the roughness to enhance the 
head-wave amplitUde. For example, when there is no density 
contrast (PI = P2) Eq. (65) becomes 

exp [(F2)w2(si - ~)], (66) 

showing an enhancement of the amplitude since s I > S2' 
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More generally, amplitUde enhancement occurs whenever 

PI(sf - 3~) <P2(3sf - s~). (67) 

If P2 > PI' Eq. (67) predicts that the amplitude is always 
enhanced, while if P2 <PI the amplitude is enhanced only if 
(PI-P2)/(PI +p2)<2(sf/~ _I)-I. 

Second, Eq. (65) also shows that roughness causes a 
time delay (if PI i=P2) and that the magnitude of this delay is 
quadratically dependent upon the density contrast. 

Indeed the head-wave arrival time T is then given by 

T =Th +~(1-~/sf)-1/2(1 +P1/p2)-1 

X(l ...:.... Pl /p2)2(F 2)Gsl , (68) 

representing a delay ..:::1T relative to the smooth surface head
wave arrival time Th with..:::1T quadratically dependent on 
both the density contrast across the rough surface and on the 
roof-mean-square (rms) height of the roughness, and linearly 
dependent on the wave number G characterizing the spatial 
scale ofthe roughness. For instance, with a density contrast 
of 30%, a slowness contrast of 1 %, a wave number G, ten 
times the typical seismic wave number (corresponding to a 
roughness scale of about 20 feet), and a rms height of 0.1 of a 
typical seismic wavelength (-200 ft), we have a delay of 
about 16 msec. The point to be made here is that under the 
right set of conditions, the time delay produced by the 
roughness is a measurable quantity. 

Finally note that the roughness does not alter the appar
ent velocity of head-wave arrivals to second order in rough
ness height. This can be seen by expressing the quantity of 
the form 1 + (F in the braces in (64) as eU to second order and 
carrying through the analysis of Sec. II with this added 
phase factor. The position of the stationary point in the 
asymptotic evaluation of the integral is not significantly al
tered. The angles of the upgoing and downgoing legs of the 
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head-wave paths are not altered. Thus the analysis of this 
paper shows that small-scale interface roughness does not 
change standard interpretation of head-wave arrivals. In a 
future paper we will explore the influence of a curved inter
face in modifying the arrival time and amplitUde. 
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The solution of the exact, nonlinear one-dimensional Vlasov equation with a space- and time
dependent electric field is reduced to the solution of a nonlinear, first-order ordinary differential 
equation with two subsidiary equations. The reduction holds for any electric field nonlinear in the 
spatial coordinate or for a subclass of electric fields linear in the spatial coordinate and is 
e~uivalent t? the solution of a generalized Bemstein-Greene-Kruskal (BGK) Vlasov equation 
~Ith ~ velocIty-dependent Lor~ntz force. The Lie method for the solution of differential equations 
mvan~nt und~r a transformatlOn group has been used to calculate the group generator, the 
canonIcal vanables, and the generalized BGK Vlasov equation. Analytical forms for the 
functional dependence of the Vlasov equation one-particle distribution function are given. 

I. INTRODUCTION 

Exact, time-dependent solutions of the Vlasov or Liou
ville equation have recently been reported. I

-
7 The Vlasov 

one-particle distribution function is a functional of the Liou
ville invariant. This distribution function under certain con
ditions has been shown to produce self-consistent solutions 
of the Vlasov-Poisson equations8 and Vlasov-Maxwell 
equations.9 These solutions are much more general in struc
ture than the uniformly translated solutions lO of the nonlin
ear, equilibrium Vlasov-Maxwell equations which are 
usually called the BGK (Bemstein-Greene-KruskaW 1 solu
tions. In this article the time-dependent solutions of the non
linear Vlasov equation for a one-dimensional plasma in a 
time- and space-dependent longitudinal electric field are 
treated. 

Lewis and Leach derived a time-dependent Liouville 
invariant I for a system quadratic in the momenta. 3

•
4 This 

invariant was then used by Lewis and Symon8 to find an 
exact solution of the Vlasov-Poisson equations where the 
one-particle distribution function, a functional of the invar
iant I, was used to calculate the charge density integral in 
Poisson's equation. In an earlier paper9 we generalized their 
formalism for the Vlasov-Poisson model to include all of 
Maxwell's equations for the one-dimensional plasma. We 
found the same invariant as Lewis and Leach had by a coor
dinate transformation for the BGK spatial coordinate, a 
function of laboratory space and time coordinates. 

The generalization of their results to include a more 
general momentum dependence of the invariant has been a 
goal as the quadratic momentum dependence is too restric
tive in certain applications. Lewis and Leach6 have intro
duced the resonance formulation for invariants in an effort 
to find a new momentum dependence of the invariant of the 
Liouville or Vlasov equation. 

The one-particle distribution function of the Vlasov 
equation is found here by the Lie theory that determines 
solutions of differential equations invariant under one-pa
rameter Lie groups.12-17 These Lie groups are transforma
tion groups and the invariance is tested by infinitesimal 
transformations. The infinitesimal transformation of a func
tion g(t,x) is represented by a group generator 

Ug = 5 (t,x)(ag/at) + 1](t,x)(ag/ax) and is itself sometimes 
called the infinitesimal transformation. We derive U for the 
exact, nonlinear one-dimensional Vlasov equation with a 
time- and space-dependent longitudinal electric field. Once 
the group as represented by Ug is determined where the 
time-dependent functions in Ug obey subsidiary conditions, 
we can in principle, at least, find a set of canonical coordi
nates. The Vlasov equation in these canonical coordinates is 
stationary as the electric field is independent of the new time; 
it is in the BGK form even though the force term may be 
velocity dependent. Hence, we present a method by which 
general exact, time-dependent solutions of the nonlinear, 
one-dimensional Vlasov equation that are transformed gen
eralized BGK solutions can be found analytically or numeri
cally. 

Another approach to the solutions ofthe Vlasov-Max
well equations involves the invariance under Lie point trans
formations of the complete Vlasov-Maxwell equations. This 
has been done by Baranovl8 for a single-species plasma in an 
immobile, neutralizing background of constant density by 
an indirect method and by Axford 19 in lecture notes. Subse
quent to the submission of the present paper Roberts20 has 
analyzed the invariance of the one-dimensional Vlasov
Maxwell equations of a multispecies plasma with a time- and 
space-varying neutralizing background that includes results 
of Baranov and Axford, and some of the results of this paper. 

In Sec. II the infinitesimal transformation for the Lie 
group under which the one-dimensional Vlasov equation is 
invariant is derived. In Sec. III the generalized BGK Vlasov 
equation is found for a coordinate function 5, a function of 
time only, by use of a complete solution. The characteristic 
equation for this generalized BGK Vlasov equation is a non
linear, first-order ordinary equation. In Sec. IV the func
tional dependence of the generalized BGK distribution func
tion is calculated analytically for several cases. 
II. INFINITESIMAL TRANSFORMATION OF THE 1-D 
VLASOV EQUATION GROUP 

The Vlasov equation for the one-particle distribution 
functionf(t,x,v) is 

af + v af + !LE(t,x) af = o. (1) 
at ax m au 
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The velocity component v is used here rather than the parti
cle momentump = mv because it seems a more natural coor
dinate for Lie groups. The time t, the spatial coordiatex, the 
charge q, the mass m, and the electric field E complete the 
variables. The solution of the Vlasov equation for the one
particle distribution function together with Maxwell's equa
tions specifies the state of the plasma. 

The Vlasov equation as written here is a linear partial 
differential equation where the coefficients depend on the 
independent variables (t ,x,v). Actually the electric field E (t,x) 
is a functional of the one-particle distribution function 
!(t,x,v) which can be found through Maxwell's equations by 
Green's functions. However, the usual procedure for colli
sionless plasmas is to solve for the distribution function from 
the Vlasov equation and then to substitute the distribution 
function into the charge density and current density inte
grals in Maxwell's equations. The electric field and the dis
tribution function are then found self-consistently since they 
both obey the Vlasov-Maxwell equations. Several special 
cases of the time-dependent solutions have been found by 
these means: the uniformly translated BGK solutions, 10.11 

the one-dimensional solutions with the distribution func
tions functionals of an invariant quadratic in the mo
menta,8,9 and a temporally damped sinusoidal electric field 
for a multispecies plasma in a related paper presented else
where.21 Although the electric field is treated as a function of 
(x,t) in this paper, the constraints imposed by Maxwell's 
equations should be added later. 

A linear partial differential equation of the Vlasov form 
can be invariant under a group and is equivalent to the invar
iance of the equation of motion of a single particle, a second
order nonlinear ordinary differential equation, 

d 2x q dx 
---E(t,x) =0, -=v, 
dt 2 m dt 

(2) 

which is invariant under a twice-extended group transfor
mation with the group generator U", 

U"F(t,x,x,x) = 0, 

a a 
U" = S (t,x) - + 1J(t,x) -

at ax 

+ 1J'(t,x,x) ! + 1J"(t,x,xx) ! ' (3) 

fod = dxldt,x = d 2xldt 2,andF= O,isasecond-orderdif
ferential equation here. The time derivatives of x are treated 
as additional variables. Conventionally the differential equa
tion is said to be invariant under a group Ug. The functions 
1J' and 1J" can be calculated and are given in Cohen l2

: 

1J,=a1J +(a1J _as )x_aSx2, (4a) 
at ax at ax 

1J" = an' + an' x + (a1J' _ as _ as x) x. (4b) 
at ax ax at ax 

Cohen, 12 whose treatment of the solution of differential 
equations by Lie groups is followed most closely here, has 
pointed out that the solution of the second-order ordinary 
differential equation 

d 2x . 
- - Y(t,x,x) = 0 (5) 
dt 2 
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is equivalent to the set of first-order differential equations 

dt dx dx 
T = T = Y(t,x,x) ' (6) 

which are in tum equivalent to the solution of the linear 
partial differential equation 

a! + x a! + Y(t,x,x) a~ = O. (7) 
at ax ax 

The differential equations in (6) are not in the usual modem 
form but are expressed in a convenient, compact form where 
one can take any pair and write them in standard form. The 
characteristic equations (6) of Eq. (7) have two solutions. If 
x = v, then Eq. (7) represents the Vlasov equation with a 
velocity-dependent force Y(t,x,v). For our case the Lorentz 
force contains only an electric field that is velocity indepen
dent; Eq. (7) reduces then to Eq. (1) and Eq. (5) reduces to Eq. 
(2). The approach outlined here can be used for velocity
dependent forces. 

The invariance under a one-parameter Lie (transforma
tion) group of an nth-order nonlinear ordinary differential 
equation enables us to do several things. First, we can reduce 
the order of an equation by 1. Thus a first-order differential 
equation can be integrated, a second-order differential equa
tion can be reduced to a first-order differential equation, etc. 
Second, a set of canonical coordinates can be defined such 
that in the new coordinates the differential equation is invar
iant under translations in one of the new variables. From the 
latter result with the equation of motion of the particle invar
iant under a Lie group we can find a new differential equa
tion with an electric field that is independent of time in the 
canonical coordinates. 

As an example let us take the Lewis-Leach4 transfor
mation between the laboratory variables (t,x) and the BGK 
variables (l,x) where the latter variables are those for which 
the Vlasov equation has the BGK form. The transformation 
is 

- x-a - Jdt X=--, t= 2' 
P P 

(8) 

where the translation coordinate a and the time-stretching 
factor p obey the subsidiary equations 

mjJ + q[J 2(t lo = qk Ip3, 

ma + q[J 2(t)a = qF(t). 

(9a) 

(9b) 

The overdots denote differentiation with respect to time, 
[J 2(t ) andF (t ) are arbitrary functions until the Maxwell equa
tions are imposed, and k is a constant. For a differential 
equation invariant under a group Ug the new coordinate 
functions are ~ (l,x) = 1, :r;(l,x) = 0 for a diffe~ntial equation 
invariant under translations in the new time t. Hence, in the 
canonical coordinates the electric field is independent of 
time or we have transformed to a BGK reference frame. 
Then the following relations can be shown to hold 12: 

- at at - -_ 
Ut = S (t,x) - + 1J(t,x) - = s (t,x) = 1, 

at ax 
(lOa) 

- ax () ax -(- -) 0 U x = s (t,x) - + 1J t,x - = 1J t,x = . 
at ax 

(lOb) 

Equations (lOa) and (lOb) can be solved together with Eq. (8) 
to give 
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(11) 

We thus have the infinitesimal transformation of a Lie 
group12 that we call the Lewis-Leach group where we as
sume that the coordinate functions must be determined as 
functions of x and t. The group generator in the laboratory 
variables is 

Ug = p2ag + (ppx + p2a _ ppa) ag , (12) 
at ax 

and in BGK variables is 

Ug=a~, 
at 

where the latter group is in the canonical form and (f,X) are 
the canonical variables. 

We next search for the most general infinitesimal trans
formation that leaves the differential equation (2) for the mo
ton of a particle invariant. The twice-extended infinitesimal 
transformation ofEq. (2) represented by 

" (d 2
x q ) U ---E(t,x) =0 

dt 2 m 
(13) 

gives 

_ s (t,x) !L aE (t,x) _ 1](t,x) !L aE (t,x) + 1]" (t,x,xx) = 0, 
m at max 

(14) 

where the velocity derivation of E vanishes. Upon substitu
tion ofEq. (4b) into Eq. (14) we find 

( 
a1] _ 2 as ) !L E _ s!L aE _ 1] !L aE + a2

1] 
ax at m m at m ax at 2 

+ (2 a
2
1] _ ~s _ 3 as !LE)X 

at ax at 2 ax m 

+ (a2
1] _ 2 a

2
s ) X2 _ a2s X3 = o. 

ax2 at ax ax2 
(15) 

The velocity dependence is explicitly given in the powers of 
x = v. With an invariance under a group the coordinates 
(t,x,x) vary independently. One may actually find solutions 
ofEq. (15) for which the first time derivative of x,x, satisfies 
the cubic equation and is some function of (t,x). If this x 
differentiated results in Eq. (2), one has obtained a solution of 
the original differential equation. These special solutions do 
not help us in the solution of the Vlasov equation because 
v = x is an independent coordinate. Consequently the coeffi
cients of each power ofx in Eq. (15) vanish separately. These 
relations are 

~s = 0 (16a) 
ax2 ' 

~1] _ 2 ~s = 0, (16b) 
ax2 at ax 

2 a 21] _ ~s _ 3 as qE = 0, (16c) 
at ax at 2 ax m 

(
a1] _ 2 as)!L E _ s !L aE _ 1]!L aE + ~1] = o. 
ax at m m at m ax at 2 

(16d) 

The above set of equations can be solved. After two 
integrations ofEq. (16a) we find that 
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s(t,x) = ax + b, (17) 

for a and b functions of time. Next integrate Eq. (16b) twice 
to give 

da 2 (db ) 1]=-X + 2-+c x+d, 
dt dt 

(18) 

for c and d functions of time. Then we substitute (S,1]) into 
Eq. (16c). The result is 

(19) 

Since Eq. (16d) must be obeyed, we substitute S, 1], and E into 
Eq. (16d). As the resultant equation is quadratic in x, we find 
three relations that must be satisfied but one is an identity. 
The resultant two differential equations are insufficient to 
determine a, b, c, and d. We do not develop this case further 
for several reasons. This case has an electric field which has 
at most a linear variation x or a potential V, E = - av lax, 
quadratic in x. Also, the complete symmetry group of the 
one-dimensional harmonic oscillator has already been 
worked out.2 Neverltheless, we have found the general infin
itesimal transformation of invariance under a Lie group of 
Eq. (2) for potentials quadratic in x, where 

Ug = (ax + b) ag + [ da x 2 

at dt 

+ (2 db + c) x + d] ag , (20) 
dt ax 

and a, b, c, and d are not determined here. 
If we wish a more general x dependence of the potential 

V(t,x) or the electric fieldE (t,x), we seta = O. This condition 
follows from Eq. (16c) where we see that with a = 0, E is no 
longer constrained to be linear in x, although it may be. 
Henceforth, we set a = 0, which also means that S depends 
only on time t. As a result Eq. (16a) is automatically satisfied. 
The next equation (16b) simplifies to 

a21] -=0 (21) 
ax2 ' 

from which we deduce that 1] is a linear function ofx. Equa
tion (16c) integrates once to give 

2~-~=~ ~ 
ax at 

where N is a constant since 1] is at most linear in x and S 
depends only on t. Integrating once more with respect to x 
we find 

1] = -.!.. (as + N) x + d, 
2 at 

(23) 

for d a function of time. The relation (23) for 1] is substituted 
into Eq. (16d). We obtain 

( 
_ ~ as + N) !L E _ s!L aE _ (as + N) ~!L aE 

2 at 2 m m at at 2 m ax 

(24) 

At this point we introduce an ansatz for the electric 
field by 

qE 1m = qF(t)lm + G (t)x + W(t,x). (25) 

B. Abraham-Shrauner 1430 



                                                                                                                                    

This decomposition separates out the x dependence that is 
explicit in Eq. (24). The form was suggested by the similarity 
of T] found above in Eq. (23) to that for the Lewis-Leach 
transformation Eq. (8). Relation (25) substituted into Eq. (24) 
can be separated into terms of zero order in x, first order in x, 
and the W terms which are set equal to zero separately. W 
does not have terms of zero or first order in x. Three equa
tions result in the aforementioned order: 

( N _~ as )!LF-s!L aF -dG+ iPd =0, (26a) 
2 2 at m m at at 2 

_~ as G_s aG _ 1 as G+l..~s =0, (26b) 
2 at at 2 at 2 at 3 

( 
N _ ~ as ) w _ saw 
22at at 

_( as +N)~aw _d aw =0. (26c) 
at 2ax ax 

We first solve Eq. (26b). If one sets N = 0, one recovers 
the Lewis-Leach group. As Eq. (26b) does not even contain 
N, we let S = p2 by comparison with the calculations in (4) 
and (8). Then Eq. (26b) becomes after some manipulation 

~ ( 3 iPp ) _ ~ (p4G) = 0. (27) 
at P at 2 at 

Integrating with respect to time, we find 

a
2
p +!L il 2(t lo = L , (28) 

at 2 m mp3 
forkanintegrationconstantandG = - (q/m)f12(t )bycom
parison with the results in (4) and (8). Then Eq. (28) is the 
same differential equation found by Lewis and Symon,8 Eq. 
(9a) forp. 

The equation for W can be rewritten as 

aw' [ ~ ( as + N) + d] + S aw' = 0, (29) 
ax 2 at at 

for 

w'= wexp[ - J~ (~ - ~ ~)l 
The characteristic equation for Eq. (29) is 

dx =~(as +N) +!!...., 
dt 2S at S 

(30) 

which is a linear equation in x and can be integrated. Then 
we call the solution X, 

x = ~-(NI2)t - Jdt!!....e-(NI2 it = C
1

, (31) 
P p3 

where 

W= [e(N12)t/p3] W'(X), 

with I defined as in Eq. (8). Note x reduces to the value in Eq. 
(8) for N = 0, and the Lewis-Leach transformation results 
for N = ° if we define 

d a (a) 
p3 = at p . (32) 

From Eq. (26a) we find the differential equation for a to be 

d 2a q 2 q q N J -+-il (t}a=-F--- dtpF. (33) 
dt 2 m m m 2p3 
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The coordinate functions of the group generator are 

S=p2, T] = (Pp +N /2)x +p2a -ppa, 

T]' = (jjp + p2)x + (N /2 - pp}X 

+ ppa + p2ii - ppa - p2a, 

T]" = PP + 3pp)(x - a) + 3ppii 

+ p2(i + (N /2 - 3pp)i, 

where the group generator Ug is 

Ug=p2
a
g + [(pp + N)x +p2a -ppa] ag . 

at 2 ax 

(34) 

In summary we have specified the group generator of the 
infinitesimal transformation for the Lie group with S a func
tion of time only under which the one-dimensional Vlasov 
equation with a time-dependent electric field is invariant. 
The functions p and a satisfy the subsidiary equations (28) 
and (33), respectively, that are generalizations of the corre
sponding equations (9a) and (9b) for the Lewis-Leach trans
formation. Additional constraints on p and a may occur if 
Maxwell's equations are added but these are not discussed 
here.9 This generator has been given for the special case of an 
anharmonic oscillator with cubic anharmonicity. 2 

III. GENERALIZED BGK VLASOV EQUATION 

In this section we find the Vlasov equation in the gener
alized BGK form. First, we note the canonical coordinates 
(I, x): 

1= Jdt, x = (X - a)e - (N 12it _ NJdt a e - (N 12)t. (35) 
p2 P 2 p3 

The verification that these are possible canonical coordi
nates follows from Eqs. (lOa), (lOb), and (34). A transforma
tion of Eq. (2) to these coordinates should produce a new 
force term independent of time in the new coordinates; we 
call this new force a generalized BGK force and the new 
reference frame, the generalized BGK frame. The time-de
pendent electric field from Eqs. (25), (28), and (31) is 

2 e(N12)' dUe(x) 
E=F(t)-il (t)x-----, (36a) 

p3 ax 
for the potential 

V= -F(t)x +il 2(t)x2/2 + (?'/p2) Ue (x), (36b) 

where W'(x) = - (q/m) (dUe(x)/dx) and Ue(x) should not 
be confused with the Lie group generator operator U or U " . 

To find the Vlasov equation in the generalized BGK 
form or in the stationary reference frame we assume that the 
one-particle distribution function f(t,x,v) satisfies not only 
the Vlasov equation but also is invariant under the group just 
given in Sec. 11.12 There we found the group under which the 
equation of motion of a particle in an electric field E (t,x) is 
invariant but the Vlasov equation which has E (t,x) in the 
Lorentz force is also invariant under the group. 

This invariance is expressed by the following relation: 

(37) 

where U' is the operator for the once-extended infinitesimal 
tranformation 
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U ' £- a a , a 
=~-+7]-+7] -, 

at ax av (38) 

for x = v, 7]'(t,x,v) here and S, 7], and 7]' are given by Eq. (34). 
The operator Va is just the Vlasov operator not to be con
fused with the potential V, 

a a q a 
Va =-+v-+-E(t,x)-, 

at ax m av 

and the commutator (alternator in Cohen) is 

[U', Va ]/= U'(Va/) - Va(U:I')· 

(39) 

We seek a solution that is common to both U:I' = 0 and Va / 
= O. The common solution is found from the complete solu

tion that in general is of the form 

[U', Va V = r1(t,x,v)U:I' + r2(t,x,v)Va J, 

that here reduces to Eq. (37). 
We use two solutions of U:I' = 0 called r(t,x,v) and 

'3'(t,x,v) to reduce the Vlasov equation to the generalized 
BGK form. Let/(t,x,v) = 1('3' ,r). Then 

Va 1('3' ,r) = Va '3' al + Va r al = 0 
a'3' ar 

(40) 

is the Vlasov equation in the stationary or generalized BGK 
form. Ifwe divide by Va '3' we see that our equation becomes 

al Va r al 
a'3' + V

a
'3' ar = O. (41) 

The function Va r IVa '3' must be a function of '3' and r 
onlysinceal la~ and allar are functions of those variables 
even though the numerator or denominator of the fraction 
may not be if we do not have a Jacobian complete solution. 
Hence, we find in the ( ~, r) variables a BGK-type equa
tion which is stationary in a third coordinate that plays the 
role of time in these coordinates. 

The next question is how do we find the variables '3' and 
r as functions of the laboratory coordinates (t,x,v)? We go 
back to Eq. (13) and consider Eq. (2) as F(t,x,x,x): 

U "F- £- aF aF ,aF "aF 
= ~ --at + 7] ax + 7] ax + 7] ax = 0, (42) 

wherei = vandx = (qlm)E(t,x). This equation is equivalent 
to the set of ordinary differential equations 

dt dx dx dX 
--=--=---s (t) 7](t,x) 7]'(t,x,x) 7]" (t,x,x,x) 

(43) 

The first and second terms give 

dx 7](t,x) 
-=--, 
dt sIt) 

(30') 

but that is Eq. (30) which has already been solved to give X. 
Conventionally the solution of Eq. (30) is called ~(t,x) so 
that here we let ~(t,x) = x = ~(t,x,x) where there is no x 
dependence. The first and third terms give 

dx 7]'(t,x,x) 
-= 
dt sIt) 

The solution of this equation is r(t,x,x) and is 

r(t,x,x) = e-(NI2I'[p(X - a) -pIx - a) _ N !!.-
2 P 

(44) 

_ :2 e(N121' f d;: e-(NI2I'] = C2. (45) 

1432 J. Math. Phys., Vol. 26, No.6, June 1985 

The solution is found by substituting for x(t,x) in 7]'(t,x,x) and 
noting that as 7]' is linear in x, one has a linear ordinary 
differential equation in X. Then x = ~(t,x) and r(t,x,x) are 
the new variables that appear in Eq. (41). Before we investi
gate possible solutions ofEq. (40) or Eq. (41) we integrate the 
differential equation 

dx = 7]"(t,x,x,x) 
dt sIt) 

(46) 

Again we substitute for x(t,x) and also x(t,x(t,x), r) in 7]" and 
integrate the linear differential equation in x. We find 

x =.i. F(t) _ .i. n 2(t)x +.i. /eX e(N 121' + C3(x) e(N 121' 
m m m p3 p3 

+ N{ --q-fdtPF 
2 mp3 

e(N
/2

1' f .... -} +~ dt(ap_pa)e-(N12lt
• (47) 

This should agree with the expression for the electric field 
found in Eq. (36a). That agreement holds only if 

.i./eX + c 3(x) = _.i. d~ u. (x), 
m m x 

where C3 arises in the integration and ifthe fifth term on the 
right-hand side ofEq. (47) vanishes. The fifth term vanishes 
ifN=Oorif 

! f dt pF = e(N 121' f dt (ap - pale - (N 121'. (48) 

Equation (48) can be differentiated with respect to time t to 
find F. The result for F and f dt pF substituted into Eq. (33) 
for a gives an identity which is consistent. 

We now consider Eq. (40). If the Vlasov operator acts on 
'3' and r, we find by a straightforward calculation that 

V'?f=Vx=~_N x 
a a p2 2 p2' 

N q d - _ 
vr= --r---U(x) 

a 2p2 2..r.;" pm uX 
_ _ _ /eX2 

U.(x) = U.(x)+-. 
2 

The stationary Vlasov equation becomes 

( 
N _) a7 (N q d - -) a7 r--x -- -r+--U(x) -=0 
2 ax 2 m dx • ar ' 

(49a) 

(49b) 

(50) 

with Eq. (40) multiplied by p2. If one lets r' = r - (N 12)X, 
then this equation can be put in the standard BGK form but 
the velocity derivative coefficient is now velocity-dependent 
in the generalized BGK variables. Only if N = 0, which is 
the condition for the Lewis-Leach group, do we find the 
velocity-independent force for the stationary Vlasov equa
tion. 

The distribution functionl = /(t,x,v) can be found from 
Eq. (50) by integrating the characteristic equation. That 
equation is 

«(N 12)r + (qlm) (d lax) Ue(x)) 
--=-

r-(NI2)X 
dr (51) 

Thus, the solution of the one-dimensional Vlasov equation 
with a time-dependent electric field for S a function of t only 
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reduces to the solution of the nonlinear, first-order differen
tial equation (51) together with the subsidiary conditions (2S) 
and (33). Equation (51) was also found for the anharmonic 
oscillator with cubic anharmonicity.2 

IV. GENERALIZED BGK DISTRIBUTION FUNCTION 

We discuss in this section the solution of the stationary 
Vlasov equation (50). That entails the solution of the first
order, nonlinear ordinary equation (51). This equation can 
be viewed as an equation for the phase plane orbits as dis
cussed in nonlinear mechanics.22 The equation appears sim
pIe but that simplicity is misleading and no general analytic 
solution has been found. The equation can be put into the 
form of the Emden equation, the Thomas-Fermi equation in 
special cases, but these have been solved numerically under 
the conditions that apply here or give solutions found below 
by simpler means. 

Two cases are solvable. For N = 0 we find the Lewis
Leach transformation as has already been pointed out. Then 

(m/2)'Y2 + qU.(x) = I, 

where U. (x) is now the BG K potential and the invariant lis a 
constant. The distribution function is a functional of the in
variantI 

!(t,x,v) =1(x,'Y) =/s(m'Y2/2 + qU.(x)). (52) 

If N #0, we can solve Eq. (51) for U. quadratic in x. 
Since quadratic terms in x of V were removed from U. (x), 
this means U. = O. Also we recall that a more general form 
exists for this potential because 5 may depend on x as well as 
t. Equation (51) reduces to 

d'Y = _ ((N 12)'Y + (qlm)kx) (53) 
dx 'Y-(N/2)X 

As the numerator and denominatorin Eq. (53) are homogen
ous functions of degree 1, the equation can be solved by the 
substitution'Y = x Y (see Ref. 22) and is also invariant under 
the similitudinous group. 12 

The solutions ofEq. (53) are 

'Y+(N/2)X=KI, qklm= _N2/4, (54a) 

(
Of/,2 qk _2)1/2 [ N ~ -l( 'Y ~)] 
F + -;;;x exp - 2' \j qJ;tan T \j qJ; 

=K2, kq>O (54b) 

(
'Y2 + qk j2)1I2('Y + x~ _ qk Im)(NI4)( - mlqk)'/2 

m 'Y-x~-qklm 

(54c) 

where the invariants are given above and the distribution 
function is a functional of the invariant. 

The first invariant is linear in v or the momentump that 
is hidden in 'Y and is related to a solution given by Lewis and 
Leach.4 The other two invariants are not quadratic in the 
momentum. A special case of the invariant in Eq. (54c) 
squared with the appropriate value of N could be an invar
iant of the resonance form. Actually the invariants of Eq. 
(52) and Eq. (54c) can be put into the resonance form by 
taking the inverse. 

We now relate the invariant in Eq. (54a) to the one dis
cussed by Lewis and Leach. The distribution function/s (I) is 
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a functional of the invariant I that satisfies the Liouville 
equation 

aI + [I,H] =0, 
at 

where the single-particle Hamiltonian is 

H = p2/2m + (q/2)IJ 2(t )x2, 

(55) 

and the Liouville equation is identical in form to the Vlasov 
equation here. For the a = 0 case considered explicitly by 
Lewis and Leach the invariant becomes 

1= mlpe - (N 12)I)X - m !!....lpe - (N 12)1)x. 
dt 

(56) 

The invariant in (4) has the same form as that in Eq. (56) if a is 
substitutedforp exp( - (N 12)t)buttheira =p cos t.Actual
ly the invariant (56) with negative N also obeys Eq. (55) for 
the same Hamiltonian H. To see that, we note that 
p exp( ± (N 12)t) satisfies the following differential equation: 

~ Ipe ± (N 12)1) + .!L IJ 2(t Jpe ± (N 12)1 
dt 2 m 

= (p + N
2 

+.!L IJ 2(t Jp)e - (N 12)1 
4p3 m 

= (L + N2) e±(N12)1 = 0, (57) 
mp3 4p3 

from Eq. (2S) and Eq. (54a). Consequently, both ± (N 12) are 
valid solutions ofEq. (55) and (57), since for the same func
tion IJ 2(t) two values of N hold. A linear combination of 
invariants is then possible. Ifwe chooseN 12 = ±j, then two 
invariants are 

- d -
II = mxp cos t - mx -Ip sin t ), 

dt 

- d -
12 = mxp sin t - mx -Ip cos t ), 

dt 
(5S) 

which correspond to the Lewis-Leach solutions. Other 
choices are possible, of course, depending upon the choice of 
N. 

The question arises as to the existence of other solutions 
for the Liouville invariant I or the Vlasov one-particle distri
bution functionl(x,'Y). We can derive Eq. (50) by a coordi
nate transformation from (t,x,v) to (t,x,'Y'), where 'Y' = dxl 
dt. We find 

az+'Y' al -(N'Y'+.!L dU;) al =0, (59) 
at ox m dx a'Y' 

where 'Y' = 'Y - (N 12)X, U;(x) = U.(x) + (mlq)(N21 
2) (x2 IS). If I is stationary in this reference frame, Eq. (59) 
is equivalent to Eq. (50) upon change of variables and be
comes the generalized BGK Vlasov equation. Only if N = 0, 
do we find the electrostatic BGK solutions in these variables 
for U. # O. Is some clever change of variables possible that 
reduces Eq. (59) to the BGK form for N #0 and U. #O? To 
discuss that question we observe that x(t,x), 'Y(t,x,v) are two 
independent solutions of the partial differential equation 
U'/= O. Any other solutions of U'/= 0 are functions of 
these two variables. We could introduce <PI(X,'Y) and 
<P2(X, 'Y) as the solutions of U '/ = 0 and then rewrite Eq. (50) 
in these new variables which might be in the electrostatic 
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BGK form. This procedure is, however, equivalent to a 
change of variables in Eq. (51). Therefore, we should look for 
canonical variables or an integrating factor for Eq. (51). In
vestigation ofEq. (51) has not revealed any other analytical 
solutions than those listed. Standard methods for integrating 
nonlinear, ordinary differential equations,22 the invariance 
of the differential equation under the known Lie groups, 12 
and the table of differential equations have been checked.23 

v. DISCUSSION OF RESULTS 
The solution of an exact, nonlinear, one-dimensional 

Vlasov equation for an electric field that depends on one 
spatial coordinate and time has been reduced to the solution 
of a nonlinear first-order, ordinary differential equation for 
the characteristic equation. This reduction holds for all elec
tric fields nonlinear in the spatial coordinate and for a sub
class of those linear in the spatial coordinate. The Lie meth
od for the solution of differential equations invariant under a 
transformation group has started from the group generator 
for the point transformation. For the coordinate function 5 a 
function of time only, the group generator contains two 
functions of time that obey subsidiary differential equations 
that contain certain arbitrary functions. For 5 linear in the 
spatial coordinate only two differential equations are given 
for four functions of time. These undetermined functions in 
both cases are needed partially, at least, to satisfy additional 
constraints imposed by Maxwell's equations.

g
•
9.18 

The functional dependence of the one-particle distribu
tion function that satisfies the exact, nonlinear, one-dimen
sional Vlasov equation has been given analytically for sever
al cases. The Lewis-Leach invariant which is quadratic in 
the momentum has been found. For the generalized BGK 
Vlasov equation with an electric field linear in the spatial 
coordinate invariants for several ranges of integration con
stants have been found. One is related to the invariant linear 
in the momentum. Several invariants in special cases are of 
the resonance form. 

The Lie group method of determining the functional 
dependence of the on-particle distribution function of the 
Vlasov equation has advantages and disadvantages over oth
er approaches. The advantages are discussed first. 

The general infinitesimal transformation of the Lie 
group has been found for the Vlasov equation where the 
indeterminateness of the functions of time in the two cases 
considered is the same as found in other methods and is 
partially needed to satisfy the additional constraints im
posed by Maxwell's equations. Since the Lie group method 
includes a wide class of solutions, the class of analytical 
Liouville invariants is restricted, thereby. Defining the pos
sible class of analytical Liouville invariants is much more 
difficult by the direct method in which the particular mo
mentum dependence of an invariant is assumed. 

Second, solution of the time-dependent Vlasov equa
tion has been reduced for the electric field nonlinear in the 
spatial coordiate to a generalized BGK Vlasov equation or to 
a characteristic equation that is a nonlinear, first-order ordi
nary differential equation (51). The latter equation is in the 
form in which the possibility of an analytical solution is most 
easily appreciated. For example, in the direct method in 
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which the momentum dependence is assumed or in the use of 
velocity-dependent coordinate transformations, nonlinear 
partial differential equations result that are so complicated 
that one has difficulty ascertaining whether a solution exists. 

Third, the generalized BGK Vlasov equation or the 
characteristic equation for it is a natural starting point for 
approximations. One can investigate by perturbation theory 
distribution functions that are close to the analytical ones. 
For instance, if one has a potential that contains a dominant 
term quadratic in x and a small term cubic in x, a perturba
tion expansion of the distribution function about the result 
for the potential in x would be reasonable. On the other 
hand, if the integration constant N is small, an expansion of 
the distribution function about the Lewis-Leach result 
would be appropriate where the Liouville eigenfunctions 
could be used. 

Fourth, the analysis of phase orbits for the characteris
tic equation as is done extensively in nonlinear mechanics 
would give qualitative information about the orbits. Of 
course, numerical integration of the orbits could be made. 

The chief disadvantage of the Lie group method of 
point transformation for the one-dimensional Vlasov equa
tion is that one does not choose the momentum dependence. 
However, for analytical invariants the ability to choose in
variants may be a bit illusory if one looks at the restricted 
class of analytical solutions found here. The Lie group meth
od may not be as easy to apply to systems with more varia
bles. Lewis has generalized the invariant to a three-dimen
sional plasma in rectangular cartesian coordinates with an 
electromagnetic field and we have found the invariant in 
unpublished calculations in right circular cylindrical geome
try for a generalization of a rigid rotator distribution func
tion for a () pinch. Extending the Lie group method for these 
cases seems more difficult than using the direct approach. 
However, since an invariant exists, some Lie group under 
which the Vlasov equation is invariant exists which could 
serve as a guide to finding the form of the most general one. 
The solutions found here by the Lie groups for point trans
formations are not the most general since contact transfor
mations may also occur. 

The Lie group method presented here can also be com
pared with other approaches that use the invariance of dif
ferential equations under Lie point translations. The first 
alternative approach finds the group for the invariance of the 
complete set of Vlasov-Maxwell equations under Lie point 
transformations where the method in Bluman and Cole15 for 
sets of partial differential equations is extended to include 
integrals. Roberts20 gives a general exposition of this method 
applied to the one-dimensional Vlasov-Maxwell equations. 
Earlier treatments included the indirect determination of 
group generators by Baranov18 for the single-species plasma 
in a constant density, immobile background and a determin
ation of group generators for a multispecies plasma by Ax
ford 19 in lecture notes. The second alternative approach was 
suggested by a referee where the one-dimensional Vlasov 
equation is used with the electric field given in terms of a 
Green's function found from Poisson's equation. The con
straint of the longitudinal current density must also be added 
and the purely time-dependent part of the electric field put in 
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explicitly. For the one-dimensional, multispecies plasma all 
approaches appear to give the same group when the con
straints imposed by Maxwell's equation are included and a 
time-dependent electric field added to the field found from a 
Green's function. The alternative methods are more efficient 
than the method presented here. Nevertheless two reasons 
exist for presenting this method. First, the method is closest 
to the traditional approach used in solving the Vlasov-Max
well equations and therefore most immediately accessible to 
plasma physicists. The other reason is that the alternative 
methods may omit possible solutions of the Vlasov-Maxwell 
equations. Such an example has been found. The example is 
a single-species plasma in a neutralizing background with a 
longitudinal electric field that varies with (x,t ) perpendicular 
to a uniform magnetic field. For this plasma the Lie group 
solution for the Vlasov equation alone or for the Vlasov 
equation with the electric field in terms of a Green's function 
gives a more general result than for the solution of the Vla
sov-Maxwell set that is invariant under a Lie point transfor
mation. The time dependence of the electric field on the up
per-hybrid frequency occurs for the first two cases but not 
for the last one. 
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ERRATUM 
, 

Erratum: Remarks on canonical transformations in phase-space path 
integrals [J. Math. Phys. 24, 874 (1983)] 

Christopher C. Gerry 
Department of Physics, St. Bonaventure University, St. Bonaventure, New York 14778 

(Received 30 January 1985; accepted for publication 15 February 1985) 

Equation (1.8) should read 

..1 V(Qj) = W/8m){ [/"(Qj)]2/[f'(Qj)]4J. 
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